Cathodic Arc Sources

  • André Anders
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 50)


The chapter on arc sources and systems is somewhat unusual because it focuses on technology and engineering, rather than on physics. Here, practical designs for DC and pulsed arc sources are presented. Many details are covered such as how to trigger the arc and how to steer the apparent spot motion. From source design we move on and consider the whole system, which is generally either a batch coater or, less often, an in-line coater.


Ohmic Heating Cathode Spot Blunt Cone Ignition Probability Spot Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Schneider, J.M., Anders, A., Hjörvarsson, B., and Hultman, L., Magnetic-field-dependent plasma composition of a pulsed arc in a high-vacuum ambient, Appl. Phys. Lett. 76, 1531–1533, (2000).ADSCrossRefGoogle Scholar
  2. 2.
    Schneider, J.M., Anders, A., Hjörvarsson, B., Petrov, I., Macak, K., Helmerson, U., and Sundgren, J.-E., Hydrogen uptake in alumina thin films synthesized from an aluminum plasma stream in an oxygen ambient, Appl. Phys. Lett. 74, 200–202, (1999).ADSCrossRefGoogle Scholar
  3. 3.
    Sablev, L.P., Dolotov, J.I., Getman, L.I., Gorbunov, V.N., Goldiner, E.G., Kirshfeld, K.T., and Usov, V.V., “Apparatus for vacuum evaporation of metals under the action of an electric arc,” patent US 3,783,231 (1974).Google Scholar
  4. 4.
    Snaper, A.A., “Arc deposition process and apparatus,“ patent US 3,836,451 (1974).Google Scholar
  5. 5.
    Snaper, A.A., “Arc deposition process and apparatus,“ patent US 3,625,848 (1971).Google Scholar
  6. 6.
    Sablev, L.P., Atamansky, N.P., Gorbunov, V.N., Dolotov, J.I., Lutseenko, V.N., Lunev, V.M., and Usov, V.V., “Apparatus for metal evaporation coating,“ patent US 3,793,179 (1974).Google Scholar
  7. 7.
    Hovsepian, P., “Lichtbogen-Verdampfungsvorrichtung,“ patent DE 4220588 (1994).Google Scholar
  8. 8.
    Aksenov, I.I. and Andreev, A.A., Motion of the cathode spot of a vacuum arc in an inhomogeneous magnetic field, Sov. Tech. Phys. Lett. 3, 525–526, (1977).Google Scholar
  9. 9.
    Karpov, D.A., Cathodic arc sources and macroparticle filtering, Surf. Coat. Technol. 96, 22–33, (1997).CrossRefGoogle Scholar
  10. 10.
    Ehiasarian, A.P., Hovsepian, P.E., New, R., and Valter, J., Influence of steering magnetic field on the time-resolved plasma chemistry in cathodic arc discharges, J. Phys. D: Appl. Phys. 37, 2101–2106, (2004).ADSCrossRefGoogle Scholar
  11. 11.
    Aksenov, I.I., Padalka, V.G., and Khoroshykh, V.M., Investigation of a flow of plasma generated by a stationary erosion electric arc accelerator with magnetic confinement of the cathode spot, Sov. J. Plasma Phys. 5, 341, (1979).ADSGoogle Scholar
  12. 12.
    Falabella, S. and Karpov, D.A., “Continuous cathodic arc sources,“ in Handbook of Vacuum Science and Technology, Boxman, R.L., Martin, P.J., and Sanders, D.M., (Eds.). pp. 397–412, Noyes, Park Ridge, (1995).Google Scholar
  13. 13.
    Hovsepyan, P. and Hensel, B., “Lichtbogen-Verdampfungsvorrichtung,“ patent DE 4223592 (1994).Google Scholar
  14. 14.
    Swift, P.D., McKenzie, D.R., Falconer, I.S., and Martin, P.J., Cathode spot phenomena in titanium vacuum arcs, J. Appl. Phys. 66, 505–512, (1989).ADSCrossRefGoogle Scholar
  15. 15.
    Walke, P.J., New, R., and Care, C.M., Behavior of steered cathodic arc as a function of steering magnetic field, Surf. Coat. Technol. 59, 126–128, (1993).CrossRefGoogle Scholar
  16. 16.
    Kim, J.K., Lee, K.R., Eun, K.Y., and Chung, K.H., Effect of magnetic field structure near cathode on the arc spot stability of filtered vacuum arc source of graphite, Surf. Coat. Technol. 124, 135–141, (2000).CrossRefGoogle Scholar
  17. 17.
    Ramalingam, S., Qi, C.B., and Kim, K., “Controlled vacuum arc material deposition, method and apparatus,” patent US 4,673,477 (1987).Google Scholar
  18. 18.
    Zhitomirsky, V.N., Boxman, R.L., and Goldsmith, S., Unstable arc operation and cathode spot motion in a magnetically filtered vacuum-arc deposition system, J. Vac. Sci. Technol. A 13, 2233–2240, (1995).ADSCrossRefGoogle Scholar
  19. 19.
    Vergason, G.E., “Electric arc vapor deposition device,“ patent US 5,037,522 (1991).Google Scholar
  20. 20.
    Brondum, K. and Larson, G., “Low-temperature arc vapor deposition as a hexavalent chrome electroplating alternative,” Technical Report Vapor Technologies Inc., Longmont, CO, May 13 (2005).Google Scholar
  21. 21.
    Welty, R.P., “Apparatus and method for coating a substrate using vacuum arc evaporation,“ patent US 5,269,898 (1993).Google Scholar
  22. 22.
    Bilek, M.M.M. and Milne, W.I., Filtered cathodic vacuum arc (FCVA) deposition of thin film silicon, Thin Solid Films 291, 299–304, (1996).ADSCrossRefGoogle Scholar
  23. 23.
    Richter, F., Krannich, G., Hahn, J., Pintaske, R., Friedrich, M., Schmidbauer, S., and Zahn, D.R.T., Utilization of cathodic arc evaporation for the deposition of boron nitride thin films, Surf. Coat. Technol. 90, 178–183, (1997).CrossRefGoogle Scholar
  24. 24.
    Klepper, C.C., Hazelton, R.C., Yadlowsky, E.J., Carlson, E.P., Keitz, M.D., Williams, J.M., Zuhr, R.A., and Poker, D.B., Amorphous boron coatings produced with vacuum arc deposition technology, J. Vac. Sci. Technol. A 20, 725–732, (2002).ADSCrossRefGoogle Scholar
  25. 25.
    Morrow, M.S., Schechter, D.E., Tsai, C.-C., Klepper, C.C., Niemel, J., and Hazelton, R.C., “Microwave processing of pressure boron powders for use as cathodes in vacuum arc sources,“ patent US 6,562,418 (2003).Google Scholar
  26. 26.
    Uglov, V.V., Anishchik, V.M., Zlotski, S.V., Abadias, G., and Dub, S.N., Stress and mechanical properties of Ti-Cr-N gradient coatings deposited by vacuum arc, Surf. Coat. Technol. 200, 178–181, (2005).CrossRefGoogle Scholar
  27. 27.
    Uglov, V.V., Anishchik, V.M., Zlotski, S.V., and Abadias, G., The phase composition and stress development in ternary Ti-Zr-N coatings grown by vacuum arc with combining of plasma flows, Surf. Coat. Technol. 200, 6389–6394, (2006).CrossRefGoogle Scholar
  28. 28.
    Anischik, V.M., Uglov, V.V., Zlotski, S.V., Konarski, P., Cwil, M., and Ukhov, V.A., SIMS investigation of nitride coatings, Vacuum 78, 545–550, (2005).CrossRefGoogle Scholar
  29. 29.
    Ben-Ami, R., Zhitomirsky, V.N., Boxman, R.L., and Goldsmith, S., Plasma distribution in a triple-cathode vacuum arc deposition apparatus, Plasma Sources Sci. Technol. 8, 355–362, (1999).ADSCrossRefGoogle Scholar
  30. 30.
    MacGill, R.A., Dickinson, M.R., Anders, A., Monteiro, O.R., and Brown, I.G., Streaming metal plasma generation by vacuum arc plasma guns, Rev. Sci. Instrum. 69, 801–803, (1998).ADSCrossRefGoogle Scholar
  31. 31.
    Schein, J., Qi, N., Binder, R., Krishnan, M., Ziemer, J.K., Polk, J.E., and Anders, A., Inductive energy storage driven vacuum arc thruster, Rev. Sci. Instrum. 73, 925–927, (2002).ADSCrossRefGoogle Scholar
  32. 32.
    Siemroth, P., Schülke, T., and Witke, T., High-current arc – a new source for high-rate deposition, Surf. Coat. Technol. 68, 314–319, (1994).CrossRefGoogle Scholar
  33. 33.
    Witke, T. and Siemroth, P., Deposition of droplet-free films by vacuum arc evaporation-results and applications, IEEE Trans. Plasma Sci. 27, 1039–1044, (1999).ADSCrossRefGoogle Scholar
  34. 34.
    Büschel, M. and Grimm, W., Influence of the pulsing of the current of a vacuum arc on rate and droplets, Surf. Coat. Technol. 142–144, 665–668, (2001).CrossRefGoogle Scholar
  35. 35.
    Oates, T.W.H., Pigott, J., McKenzie, D.R., and Bilek, M.M.M., A high-current pulsed cathodic vacuum arc plasma source, Rev. Sci. Instrum. 74, 4750–4754, (2003).ADSCrossRefGoogle Scholar
  36. 36.
    Ryves, L., Bilek, M.M.M., Oates, T.W.H., Tarrant, R.N., McKenzie, D.R., Burgmann, F.A., and McCulloch, D.G., Synthesis and in-situ ellipsometric monitoring of Ti/C nanostructured multilayers using a high-current, dual source pulsed cathodic arc, Thin Solid Films 482, 133–137, (2005).ADSCrossRefGoogle Scholar
  37. 37.
    Anders, A., Pasaja, N., and Sansongsiri, S., Filtered cathodic arc deposition with ion-species-selective bias, Rev. Sci. Instrum. 78, 063901-1-5, (2007).ADSCrossRefGoogle Scholar
  38. 38.
    Pasaja, N., Sansongsiri, S., Intarasiri, S., Vilaithong, T., and Anders, A., Mo-containing tetrahedral amorphous carbon deposited by dual filtered cathodic vacuum arc with selective pulsed bias voltage, Nucl. Instrum. Meth. Phys. Res. B 259, 867–870, (2007).ADSCrossRefGoogle Scholar
  39. 39.
    Weintraub, E., Investigation of the arc in metallic vapours in an exhausted space, Phil. Mag. 7 (of Series 6), 95–124, (1904).CrossRefGoogle Scholar
  40. 40.
    Buttolph, L.J., The Cooper Hewitt mercury vapor lamp, General Electric Review 23, 741–751, (1920).Google Scholar
  41. 41.
    Greenwood, A., “Vacuum switching of high current and high voltage at power frequencies,“ in Handbook of Vacuum Arc Science and Technology, Boxman, R.L., Martin, P.J., and Sanders, D.M., (Eds.). pp. 590–624, Noyes Publications, Park Ridge, New Jersey, (1995).Google Scholar
  42. 42.
    Slade, P.G., (ed.) Electrical Contacts: Principles and Applications, Marcel Dekker, Inc., New York, (1999).Google Scholar
  43. 43.
    Bergman, C., Vergason, G.E., Clark, R., and Bosak, S., “Arc-initiating trigger apparatus and method for electric arc vapor deposition coating systems,“ patent US 4,448,799 (1984).Google Scholar
  44. 44.
    Boxman, R.L., Triggering mechanisms in triggered vacuum gaps, IEEE Trans. Electron Devices ED-24, 122–128, (1977).ADSCrossRefGoogle Scholar
  45. 45.
    Gilmour, A. and Lockwood, D.L., Pulsed metallic-plasma generator, Proc. IEEE 60, 977–992, (1972).CrossRefGoogle Scholar
  46. 46.
    Kamakshaiah, S. and Rau, R.S.N., Delay characteristics of a simple triggered vacuum gap, J. Phys. D: Appl. Phys. 8, 1426–1429, (1975).ADSCrossRefGoogle Scholar
  47. 47.
    Watt, G.C. and Evans, P.J., A trigger power supply for vacuum arc ion sources, IEEE Trans. Plasma Sci. 21, 547–551, (1993).ADSCrossRefGoogle Scholar
  48. 48.
    Evans, P.J., Watt, G.C., and Noorman, J.T., Metal vapor vacuum arc ion source research at ANSTO, Rev. Sci. Instrum. 65, 3082–3087, (1994).ADSCrossRefGoogle Scholar
  49. 49.
    Anders, A., Brown, I.G., MacGill, R.A., and Dickinson, M.R., “Triggerless” triggering of vacuum arcs, J. Phys. D: Appl. Phys. 31, 584–587, (1998).ADSCrossRefGoogle Scholar
  50. 50.
    Clark, R.J. and Gilmour, A.S., “Studies on a laser-triggered, high-voltage, high-vacuum switch tube,” 3rd Int. Symp. Disch. Electr. Insul. Vacuum, Paris, pp. 367–372, (1968).Google Scholar
  51. 51.
    Hirschfield, J.L., Laser-initiated vacuum arc for heavy ion sources, IEEE Trans. Nucl. Sci. NS-23, 1006–1007, (1976).ADSCrossRefGoogle Scholar
  52. 52.
    Siemroth, P. and Scheibe, H.-J., The method of laser-sustained arc ignition, IEEE Trans. Plasma Sci. 18, 911–916, (1990).ADSCrossRefGoogle Scholar
  53. 53.
    Vogel, N. and Höft, H., Cathode spot energy transfer simulated by a focused laser beam, IEEE Trans. Plasma Sci. 17, 638–640, (1989).ADSCrossRefGoogle Scholar
  54. 54.
    Scheibe, H.J., Schultrich, B., and Drescher, D., Laser-induced vacuum arc (Laser Arc) and its application for deposition of hard amorphous carbon films, Surf. Coat. Technol., 813–818, (1995).Google Scholar
  55. 55.
    Scheibe, H.J., Pompe, W., Siemroth, P., Buecken, B., Schulze, D., and Wilberg, R., Preparation of multilayers films structures by laser arcs, Surf. Coat. Technol. 193–194, 788–798, (1990).Google Scholar
  56. 56.
    Lafferty, J.M., Triggered vacuum gaps, Proc. IEEE 54, 23–32, (1966).CrossRefGoogle Scholar
  57. 57.
    Bernardet, H., Godechot, X., and Jarjat, F., “A highly reliable trigger for vacuum arc plasma sources,” Workshop on Vacuum Arc Ion Sources, Berkeley, CA, pp. 67–80, (1995).Google Scholar
  58. 58.
    Bernardet, H., Godechot, X., and Riviere, C., “Investigation of firing properties of vacuum arcs triggered by plasma injection,“ Workshop on Vacuum Arc Ion Sources, Berkeley, CA, pp. 81–101, (1995).Google Scholar
  59. 59.
    Nikolaev, A.G., Yushkov, G.Y., Oks, E.M., MacGill, R.A., Dickinson, M.R., and Brown, I.G., Vacuum arc trigger based on ExB discharges, Rev. Sci. Instrum. 67, 3095–3098, (1996).ADSCrossRefGoogle Scholar
  60. 60.
    Tamagaki, H., Tsuji, K., Komuro, T., Kiyota, F., and Fujita, T., The in-line arc ion plating system for high throughput processing of automotive parts, Surf. Coat. Technol. 54–55, 594–598, (1992).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • André Anders
    • 1
  1. 1.BerkeleyUSA

Personalised recommendations