Skip to main content

Macroparticle Filters

  • Chapter
  • First Online:
Cathodic Arcs

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 50))

  • 1654 Accesses

Abstract

The most common and successful approach to deal with the infamous macroparticle issue is to utilize curved macroparticle filters. The principles of guiding arc plasma in filters are explained. A filter can be considered as a plasma optical system that takes the source plasma and transports it to a substrate, where an “image” of the source is produced. A solenoid is the simplest example of such a plasma optical system. The chapter contains a rather comprehensive review of plasma transport models as well as filter geometries. Many examples are illustrated. The different approaches are grouped. One way of classification is to consider filters using a duct with the magnetic filter coils surrounding it and filters of “open architecture,” characterized by openings through which the macroparticles can escape from the filter volume. In the open architecture, we utilize the fact that macroparticles tend to “bounce” from surfaces.

Mistakes lead to discovery and that can produce delight…you should try it!Chef Alice Broke, made famous in Arlo Guthrie’s song

“Alice’s Restaurant”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The patent spells I.I. Axenov; he is the same researcher from Kharkov, Ukraine, often transliterated as I.I. Aksenov.

References

  1. Aksenov, I.I., Belous, V.A., Padalka, V.G., and Khoroshikh, V.M., Transport of plasma streams in a curvilinear plasma-optics system, Sov. J. Plasma Phys.4, 425–428, (1978).

    ADS  Google Scholar 

  2. Aksenov, I.I., Belous, V.A., Padalka, V.G., and Khoroshikh, V.M., Apparatus to rid the plasma of a vacuum arc of macroparticles, Instrum. Exp. Tech.21, 1416–1418, (1978).

    Google Scholar 

  3. Boxman, R.L. and Goldsmith, S., Macroparticle contamination in cathodic arc coatings: Generation, transport and control, Surf. Coat. Technol.52, 39–50, (1992).

    Article  Google Scholar 

  4. Boxman, R.L., Zhitomirsky, V., Alterkop, B., Gidalevitch, E., Beilis, I., Keidar, M., and Goldsmith, S., Recent progress in filtered vacuum arc deposition, Surf. Coat. Technol.86–87, 243–253, (1996).

    Article  Google Scholar 

  5. Brown, I.G., Cathodic arc deposition of films, Annual Rev. Mat. Sci.28, 243–269, (1998).

    Article  ADS  Google Scholar 

  6. Anders, A., Approaches to rid cathodic arc plasma of macro- and nanoparticles: a review, Surf. Coat. Technol.120–121, 319–330, (1999).

    Article  Google Scholar 

  7. Martin, P.J. and Bendavid, A., Review of the filtered vacuum arc process and materials deposition, Thin Solid Films394, 1–15, (2001).

    Article  ADS  Google Scholar 

  8. Brown, I.G., Vacuum arc ion sources, Rev. Sci. Instrum.65, 3061–3081, (1994).

    Article  ADS  Google Scholar 

  9. Anders, A., Ion charge state distributions of vacuum arc plasmas: the origin of species, Phys. Rev. E55, 969–981, (1997).

    Article  ADS  Google Scholar 

  10. Anders, A., Yotsombat, B., and Binder, R., Correlation between cathode properties, burning voltage, and plasma parameters of vacuum arcs, J. Appl. Phys.89, 7764–7771, (2001).

    Article  ADS  Google Scholar 

  11. Storer, J., Galvin, J.E., and Brown, I.G., Transport of vacuum arc plasma through straight and curved magnetic ducts, J. Appl. Phys.66, 5245–5250, (1989).

    Article  ADS  Google Scholar 

  12. Cluggish, B.P., Transport of a cathodic arc plasma in a straight, magnetized duct, IEEE Trans. Plasma Sci.26, 1645–1652, (1998).

    Article  ADS  Google Scholar 

  13. Chen, F.F., Plasma Physics and Controlled Fusion. Plenum Press, New York, (1984).

    Book  Google Scholar 

  14. Spitzer, Jr., L., Physics of Fully Ionized Gases, preprint of the 2 nd revised edition, originally published by Wiley, 1962 ed. Dover, New York, (1990).

    Google Scholar 

  15. Morozov, A.I. and Lebedev, S.V., “Plasma Optics,” in Reviews of Plasma Physics, Vol. 8, Leontovich, M.A., (Ed.). pp. 301–460, Consultants Bureau, New York, (1980).

    Google Scholar 

  16. Anders, A. and Yushkov, G.Y., Ion flux from vacuum arc cathode spots in the absence and presence of magnetic fields, J. Appl. Phys.91, 4824–4832, (2002).

    Article  ADS  Google Scholar 

  17. Davidson, R.C., Vlasov equilibrium and nonlocal stability properties of an inhomogeneous plasma column, Phys. Fluids19, 1189–1202, (1976).

    Article  ADS  Google Scholar 

  18. Krishnan, M., Geva, M., and Hirshfield, J.L., Plasma centrifuge, Phys. Rev. Lett.46, 36–38, (1981).

    Article  ADS  Google Scholar 

  19. Prasad, R.R. and Krishnan, M., Rigid rotor equilibria of multifluid, neutral plasma columns in crossed electric and magnetic fields, Phys. Fluids30, 2496–3501, (1987).

    Article  MATH  Google Scholar 

  20. Giuliani, L., Minotti, F., Grondona, D., and Kelly, H., On the dynamics of the plasma entry and guiding in a straight magnetized filter of a pulsed vacuum arc, IEEE Trans. Plasma Sci.35, 1710–1716, (2007).

    Article  ADS  Google Scholar 

  21. Giuliani, L., Grondona, D., Kelly, H., and Minotti, F.O., On the plasma rotation in a straight magnetized filter of a pulsed vacuum arc, J. Phys. D: Appl. Phys.40, 401–408, (2007).

    Article  ADS  Google Scholar 

  22. Kaufman, H.R., Robinson, R.S., and Seddon, R.I., End-Hall ion source, J. Vac. Sci. Technol. A5, 2081–2084, (1987).

    Article  ADS  Google Scholar 

  23. Morozov, A.I., Focussing of cold quasineutral beams in electromagnetic fields, Sov. Phys. Doklady10, 775–777, (1966).

    ADS  Google Scholar 

  24. Demidenko, I.I., Lomino, N.S., Morozov, A.I., and Padalka, V.G., Focusing of a neutralized ion beam by a plasma-optics system, Sov. Phys.-Tech. Phys.19, 347–350, (1974).

    ADS  Google Scholar 

  25. Goncharov, A.A., Protsenko, I.M., Yushkov, G.Y., and Brown, I.G., Focusing of high-current, large-area, heavy-ion beams with an electrostatic plasma lens, Appl. Phys. Lett.75, 911–913, (1999).

    Article  ADS  Google Scholar 

  26. Aksenov, I.I., Belokhvostikov, A.N., Padalka, V.G., Repalov, N.S., and Khoroshikh, V.M., Plasma flux motion in a toroidal plasma guide, Plasma Phys. Controlled Fusion28, 761–770, (1986).

    Article  ADS  Google Scholar 

  27. Davis, C.A. and Donelly, I.J., Simulation of ion transport through curved-solenoid macroparticle filters, J. Appl. Phys.72, 1740–1747, (1992).

    Article  ADS  Google Scholar 

  28. Schmidt, G., Plasma motion across magnetic fields, Phys. Fluids3, 961–965, (1960).

    Article  ADS  MathSciNet  Google Scholar 

  29. Khizhniyak, N.A., Motion of a plasmoid in the magnetic field of a toroidal solenoid, Sov. Phys. Tech. Phys.10, 655–661, (1965).

    Google Scholar 

  30. Veerasamy, V.S., Amaratunga, G.A.J., and Milne, W.I., Plasma motion in a filtered cathodic vacuum arc, IEEE Trans. Plasma Sci.21, 322–328, (1993).

    Article  ADS  Google Scholar 

  31. Shi, X., Tu, Y.Q., Tan, H.S., and Tay, B.K., Simulation of plasma flow in toroidal solenoid filters, IEEE Trans. Plasma Sci.24, 1309–1318, (1996).

    Article  ADS  Google Scholar 

  32. Alterkop, B., Zhitomirsky, V.N., Goldsmith, S., and Boxman, R.L., Propagation of a vacuum arc plasma beam in a toroidal filter, IEEE Trans. Plasma Sci.24, 1371–1377, (1996).

    Article  ADS  Google Scholar 

  33. Alterkop, B., Gidalevich, E., Goldsmith, S., and Boxman, R.L., Vacuum arc plasma jet propagation in a toroidal duct, J. Appl. Phys.79, 6791–6802, (1996).

    Article  ADS  Google Scholar 

  34. Alterkop, B., Gidalevich, E., Goldsmith, S., and Boxman, R.L., Propagation of a magnetized plasma beam in a toroidal filter, J. Phys. D: Appl. Phys.31, 873–879, (1998).

    Article  ADS  Google Scholar 

  35. Alterkop, B., Gidalevich, E., Goldsmith, S., and Boxman, R.L., The numerical calculation of plasma beam propagation in a toroidal duct with magnetized electrons and unmagnetized ions, J. Phys. D: Appl. Phys.29, 3032–3038, (1996).

    Article  ADS  Google Scholar 

  36. Anders, A., Interaction of vacuum-arc-generated macroparticles with a liquid surface, Appl. Phys. Lett.73, 3199–3201, (1998).

    Article  ADS  Google Scholar 

  37. Koskinen, J., Anttila, A., and Hirvonen, J.-P., Diamond-like carbon coatings by arc-discharge methods, Surf. Coat. Technol.47, 180–187, (1991).

    Article  Google Scholar 

  38. Anders, A. and MacGill, R.A., Twist filter for the removal of macroparticles from cathodic arc plasmas, Surf. Coat. Technol.133–134, 96–100, (2000).

    Article  Google Scholar 

  39. Bilek, M.M.M. and Anders, A., Designing advanced filters for macroparticle removal from cathodic arc plasmas, Plasma Sources Sci. Technol.8, 488–493, (1999).

    Article  ADS  Google Scholar 

  40. Aksenov, I.I., Padalka, V.G., Tolok, V.T., and Khoroshikh, V.M., Motion of plasma streams from a vacuum arc in a long, straight plasma optics system, Sov. J. Plasma Phys.6, 504–507, (1980).

    ADS  Google Scholar 

  41. Tamagaki, H. and Akari, U., “Apparatus and method of cathodic arc deposition,” patent US 5,126,030 (1992).

    Google Scholar 

  42. Sathrum, P.E. and Coll, B.F., “Plasma enhanced apparatus and method for physical vapor deposition,” patent US 5,458,754 (1995).

    Google Scholar 

  43. Sathrum, P.E. and Coll, B.F., “Plasma enhancement apparatus and method for physical vapor deposition,” patent US 6,139,964 (2000).

    Google Scholar 

  44. Zhitomirsky, V.N., Zarchin, O., Boxman, R.L., and Goldsmith, S., Transport of a vacuum-arc produced plasma beam in a magnetized cylindrical duct, IEEE Trans. Plasma Sci.31, 977–982, (2003).

    Article  ADS  Google Scholar 

  45. Burkhardt, W. and Reinecke, R., “Method of coating articles by vaporized coating materials,” patent US 2,157,478 (1939).

    Google Scholar 

  46. Axenov, I.I., Belous, V.A., Padalka, V.G., and Khoroshikh, V.M., “Arc plasma generator and a plasma arc apparatus for treating the surface of work-pieces, incorporating the same arc plasma generator,” patent US 4,452,686 (1984).

    Google Scholar 

  47. Miernik, K. and Walkowicz, J., Design and performance of the microdroplet filtering system used in cathodic arc coating deposition, Plasmas & Ions3, 41–51, (2000).

    Article  Google Scholar 

  48. Brandolf, H., “Vapor deposition method and apparatus,” patent US 4,511,593 (1985).

    Google Scholar 

  49. Kimura, K., Izumi, K., Takikawa, H., and Sakakibara, T. Preparation of metal nitride and oxide thin films using shielded reactive vacuum arc deposition, Vacuum59, 159–167, (2000).

    Article  Google Scholar 

  50. Takikawa, H., Miyano, R., Sakakibara, T., Bendavid, A., Martin, P.J., Matsumuro, A., and Tsutsumi, K. Effect of substrate bias on AlN thin film preparation in shielded reactive vacuum arc deposition, Thin Solid Films386, 276–280, (2001).

    Article  ADS  Google Scholar 

  51. Mändl, S. and Rauschenbach, B., Plasma stream homogeneity in metal plasma immersion ion implantation and deposition, IEEE Trans. Plasma Sci.31, 968–972, (2003).

    Article  ADS  Google Scholar 

  52. Treglio, J.R., “Magnetically filtered cathodic arc plasma apparatus,” patent US 5,317,235 (1994).

    Google Scholar 

  53. Lossy, R., Pappas, D.L., Roy, R.A., Cuomo, J.J., and Sura, V.H., Filtered arc deposition of amorphous diamond, Appl. Phys. Lett.61, 171–173, (1992).

    Article  ADS  Google Scholar 

  54. Vyskocil, J. and Musil, J., Cathodic arc evaporation in thin film technology, J. Vac. Sci. Technol. A10, 1740–1748, (1992).

    Article  ADS  Google Scholar 

  55. Martin, P.J., Falabella, S., and Karpov, D.M., “Coatings from the vacuum arc deposition,” in Handbook of Vacuum Arc Science and Technology, Boxman, R.L., Martin, P.J., and Sanders, D.M., (Eds.). pp. 367–551, Noyes, Park Ridge, (1995).

    Google Scholar 

  56. Martin, P.J., Bendavid, A., and Kinder, T.J., The deposition of TiN thin films by filtered cathodic arc techniques, IEEE Trans. Plasma Sci.25, 675–679, (1997).

    Article  ADS  Google Scholar 

  57. Boxman, R.L. and Goldsmith, S., Principles and applications of vacuum arc coatings, IEEE Trans. Plasma Sci.17, 705–712, (1989).

    Article  ADS  Google Scholar 

  58. Zhitomirsky, V.N., Boxman, R.L., and Goldsmith, S., Influence of an external magnetic field on cathode spot motion and coating deposition using filtered vacuum arc evaporation, Surf. Coat. Technol.68/69, 146–151, (1994).

    Article  Google Scholar 

  59. Aksenov, I.I., Vakula, S.I., Padalka, V.G., Strel’nitskii, V.E., and Khoroshikh, V.M., High-efficiency source of pure carbon plasma, Sov. Phys. Techn. Phys.25, 1164–1166, (1980).

    Google Scholar 

  60. Witke, T., Schuelke, T., Schultrich, B., Siemroth, P., and Vetter, J., Comparison of filtered high current pulsed arc deposition (φ-HCA) with conventional vacuum arc methods, Surf. Coat. Technol.126, 81–88, (2000).

    Article  Google Scholar 

  61. Witke, T. and Siemroth, P., Deposition of droplet-free films by vacuum arc evaporation-results and applications, IEEE Trans. Plasma Sci.27, 1039–1044, (1999).

    Article  ADS  Google Scholar 

  62. Falabella, S. and Sanders, D.M., “Filtered cathodic arc source,” patent US 5,279,723 (1994).

    Google Scholar 

  63. Baldwin, D.A. and Fallabella, S., “Deposition processes utilizing a new filtered cathodic arc source,” Proc. of the 38th Annual Techn. Conf., Society of Vacuum Coaters, Chicago, 309–316, (1995).

    Google Scholar 

  64. Hakovirta, M., Salo, J., Anttila, A., and Lappalainen, R., Graphite particles in the diamond-like a-C films prepared with the pulsed arc-discharge method, Diamond and Rel. Mat.4, 1335–1339, (1995).

    Article  ADS  Google Scholar 

  65. Siemroth, P., “personal communication on 120-degree filter,” Dresden, Germany, (2003).

    Google Scholar 

  66. Anders, S., Anders, A., Dickinson, M.R., MacGill, R.A., and Brown, I.G., S-shaped magnetic macroparticle filter for cathodic arc deposition, IEEE Trans. Plasma Sci.25, 670–674, (1997).

    Article  ADS  Google Scholar 

  67. Aksenov, I.I., Belous, V.A., and Padalka, V.G., A device for producing coatings in vacuum, patent USSR 605425 (1976).

    Google Scholar 

  68. Zhang, Y.J., Yan, P.X., Wu, Z.G., Zhang, W.W., Zhang, G.A., Liu, W.M., and Xue, Q.J., Effects of substrate bias and argon flux on the structure of titanium nitride films deposited by filtered cathodic arc plasma, Physica Status Solidi (a)202, 95–101, (2005).

    Article  ADS  Google Scholar 

  69. Shi, X., Tay, B.K., Tan, H.S., Liu, E., Shi, J., Cheah, L.K., and Jin, X., Transport of vacuum arc plasma through an off-plane double bend filtering duct, Thin Solid Films345, 1–6, (1999).

    Article  ADS  Google Scholar 

  70. Shi, X., Tay, B.G., and Lau, S.P., The double bend filtered cathodic arc technology and its applications, Int. J. Mod. Phys. B14, 136–153, (2000).

    Article  ADS  Google Scholar 

  71. You, G.F., Tay, B.K., Lau, S.P., Chua, D.H.C., and Milne, W.I., Carbon arc plasma transport through different off-plane double bend filters, Surf. Coat. Technol.150, 50–56, (2002).

    Article  Google Scholar 

  72. Gorokhovsky, V.I., “Personal communication,” 1999.

    Google Scholar 

  73. Gorokhovsky, V.I., “Apparatus for application of coatings in vacuum,” patent US 5,435,900 (1995).

    Google Scholar 

  74. Welty, R.P., “Rectangular vacuum-arc plasma source,” patent US 5,480,527 (1996).

    Google Scholar 

  75. Welty, R.P., “Rectangular vacuum-arc plasma source,” patent US 5,840,163 (1998).

    Google Scholar 

  76. Boxman, R.L., Zhitomirsky, V., Goldsmith, S., David, T., and Dikhtyar, V., “Deposition of SnO2 coatings using a rectangular filtered vacuum arc source,” 46th Annual Technical Meeting of the Society of Vacuum Coaters, San Francisco, CA, 234–239, (2003).

    Google Scholar 

  77. Zhitomirsky, V.N., Boxman, R.L., and Goldsmith, S., Plasma distribution and SnO2 coating deposition using a rectangular filtered vacuum arc plasma source, Surf. Coat. Technol.185, 1–11, (2004).

    Article  Google Scholar 

  78. Aksenov, I.I. and Bren’, V.G., Vacuum arc plasma apparatus patent USSR 913744 (1981).

    Google Scholar 

  79. Boercker, D.B., Falabella, S., and Sanders, D.M., Plasma transport in a new cathodic arc ion source: theory and experiment, Surf. Coat. Technol.53, 239–242, (1992).

    Article  Google Scholar 

  80. Falabella, S. and Sanders, D.M., Comparison of two filtered cathodic arc sources, J. Vac. Sci. Technol. A10, 394–397, (1992).

    Article  ADS  Google Scholar 

  81. Osipov, V.A., Padalka, V.G., Sablev, L.P., and Stupak, R.I., Unit for depositing coatings by precipitation of ions extracted from a vacuum-arc plasma, Instrum. Exp. Tech.21, 1650–1652, (1978).

    Google Scholar 

  82. Welty, R.P., “Linear magnetron arc cathode and macroparticle filter,” Int. Conf. Metal. Coat. & Thin Films, San Diego, paper B1-5, (1999).

    Google Scholar 

  83. Buhl, R., “Method and apparatus for coating workpieces,” patent US 4,929,321 (1990).

    Google Scholar 

  84. Aksenov, I.I. and Khoroshikh, V.M., “Radial ion flows in a vacuum-arc plasma,” 17th International Symposium on Discharges and Electrical Insulation in Vacuum, Berkeley, California, 900–903, (1996).

    Google Scholar 

  85. Kljuchko, G.V., Padalka, V.G., Sablev, L.P., and Stupka, R.I., “Plasma arc apparatus for applying coatings by means of a consumable cathode,” patent US 4,492,845 (1985).

    Google Scholar 

  86. Ryabchikov, A.I. and Stepanov, I.B., Investigations of forming metal-plasma flows filtered from microparticle fraction in a vacuum arc evaporator, Rev. Sci. Instrum.69, 810–812, (1998).

    Article  ADS  Google Scholar 

  87. Ryabchikov, A.I., Stepanov, I.B., Dektjarev, S.V., and Sergeev, O.V., Vacuum arc ion and plasma source Raduga 5 for materials treatment, Rev. Sci. Instrum.69, 893–895, (1998).

    Article  ADS  Google Scholar 

  88. Ryabchikov, A.I., Repetitively pulsed vacuum arc ion and plasma sources and new methods of ion and ion plasma treatment of materials, Surf. Coat. Technol.96, 9–15, (1997).

    Article  Google Scholar 

  89. Bilek, M.M.M., Anders, A., and Brown, I.G., Characterization of a linear Venetian-blind macroparticle filter for cathodic vacuum arcs, IEEE Trans. Plasma Sci.27, 1197–1202, (1999).

    Article  ADS  Google Scholar 

  90. Zimmer, O., Vacuum arc deposition by using a Venetian blind particle filter, Surf. Coat. Technol.200, 440–443, (2005).

    Article  Google Scholar 

  91. Bilek, M.M.M. and Brown, I.G., Deposition probe technique for the determination of film thickness profiles, Rev. Sci. Instrum.69, 3353–3356, (1998).

    Article  ADS  Google Scholar 

  92. Anders, A. and Ryan, F.R., “Ultrathin ta-C films on heads deposited by twist-filtered cathodic arc carbon deposition (invited),” Symposium on Interface Tribology Towards 100 Gbit/in2 and Beyond, Seattle, WA, 43–50, (2000).

    Google Scholar 

  93. Anders, A., Fong, W., Kulkarni, A., Ryan, F.R., and Bhatia, C.S., Ultrathin diamondlike carbon films deposited by filtered carbon vacuum arcs, IEEE Trans. Plasma Sci.29, 768–775, (2001).

    Article  ADS  Google Scholar 

  94. Utsumi, T. and English, J.H., Study of electrode products emitted by vacuum arcs in form of molten metal particles, J. Appl. Phys.46, 126–131, (1975).

    Article  ADS  Google Scholar 

  95. Robbie, K. and Brett, M.J., Sculptured thin films and glancing angle deposition: growth mechanics and applications, J. Vac. Sci. Technol. A15, 1460–1465, (1997).

    Article  ADS  Google Scholar 

  96. Lakhtakia, A. and Messier, R., Sculptured Thin Films: Nanoengineered Morphology and Optics. SPIE – The International Society for Optical Engineering, Bellingham, WA, (2005).

    Book  Google Scholar 

  97. Bilek, M.M.M., Evans, P., Mckenzie, D.R., McCulloch, D.G., Zreiqat, H., and Howlett, C.R., Metal ion implantation using a filtered cathodic vacuum arc, J. Appl. Phys.87, 4198–4204, (2000).

    Article  ADS  Google Scholar 

  98. Anders, A., Anders, S., and Brown, I.G., Effect of duct bias on transport of vacuum arc plasmas through curved magnetic filters, J. Appl. Phys.75, 4900–4905, (1994).

    Article  ADS  Google Scholar 

  99. Zhang, T., Zhang, Y.C., Chu, P.K., and Brown, I.G., Wall sheath and optimal bias in magnetic filters for vacuum arc plasma sources, Appl. Phys. Lett.80, 365–367, (2002).

    Article  ADS  Google Scholar 

  100. Zhang, T., Chu, P.K., Kwok, D.T.K., and Brown, I.G., Optimal duct bias for transport of cathodic-arc plasmas, IEEE Trans. Plasma Sci.30, 1602–1605, (2002).

    Article  ADS  Google Scholar 

  101. Zhang, T., Tang, B.Y., Chen, Q.C., Zeng, Z.M., Chu, P.K., Bilek, M.M.M., and Brown, I.G., Vacuum arc plasma transport through a magnetic duct with a biased electrode at the outer wall, Rev. Sci. Instrum.70, 3329–3331, (2002).

    Article  ADS  Google Scholar 

  102. Keidar, M. and Beilis, I.I., Plasma-wall sheath in a positive biased duct of the vacuum arc magnetic macroparticle filter, Appl. Phys. Lett.73, 306–308, (1998).

    Article  ADS  Google Scholar 

  103. Beilis, I.I., Keidar, M., Boxman, R.L., and Goldsmith, S., Macroparticle separation and plasma collimation in positively biased ducts in filtered vacuum arc deposition systems, J. Appl. Phys.85, 1358–1365, (1999).

    Article  ADS  Google Scholar 

  104. Keidar, M. and Beilis, I.I., Hydrodynamic model of vacuum arc plasma flow in a positively biased toroideal macroparticle filter, Plasma Sources Sci. Technol.8, 376–383, (1999).

    Article  ADS  Google Scholar 

  105. Zhang, T., Tang, B.Y., Chen, Q.C., Chu, P.K., Bilek, M.M.M., and Brown, I.G., Vacuum arc plasma transport trough a magnetic duct with a biased electrode at the outer wall, Rev. Sci. Instrum.70, 3329–3331, (1999).

    Article  ADS  Google Scholar 

  106. Bilek, M.M.M., McKenzie, D.R., Yin, Y., Chhowalla, M.U., and Milne, W.I., Interactions of the directed plasma from a cathodic arc with electrodes and magnetic field, IEEE Trans. Plasma Sci.24, 1291–1298, (1996).

    Article  ADS  Google Scholar 

  107. Bilek, M.M.M., Yin, Y., and McKenzie, D.R., A study of filter transport mechanisms in filtered cathodic vacuum arcs, IEEE Trans. Plasma Sci.24, 1165–1173, (1996).

    Article  ADS  Google Scholar 

  108. Byon, E. and Anders, A., Bias and self-bias of magnetic macroparticle filters for cathodic arc plasmas, J. Appl. Phys.93, 8890–8897, (2003).

    Article  ADS  Google Scholar 

  109. Kim, J.-K., Kim, D.-G., Byon, E., Lee, S., Kim, K.-H., and Lee, G.-H., Effect of plasma duct bias on the plasma characteristics of a filtered vacuum arc source, Thin Solid Films444, 23–28, (2003).

    Article  ADS  Google Scholar 

  110. Zhang, T., Chu, P.K., and Brown, I.G., Effects of cathode materials and arc current on optimal bias of a cathodic arc through a magnetic duct, Appl. Phys. Lett.80, 3700–3702, (2002).

    Article  ADS  Google Scholar 

  111. Zhang, T., Chu, P.K., Fu, R.K.Y., and Brown, I.G., Plasma transport in magnetic duct filter, J. Phys. D: Appl. Phys.35, 3176–3177, (2002).

    Article  ADS  Google Scholar 

  112. Bilek, M.M.M. and Brown, I.G., The effects of transmission through a magnetic filter on the ion charge state distribution of a cathodic vacuum arc plasma, IEEE Trans. Plasma Sci.27, 193–198, (1999).

    Article  ADS  Google Scholar 

  113. Kwok, D.T.K., Chu, P.K., Bilek, M.M.M., and Brown, I.G., Ion mean charge state in a biased vacuum arc plasma duct, IEEE Trans. Plasma Sci.28, 2194–2201, (2000).

    Article  ADS  Google Scholar 

  114. Zhang, T., Tang, B.Y., Chen, Q.C., Chu, P.K., Bilek, M.M.M., and Brown, I.G., Mechanism of enhanced plasma transport of vacuum arc plasma through curved magnetic ducts, J. Vac. Sci. Technol. A17, 3074–3076, (1999).

    Article  ADS  Google Scholar 

  115. Zhang, T., Kwok, D.T.K., Chu, P.K., and Brown, I.G., Guiding effect of electric and magnetic fields on the plasma output of a cathodic arc magnetic filter, J. Appl. Phys.89, 672–675, (2001).

    Article  ADS  Google Scholar 

  116. Zhitomirsky, V.N., Boxman, R.L., and Goldsmith, S., Unstable arc operation and cathode spot motion in a magnetically filtered vacuum-arc deposition system, J. Vac. Sci. Technol. A13, 2233–2240, (1995).

    Article  ADS  Google Scholar 

  117. Anders, A., Anders, S., and Brown, I.G., Transport of vacuum arc plasmas through magnetic macroparticle filters, Plasma Sources Sci. Technol.4, 1–12, (1995).

    Article  ADS  Google Scholar 

  118. Kim, J.K., Lee, K.R., Eun, K.Y., and Chung, K.H., Effect of magnetic field structure near cathode on the arc spot stability of filtered vacuum arc source of graphite, Surf. Coat. Technol.124, 135–141, (2000).

    Article  Google Scholar 

  119. Forrester, A.T. and Busnardo-Neto, J., Magnetic fields for surface containment of plasmas, J. Appl. Phys.47, 3935–3941, (1976).

    Article  ADS  Google Scholar 

  120. Forrester, A.T., Large Ion Beams. Wiley, New York, (1988).

    Google Scholar 

  121. Leung, K.N., Samec, T.K., and Lamm, A., Optimization of permanent magnet plasma confinement, Phys. Lett. A51, 490–492, (1975).

    Article  ADS  Google Scholar 

  122. Leung, K.N., Taylor, G.R., Barrick, J.M., Paul, S.L., and Kribel, R.E., Plasma confinement by permanent magnet boundaries, Phys. Lett. A57, 145–147, (1976).

    Article  ADS  Google Scholar 

  123. Anders, S., Raoux, S., Krishnan, K., MacGill, R.A., and Brown, I.G., Plasma distribution of cathodic arc deposition systems, J. Appl. Phys.79, 6785–6790, (1996).

    Article  ADS  Google Scholar 

  124. Bilek, M.M.M., Monteiro, O.R., and Brown, I.G., Optimization of film thickness profiles using a magnetic cusp homogenizer, Plasma Sources Sci. Technol.8, 88–93, (1999).

    Article  ADS  Google Scholar 

  125. Bilek, M.M.M., Anders, A., and Brown, I.G., Magnetic system for producing uniform coatings using a filtered cathodic arc, Plasma Sources Sci. Technol.10, 606–613, (2001).

    Article  ADS  Google Scholar 

  126. Machima, P., Bilek, M.M.M., Monteiro, O.R., and Brown, I.G., Simple and inexpensive current-driven magnetic multipole plasma homogenizer, Rev. Sci. Instrum.71, 3373–3376, (2000).

    Article  ADS  Google Scholar 

  127. Ben-Ami, R., Zhitomirsky, V.N., Boxman, R.L., and Goldsmith, S., Plasma distribution in a triple-cathode vacuum arc deposition apparatus, Plasma Sources Sci. Technol.8, 355–362, (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Anders, A. (2008). Macroparticle Filters. In: Cathodic Arcs. Springer Series on Atomic, Optical, and Plasma Physics, vol 50. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79108-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-79108-1_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-79107-4

  • Online ISBN: 978-0-387-79108-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics