Advertisement

Macroparticles

  • André Anders
Chapter
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 50)

Abstract

The infamous macroparticle problem is the main reason why cathodic arc plasma deposition is not broadly used in high-tech applications. Macroparticles are formed at cathode spots, together with electrons and ions. They are commonly called “macroparticles” because they are very massive compared to ions and electrons. The formation and transport of macroparticles are considered, having in mind that we want to reduce, and possibly eliminate them. The size distributions can be fit by power laws, which is another indication for the self-similar nature of cathode processes. In one section, we contemplate whether macroparticles could be destroyed, e.g., by heating or by the interaction with plasma particles.

Keywords

Dusty Plasma Cathode Surface Cathode Spot Emission Site Spot Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Daalder, J.E., Components of cathode erosion in vacuum arcs, J. Phys. D: Appl. Phys. 9, 2379–2395, (1976).ADSCrossRefGoogle Scholar
  2. 2.
    Daalder, J.E., Cathode spots and vacuum arcs, Physica C 104C, 91–106, (1981).ADSGoogle Scholar
  3. 3.
    Coulombe, S. and Meunier, J.-L., Theoretical prediction of non-thermionic arc cathode erosion rate including both vaporization and melting of the surface, Plasma Sources Sci. Technol. 9, 239–247, (2000).ADSCrossRefGoogle Scholar
  4. 4.
    Udris, Y.Y., Investigation in the field of electric discharges in gases (in Russian), Trudy VEI (All-Union Order of Lenin Institute of Electric Engineering) vol. 63. Gosenergoizdat, Moscow, Russia, (1958).Google Scholar
  5. 5.
    Davis, W.D. and Miller, H.C., Analysis of the electrode products emitted by dc arcs in a vacuum ambient, J. Appl. Phys. 40, 2212–2221, (1969).ADSCrossRefGoogle Scholar
  6. 6.
    Utsumi, T. and English, J.H., Study of electrode products emitted by vacuum arcs in form of molten metal particles, J. Appl. Phys. 46, 126–131, (1975).ADSCrossRefGoogle Scholar
  7. 7.
    Tuma, D.T., Chen, C.L., and Davis, D.K., Erosion products from the cathode spot region of a copper vacuum arc, J. Appl. Phys. 49, 3821–3831, (1978).ADSCrossRefGoogle Scholar
  8. 8.
    Gellert, B., Schade, E., and Dullni, E., IEEE Trans. Plasma Sci. PS-15, 545–551, (1987).ADSCrossRefGoogle Scholar
  9. 9.
    Disatnik, G., Boxman, R.L., and Goldsmith, S., Characteristics of macroparticle emission from a high-current-density multi-cathode spot vacuum arc, IEEE Trans. Plasma Sci. PS-15, 520–523, (1987).ADSCrossRefGoogle Scholar
  10. 10.
    Shalev, S., Goldsmith, S., Boxman, R.L., Einav, S., and Avidor, J.M., Laser Doppler anemometry: a tool for studying macroparticle dynamics in a vacuum arc, J. Phys. E: Sci. Instrum. 17, 56–61, (1984).ADSCrossRefGoogle Scholar
  11. 11.
    Shalev, S., Boxmann, R.L., and Goldsmith, S.J., Velocities and emission rates of cathode-produced molybdenum macroparticles in a vacuum arc, J. Appl. Phys. 58, 2503–2507, (1985).ADSCrossRefGoogle Scholar
  12. 12.
    Shalev, S., Boxman, R.L., and Goldsmith, S., IEEE Trans. Plasma Sci. PS-14, 59–62, (1986).ADSCrossRefGoogle Scholar
  13. 13.
    Gellert, B. and Schade, E., “Optical investigation of droplet emission in vacuum interrupters to improve contact materials,” XIVth Int. Symp. on Discharges and Electrical Insulation in Vacuum, Santa Fe, pp. 450–454, (1990).Google Scholar
  14. 14.
    Boxman, R.L. and Goldsmith, S., Macroparticle contamination in cathodic arc coatings: Generation, transport and control, Surf. Coat. Technol. 52, 39–50, (1992).CrossRefGoogle Scholar
  15. 15.
    Kandah, M. and Meunier, J.-L., Study of microdroplet generation from vacuum arcs on graphite cathodes, J. Vac. Sci. Technol. A 13, 2444–2450, (1995).ADSCrossRefGoogle Scholar
  16. 16.
    Kandah, M. and Meunier, J.-L., Erosion study on graphite cathodes using pulsed vacuum arcs, IEEE Trans. Plasma Sci. 24, 523–527, (1996).ADSCrossRefGoogle Scholar
  17. 17.
    Anders, S., Anders, A., Yu, K.M., Yao, X.Y., and Brown, I.G., On the macroparticle flux from vacuum arc cathode spots, IEEE Trans. Plasma Sci. 21, 440–446, (1993).ADSCrossRefGoogle Scholar
  18. 18.
    Schülke, T. and Anders, A., Velocity distribution of carbon macroparticles generated by pulsed vacuum arcs, Plasma Sources Sci. Technol. 8, 567–571, (1999).ADSCrossRefGoogle Scholar
  19. 19.
    Monteiro, O. and Anders, A., Vacuum-arc-generated macroparticles in the nanometer range, IEEE Trans. Plasma Sci. 27, 1030–1033, (1999).ADSCrossRefGoogle Scholar
  20. 20.
    Kesaev, I.G., Cathode Processes in the Mercury Arc (authorized translation from the Russian). Consultants Bureau, New York, (1964).CrossRefGoogle Scholar
  21. 21.
    Boelens, S. and Veltrop, H., Hard coatings of TiN, (TiHf)N and (TiNb)N deposited by random and steered arc evaporation, Surf. Coat. Technol. 33, 63–71, (1987).CrossRefGoogle Scholar
  22. 22.
    Sethumraman, S.K., Chatterton, P.A., and Barrault, M.R., A study of the erosion rate of vacuum arcs in a transverse magnetic field, J. Nucl. Mat. 111/112, 510–516, (1982).ADSCrossRefGoogle Scholar
  23. 23.
    Jüttner, B., On the variety of cathode craters of vacuum arcs, and the influence of the cathode temperature, Physica 114C, 155–261, (1982).Google Scholar
  24. 24.
    Swift, P.D., Macroparticles in films deposited by steered cathodic arc, J. Phys. D: Appl. Phys. 29, 2025–2031, (1996).ADSCrossRefGoogle Scholar
  25. 25.
    Swift, P.D., McKenzie, D.R., Falconer, I.S., and Martin, P.J., Cathode spot phenomena in titanium vacuum arcs, J. Appl. Phys. 66, 505–512, (1989).ADSCrossRefGoogle Scholar
  26. 26.
    Siemroth, P., Schülke, T., and Witke, T., High-current arc – a new source for high-rate deposition, Surf. Coat. Technol. 68, 314–319, (1994).CrossRefGoogle Scholar
  27. 27.
    Kim, G.E., Meunier, J.L., and Ajersch, F., Experimental study of the effect of nitrogen on titanium-arc cathode erosion, IEEE Trans. Plasma Sci. 23, 1001–1005, (1995).ADSCrossRefGoogle Scholar
  28. 28.
    Boxman, R.L. and Goldsmith, S., The interaction between plasma and macroparticles in a multi-cathode-spot vacuum arc, J. Appl. Phys. 52, 151–161, (1981).ADSCrossRefGoogle Scholar
  29. 29.
    Anders, A., Growth and decay of macroparticles: A feasible approach to clean vacuum arc plasmas?, J. Appl. Phys. 82, 3679–3688, (1997).ADSCrossRefGoogle Scholar
  30. 30.
    Beilis, I.I., Keidar, M., Boxman, R.L., and Goldsmith, S., Nonequilibrium macroparticle charging in low-density discharge plasmas, IEEE Trans. Plasma Sci. 25, 346–352, (1997).ADSCrossRefGoogle Scholar
  31. 31.
    Delzanno, G.L., Lapenta, G., and Rosenberg, M., Attractive potential around a thermionically emitting microparticle, Phys. Rev. Lett. 92, 035002–4, (2004).ADSCrossRefGoogle Scholar
  32. 32.
    Batrakov, A.V., Jüttner, B., Proskurovsky, D.I., and Pryadko, E.L., Light emission of droplet spots at vacuum arc and after arc extinction, IEEE Trans. Plasma Sci. 33, 1476–1480, (2005).ADSCrossRefGoogle Scholar
  33. 33.
    Chen, X., Chen, J., and Wang, Y., Heat transfer from a rarefied plasma flow to a metallic particle with high surface temperature, J. Phys. D: Appl. Phys. 27, 1637–1645, (1994).ADSCrossRefGoogle Scholar
  34. 34.
    Froebrich, P., On the decay of hot metallic clusters by evaporation, Annalen der Physik 6, 403–21, (1997).ADSCrossRefGoogle Scholar
  35. 35.
    Proskurovsky, D.I., Popov, S.A., Kozyrev, A.V., Pryadko, E.L., Batrakov, A.V., and Shishkov, A.N., Droplets Evaporation in Vacuum Arc Plasma, IEEE Trans. Plasma Sci. 35, 980–985, (2007).ADSCrossRefGoogle Scholar
  36. 36.
    Schott, L., “Electrical Probes,” in Plasma Diagnostics, Lochte-Holtgreven, W., (Ed.). pp. 668–705, AIP, New York, (1995).Google Scholar
  37. 37.
    Daugherty, J.E., Porteous, R.K., Kilgore, M.D., and Graves, D.B., Sheath structure around particles in a low-pressure discharge, J. Appl. Phys. 72, 3934–3942, (1992).ADSCrossRefGoogle Scholar
  38. 38.
    Fortov, V.E., Ivlev, A.V., Khrapak, S.A., Khrapak, A.G., and Morfill, G.E., Complex (dusty) plasmas: Current status, open issues, perspectives, Phys. Rep.-Rev. Sect. Phys. Lett. 421, 1–103, (2005).MathSciNetGoogle Scholar
  39. 39.
    Khrapak, S.A., Ivlev, A.V., Morfill, G.E., and Thomas, H.M., Ion drag force in complex plasmas, Phys. Rev. E 66, (2002).Google Scholar
  40. 40.
    Mott-Smith, H.M. and Langmuir, I., The theory of collectors in gaseous discharges, Phys. Rev. 28, 727–763, (1926).ADSCrossRefGoogle Scholar
  41. 41.
    Bernstein, I.B. and Rabinowitz, I.N., Theory of electrostatic probes in a low-density plasma, Phys. Fluids 2, 112–121, (1959).ADSCrossRefMATHGoogle Scholar
  42. 42.
    Hertz, H., Über die Verdunstung der Flüssigkeiten, insbesondere des Quecksilbers, im luftleeren Raume, Annalen der Physik und Chemie 17, 177–193, (1882).ADSGoogle Scholar
  43. 43.
    Knudsen, M., Die maximale Verdampfungsgeschwindigkeit des Quecksilbers, Annalen der Physik, IV. Folge 47, 697–708, (1915).ADSCrossRefGoogle Scholar
  44. 44.
    Hayess, E., Jüttner, B., Lieder, G., Neumann, W., Pursch, H., and Weixelbaum, L., Measurements of the behavior of neutral atom density in a diffuse vacuum arc by laser-induced fluorescence (LIF), IEEE Trans. Plasma Sci. 17, 666–671, (1989).ADSCrossRefGoogle Scholar
  45. 45.
    Honig, R.E. and Kramer, D.A., Vapor pressure data for the solid and liquid elements, RCA Rev. 30, 285–305, (1969).Google Scholar
  46. 46.
    Anders, A., Approaches to rid cathodic arc plasma of macro- and nanoparticles: a review, Surf. Coat. Technol. 120–121, 319–330, (1999).CrossRefGoogle Scholar
  47. 47.
    Anders, A., Anders, S., Jüttner, B., Bötticher, W., Lück, H., and Schröder, G., Pulsed dye laser diagnostics of vacuum arc cathode spots, IEEE Trans. Plasma Sci. 20, 466–472, (1992).ADSCrossRefGoogle Scholar
  48. 48.
    Batrakov, A., Vogel, N., Popov, S.E., Proskurovsky, D., Kudimov, D., and Nikitine, D., Interferograms of a cathode spot plasma obtained with a picosecond laser, IEEE Trans. Plasma Sci. 30, 106–107, (2002).ADSCrossRefGoogle Scholar
  49. 49.
    Batrakov, A.V., Jüttner, B., Popov, S., Proskurovsky, D.I., and Vogel, N.A., Refraction and absorption shadow imaging of the vacuum arc cathode spot at an atomic resonance line of cathode vapors, IEEE Trans. Plasma Sci. 33, 1465–1469, (2005).ADSCrossRefGoogle Scholar
  50. 50.
    Brandes, E.A. and Brook, G.B., Smithells Metals Reference Book, 7th ed. Butterworth-Heinemann, Oxford, (1992).Google Scholar
  51. 51.
    Kilgore, M.D., Daugherty, J.E., Porteous, R.K., and Graves, D.B., Ion drag on an insulated particulate in a low-pressure discharge, J. Appl. Phys. 73, 7195–7202, (1993).ADSCrossRefGoogle Scholar
  52. 52.
    Kilgore, M.D., Daugherty, J.E., Porteous, R.K., and Graves, D.B., Transport and heating of small particles in high-density plasma sources, J. Vac. Sci. Technol. A 12, 486–493, (1994).Google Scholar
  53. 53.
    Thomas, H., Morfill, G.E., Demmel, V., Goree, J., Feuerbacher, B., and Mohlmann, D., Plasma crystal -Coulomb crystallization in a dusty plasma, Phys. Rev. Lett. 73, 652–655, (1994).ADSCrossRefGoogle Scholar
  54. 54.
    Gidalevich, E., Goldsmith, S., and Boxman, R.L., Macroparticle rotation in the vacuum arc plasma jet, J. Appl. Phys. 95, 2969–2974, (2004).ADSCrossRefGoogle Scholar
  55. 55.
    Keidar, M., Beilis, I., Boxman, R.L., and Goldsmith, S., Macroparticle interaction with a substrate in cathodic vacuum arc deposition, Surf. Coat. Technol. 86/87, 415–420, (1996).CrossRefGoogle Scholar
  56. 56.
    Aharonov, R. and Keidar, M., “Influence of an electric field on the macroparticle size distribution in a vacuum arc,” Int. Conf. Metal. Coat. & Thin Films, San Diego, paper B1-6, (1999).Google Scholar
  57. 57.
    Yin, Y. and McKenzie, D.R., Electric field control of plasma and macroparticles in cathodic arc deposition as a practical alternative to magnetic fields in ducts, J. Vac. Sci. Technol. A 14, 3059–3064, (1996).ADSCrossRefGoogle Scholar
  58. 58.
    Drescher, D., Koskinen, J., Scheibe, H.-J., and Mensch, A., A model for particle growth in arc deposited amorphous carbon films, Diamond Rel. Mat. 7, 1375–1380, (1998).ADSCrossRefGoogle Scholar
  59. 59.
    Daalder, J.E. and Wielders, P.G.E., Proc. 12th Int. Conf. Phenom. Ionized Gases, Eindhoven, The Netherlands, p. 232, (1975).Google Scholar
  60. 60.
    Heberlein, J.V.R., Proc. 30th Gaseous Electronics Conf., Palo Alto, CA, p. 44, (1977).Google Scholar
  61. 61.
    Heberlein, J.V.R. and Porto, D., The interaction of vacuum arc ion currents with axial magnetic fields, IEEE Trans. Plasma Sci. 11, 152–159, (1983).ADSCrossRefGoogle Scholar
  62. 62.
    Martin, P.J., McKenzie, D.R., Netterfield, R.P., Swift, P., Filipczuk, S.W., Müller, K.-H., Pacey, C.G., and James, B., Characteristics of titanium arc evaporation processes, Thin Solid Films 153, 91–102, (1987).ADSCrossRefGoogle Scholar
  63. 63.
    Coll, B.F., Sathrum, P., Aharonov, R., and Tamor, M.A., Diamond-like carbon films synthesized by cathodic arc evaporation, Thin Solid Films 209, 165–173, (1992).ADSCrossRefGoogle Scholar
  64. 64.
    Kang, G.H., Uchida, H., and Koh, E.S., Macroparticle-free TiN films prepared by arc ion-plating, Surf. Coat. Technol. 68/69, 141–145, (1994).CrossRefGoogle Scholar
  65. 65.
    Vergason, G.E., “Electric arc vapor deposition device,” patent US 5,037,522 (1991).Google Scholar
  66. 66.
    Vergason, G.E., Lunger, M., and Gaur, S., “Advances in arc spot travel speed to improve film characteristics,” Annual Technical Conference of the Society of Vacuum Coaters, Philadelphia, pp. 136–140, (2001).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • André Anders
    • 1
  1. 1.BerkeleyUSA

Personalised recommendations