Skip to main content

Cathodic Arc Sources

  • Chapter
  • First Online:

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 50))

Abstract

The chapter on arc sources and systems is somewhat unusual because it focuses on technology and engineering, rather than on physics. Here, practical designs for DC and pulsed arc sources are presented. Many details are covered such as how to trigger the arc and how to steer the apparent spot motion. From source design we move on and consider the whole system, which is generally either a batch coater or, less often, an in-line coater.

Gera’s Rule: The arc discharge does not run well when the anode cable is disconnected.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Schneider, J.M., Anders, A., Hjörvarsson, B., and Hultman, L., Magnetic-field-dependent plasma composition of a pulsed arc in a high-vacuum ambient, Appl. Phys. Lett.76, 1531–1533, (2000).

    Article  ADS  Google Scholar 

  2. Schneider, J.M., Anders, A., Hjörvarsson, B., Petrov, I., Macak, K., Helmerson, U., and Sundgren, J.-E., Hydrogen uptake in alumina thin films synthesized from an aluminum plasma stream in an oxygen ambient, Appl. Phys. Lett.74, 200–202, (1999).

    Article  ADS  Google Scholar 

  3. Sablev, L.P., Dolotov, J.I., Getman, L.I., Gorbunov, V.N., Goldiner, E.G., Kirshfeld, K.T., and Usov, V.V., “Apparatus for vacuum evaporation of metals under the action of an electric arc,” patent US 3,783,231 (1974).

    Google Scholar 

  4. Snaper, A.A., “Arc deposition process and apparatus,“ patent US 3,836,451 (1974).

    Google Scholar 

  5. Snaper, A.A., “Arc deposition process and apparatus,“ patent US 3,625,848 (1971).

    Google Scholar 

  6. Sablev, L.P., Atamansky, N.P., Gorbunov, V.N., Dolotov, J.I., Lutseenko, V.N., Lunev, V.M., and Usov, V.V., “Apparatus for metal evaporation coating,“ patent US 3,793,179 (1974).

    Google Scholar 

  7. Hovsepian, P., “Lichtbogen-Verdampfungsvorrichtung,“ patent DE 4220588 (1994).

    Google Scholar 

  8. Aksenov, I.I. and Andreev, A.A., Motion of the cathode spot of a vacuum arc in an inhomogeneous magnetic field, Sov. Tech. Phys. Lett.3, 525–526, (1977).

    Google Scholar 

  9. Karpov, D.A., Cathodic arc sources and macroparticle filtering, Surf. Coat. Technol.96, 22–33, (1997).

    Article  Google Scholar 

  10. Ehiasarian, A.P., Hovsepian, P.E., New, R., and Valter, J., Influence of steering magnetic field on the time-resolved plasma chemistry in cathodic arc discharges, J. Phys. D: Appl. Phys.37, 2101–2106, (2004).

    Article  ADS  Google Scholar 

  11. Aksenov, I.I., Padalka, V.G., and Khoroshykh, V.M., Investigation of a flow of plasma generated by a stationary erosion electric arc accelerator with magnetic confinement of the cathode spot, Sov. J. Plasma Phys.5, 341, (1979).

    ADS  Google Scholar 

  12. Falabella, S. and Karpov, D.A., “Continuous cathodic arc sources,“ in Handbook of Vacuum Science and Technology, Boxman, R.L., Martin, P.J., and Sanders, D.M., (Eds.). pp. 397–412, Noyes, Park Ridge, (1995).

    Google Scholar 

  13. Hovsepyan, P. and Hensel, B., “Lichtbogen-Verdampfungsvorrichtung,“ patent DE 4223592 (1994).

    Google Scholar 

  14. Swift, P.D., McKenzie, D.R., Falconer, I.S., and Martin, P.J., Cathode spot phenomena in titanium vacuum arcs, J. Appl. Phys.66, 505–512, (1989).

    Article  ADS  Google Scholar 

  15. Walke, P.J., New, R., and Care, C.M., Behavior of steered cathodic arc as a function of steering magnetic field, Surf. Coat. Technol.59, 126–128, (1993).

    Article  Google Scholar 

  16. Kim, J.K., Lee, K.R., Eun, K.Y., and Chung, K.H., Effect of magnetic field structure near cathode on the arc spot stability of filtered vacuum arc source of graphite, Surf. Coat. Technol.124, 135–141, (2000).

    Article  Google Scholar 

  17. Ramalingam, S., Qi, C.B., and Kim, K., “Controlled vacuum arc material deposition, method and apparatus,” patent US 4,673,477 (1987).

    Google Scholar 

  18. Zhitomirsky, V.N., Boxman, R.L., and Goldsmith, S., Unstable arc operation and cathode spot motion in a magnetically filtered vacuum-arc deposition system, J. Vac. Sci. Technol. A13, 2233–2240, (1995).

    Article  ADS  Google Scholar 

  19. Vergason, G.E., “Electric arc vapor deposition device,“ patent US 5,037,522 (1991).

    Google Scholar 

  20. Brondum, K. and Larson, G., “Low-temperature arc vapor deposition as a hexavalent chrome electroplating alternative,” Technical Report Vapor Technologies Inc., Longmont, CO, May 13 (2005).

    Google Scholar 

  21. Welty, R.P., “Apparatus and method for coating a substrate using vacuum arc evaporation,“ patent US 5,269,898 (1993).

    Google Scholar 

  22. Bilek, M.M.M. and Milne, W.I., Filtered cathodic vacuum arc (FCVA) deposition of thin film silicon, Thin Solid Films291, 299–304, (1996).

    Article  ADS  Google Scholar 

  23. Richter, F., Krannich, G., Hahn, J., Pintaske, R., Friedrich, M., Schmidbauer, S., and Zahn, D.R.T., Utilization of cathodic arc evaporation for the deposition of boron nitride thin films, Surf. Coat. Technol.90, 178–183, (1997).

    Article  Google Scholar 

  24. Klepper, C.C., Hazelton, R.C., Yadlowsky, E.J., Carlson, E.P., Keitz, M.D., Williams, J.M., Zuhr, R.A., and Poker, D.B., Amorphous boron coatings produced with vacuum arc deposition technology, J. Vac. Sci. Technol. A20, 725–732, (2002).

    Article  ADS  Google Scholar 

  25. Morrow, M.S., Schechter, D.E., Tsai, C.-C., Klepper, C.C., Niemel, J., and Hazelton, R.C., “Microwave processing of pressure boron powders for use as cathodes in vacuum arc sources,“ patent US 6,562,418 (2003).

    Google Scholar 

  26. Uglov, V.V., Anishchik, V.M., Zlotski, S.V., Abadias, G., and Dub, S.N., Stress and mechanical properties of Ti-Cr-N gradient coatings deposited by vacuum arc, Surf. Coat. Technol.200, 178–181, (2005).

    Article  Google Scholar 

  27. Uglov, V.V., Anishchik, V.M., Zlotski, S.V., and Abadias, G., The phase composition and stress development in ternary Ti-Zr-N coatings grown by vacuum arc with combining of plasma flows, Surf. Coat. Technol.200, 6389–6394, (2006).

    Article  Google Scholar 

  28. Anischik, V.M., Uglov, V.V., Zlotski, S.V., Konarski, P., Cwil, M., and Ukhov, V.A., SIMS investigation of nitride coatings, Vacuum78, 545–550, (2005).

    Article  ADS  Google Scholar 

  29. Ben-Ami, R., Zhitomirsky, V.N., Boxman, R.L., and Goldsmith, S., Plasma distribution in a triple-cathode vacuum arc deposition apparatus, Plasma Sources Sci. Technol.8, 355–362, (1999).

    Article  ADS  Google Scholar 

  30. MacGill, R.A., Dickinson, M.R., Anders, A., Monteiro, O.R., and Brown, I.G., Streaming metal plasma generation by vacuum arc plasma guns, Rev. Sci. Instrum.69, 801–803, (1998).

    Article  ADS  Google Scholar 

  31. Schein, J., Qi, N., Binder, R., Krishnan, M., Ziemer, J.K., Polk, J.E., and Anders, A., Inductive energy storage driven vacuum arc thruster, Rev. Sci. Instrum.73, 925–927, (2002).

    Article  ADS  Google Scholar 

  32. Siemroth, P., Schülke, T., and Witke, T., High-current arc – a new source for high-rate deposition, Surf. Coat. Technol.68, 314–319, (1994).

    Article  Google Scholar 

  33. Witke, T. and Siemroth, P., Deposition of droplet-free films by vacuum arc evaporation-results and applications, IEEE Trans. Plasma Sci.27, 1039–1044, (1999).

    Article  ADS  Google Scholar 

  34. Büschel, M. and Grimm, W., Influence of the pulsing of the current of a vacuum arc on rate and droplets, Surf. Coat. Technol.142–144, 665–668, (2001).

    Article  Google Scholar 

  35. Oates, T.W.H., Pigott, J., McKenzie, D.R., and Bilek, M.M.M., A high-current pulsed cathodic vacuum arc plasma source, Rev. Sci. Instrum.74, 4750–4754, (2003).

    Article  ADS  Google Scholar 

  36. Ryves, L., Bilek, M.M.M., Oates, T.W.H., Tarrant, R.N., McKenzie, D.R., Burgmann, F.A., and McCulloch, D.G., Synthesis and in-situ ellipsometric monitoring of Ti/C nanostructured multilayers using a high-current, dual source pulsed cathodic arc, Thin Solid Films482, 133–137, (2005).

    Article  ADS  Google Scholar 

  37. Anders, A., Pasaja, N., and Sansongsiri, S., Filtered cathodic arc deposition with ion-species-selective bias, Rev. Sci. Instrum.78, 063901-1-5, (2007).

    Article  ADS  Google Scholar 

  38. Pasaja, N., Sansongsiri, S., Intarasiri, S., Vilaithong, T., and Anders, A., Mo-containing tetrahedral amorphous carbon deposited by dual filtered cathodic vacuum arc with selective pulsed bias voltage, Nucl. Instrum. Meth. Phys. Res. B259, 867–870, (2007).

    Article  ADS  Google Scholar 

  39. Weintraub, E., Investigation of the arc in metallic vapours in an exhausted space, Phil. Mag.7 (of Series 6), 95–124, (1904).

    Article  Google Scholar 

  40. Buttolph, L.J., The Cooper Hewitt mercury vapor lamp, General Electric Review23, 741–751, (1920).

    Google Scholar 

  41. Greenwood, A., “Vacuum switching of high current and high voltage at power frequencies,“ in Handbook of Vacuum Arc Science and Technology, Boxman, R.L., Martin, P.J., and Sanders, D.M., (Eds.). pp. 590–624, Noyes Publications, Park Ridge, New Jersey, (1995).

    Google Scholar 

  42. Slade, P.G., (ed.) Electrical Contacts: Principles and Applications, Marcel Dekker, Inc., New York, (1999).

    Book  Google Scholar 

  43. Bergman, C., Vergason, G.E., Clark, R., and Bosak, S., “Arc-initiating trigger apparatus and method for electric arc vapor deposition coating systems,“ patent US 4,448,799 (1984).

    Google Scholar 

  44. Boxman, R.L., Triggering mechanisms in triggered vacuum gaps, IEEE Trans. Electron DevicesED-24, 122–128, (1977).

    Article  ADS  Google Scholar 

  45. Gilmour, A. and Lockwood, D.L., Pulsed metallic-plasma generator, Proc. IEEE60, 977–992, (1972).

    Article  Google Scholar 

  46. Kamakshaiah, S. and Rau, R.S.N., Delay characteristics of a simple triggered vacuum gap, J. Phys. D: Appl. Phys.8, 1426–1429, (1975).

    Article  ADS  Google Scholar 

  47. Watt, G.C. and Evans, P.J., A trigger power supply for vacuum arc ion sources, IEEE Trans. Plasma Sci.21, 547–551, (1993).

    Article  ADS  Google Scholar 

  48. Evans, P.J., Watt, G.C., and Noorman, J.T., Metal vapor vacuum arc ion source research at ANSTO, Rev. Sci. Instrum.65, 3082–3087, (1994).

    Article  ADS  Google Scholar 

  49. Anders, A., Brown, I.G., MacGill, R.A., and Dickinson, M.R., “Triggerless” triggering of vacuum arcs, J. Phys. D: Appl. Phys.31, 584–587, (1998).

    Article  ADS  Google Scholar 

  50. Clark, R.J. and Gilmour, A.S., “Studies on a laser-triggered, high-voltage, high-vacuum switch tube,” 3rd Int. Symp. Disch. Electr. Insul. Vacuum, Paris, pp. 367–372, (1968).

    Google Scholar 

  51. Hirschfield, J.L., Laser-initiated vacuum arc for heavy ion sources, IEEE Trans. Nucl. Sci.NS-23, 1006–1007, (1976).

    Article  ADS  Google Scholar 

  52. Siemroth, P. and Scheibe, H.-J., The method of laser-sustained arc ignition, IEEE Trans. Plasma Sci.18, 911–916, (1990).

    Article  ADS  Google Scholar 

  53. Vogel, N. and Höft, H., Cathode spot energy transfer simulated by a focused laser beam, IEEE Trans. Plasma Sci.17, 638–640, (1989).

    Article  ADS  Google Scholar 

  54. Scheibe, H.J., Schultrich, B., and Drescher, D., Laser-induced vacuum arc (Laser Arc) and its application for deposition of hard amorphous carbon films, Surf. Coat. Technol., 813–818, (1995).

    Google Scholar 

  55. Scheibe, H.J., Pompe, W., Siemroth, P., Buecken, B., Schulze, D., and Wilberg, R., Preparation of multilayers films structures by laser arcs, Surf. Coat. Technol.193–194, 788–798, (1990).

    Google Scholar 

  56. Lafferty, J.M., Triggered vacuum gaps, Proc. IEEE54, 23–32, (1966).

    Article  Google Scholar 

  57. Bernardet, H., Godechot, X., and Jarjat, F., “A highly reliable trigger for vacuum arc plasma sources,” Workshop on Vacuum Arc Ion Sources, Berkeley, CA, pp. 67–80, (1995).

    Google Scholar 

  58. Bernardet, H., Godechot, X., and Riviere, C., “Investigation of firing properties of vacuum arcs triggered by plasma injection,“ Workshop on Vacuum Arc Ion Sources, Berkeley, CA, pp. 81–101, (1995).

    Google Scholar 

  59. Nikolaev, A.G., Yushkov, G.Y., Oks, E.M., MacGill, R.A., Dickinson, M.R., and Brown, I.G., Vacuum arc trigger based on ExB discharges, Rev. Sci. Instrum.67, 3095–3098, (1996).

    Article  ADS  Google Scholar 

  60. Tamagaki, H., Tsuji, K., Komuro, T., Kiyota, F., and Fujita, T., The in-line arc ion plating system for high throughput processing of automotive parts, Surf. Coat. Technol.54–55, 594–598, (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Anders, A. (2008). Cathodic Arc Sources. In: Cathodic Arcs. Springer Series on Atomic, Optical, and Plasma Physics, vol 50. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79108-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-79108-1_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-79107-4

  • Online ISBN: 978-0-387-79108-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics