Advertisement

The Interelectrode Plasma

  • André Anders
Chapter
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 50)

Abstract

After plasma production at non-stationary cathode spots, the plasma expands into the interelectrode space. Plasma properties such as local density, temperature, streaming velocity, and ion charge state distribution are described for the expanding plasma. We are interested in the subject because it is one way to look back at cathode process and learn about plasma generation. Knowledge about the interelectrode plasma is also relevant to the application. Much of the information on arc plasmas is based on averaging over extended periods of time (DC arcs) or many pulses (pulsed arcs). In doing so, correlations between the solid-state cathode properties and the plasma properties can be established, which allowed us to formulate empirical rules. One section is dedicated to discuss the sources and effects of neutrals in the interelectrode plasma.

Keywords

Charge State Cathode Material Cathode Spot Charge State Distribution Resonant Charge Exchange 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Anders, A. and Yushkov, G. Y., Angularly resolved measurements of the ion energy of vacuum arc plasmas, Appl. Phys. Lett. 80, 2457–2459, (2002).ADSGoogle Scholar
  2. 2.
    Kutzner, J. and Miller, H. C., In flux from the cathode region of a vacuum arc, IEEE Trans. Plasma Sci. 17, 688–694, (1989).ADSGoogle Scholar
  3. 3.
    Sutton, G. W. and Sherman, A., Engineering Magnetohydrodynamics, reprint of the 1965 first edition by McGraw-Hill ed. Dover, Mineola, NY, (2006).Google Scholar
  4. 4.
    Wieckert, C., A multicomponent theory of the cathodic plasma jet in vacuum arcs, Contrib. Plasma Phys. 27, 309–330, (1987).Google Scholar
  5. 5.
    Keidar, M., Beilis, I.I., Anders, A., and Brown, I.G., Free-boundary vacuum arc plasma jet expansion in a curved magnetic field, IEEE Trans. Plasma Sci. 27, 613–619, (1999).ADSGoogle Scholar
  6. 6.
    Keidar, M., Beilis, I.I., Boxman, R.L., and Goldsmith, S., 2D expansion of the low-density interelectrode vacuum arc plasma jet in an axial magnetic field, J. Phys. D, Appl. Phys. 29, 1973–1983, (1996).ADSGoogle Scholar
  7. 7.
    Gidalevich, E., Goldsmith, S., and Boxman, R.L., Modeling of nonstationary vacuum arc plasma jet interaction with a neutral background gas, J. Appl. Phys. 90, 4355–4360, (2001).ADSGoogle Scholar
  8. 8.
    Beilis, I.I., The vacuum arc cathode spot and plasma jet, Physical model and mathematical description, Contrib. Plasma Phys. 43, 224–236, (2003).ADSGoogle Scholar
  9. 9.
    Ivanov, V.A., Jüttner, B., and Pursch, H., Time-resolved measurements of the parameters of arc cathode plasmas in vacuum, IEEE Trans. Plasma Sci. 13, 334–336, (1985).ADSGoogle Scholar
  10. 10.
    Jüttner, B., Characterization of the cathode spot, IEEE Trans. Plasma Sci. PS-15, 474–480, (1987).ADSGoogle Scholar
  11. 11.
    Aksenov, I.I., Padalka, V.G., and Khoroshykh, V.M., Investigation of a flow of plasma generated by a stationary erosion electric arc accelerator with magnetic confinement of the cathode spot, Sov. J. Plasma Phys. 5, 341, (1979).ADSGoogle Scholar
  12. 12.
    Cohen, Y., Boxman, R.L., and Goldsmith, S., Angular distribution of ion current emerging from an aperture anode in a vacuum arc, IEEE Trans. Plasma Sci. 17, 713–716, (1989).ADSGoogle Scholar
  13. 13.
    Anders, S., Anders, A., and Brown, I.G., Focused injection of vacuum arc plasmas into curved magnetic filters, J. Appl. Phys. 75, 4895–4899, (1994).ADSGoogle Scholar
  14. 14.
    Anders, A. and MacGill, R.A., Asymmetric injection of cathodic arc plasma into a macroparticle filter, J. Appl. Phys. 95, 7602–7606, (2004).ADSGoogle Scholar
  15. 15.
    Chen, F.F., Plasma Physics and Controlled Fusion. Plenum Press, New York, (1984).Google Scholar
  16. 16.
    Goldston, R.J. and Rutherford, P.H., Introduction to Plasma Physics. Institute of Physics, Bristol, (1997).Google Scholar
  17. 17.
    Golant, V.E., Zhilinsky, A.P., and Sakharov, I.E., Fundamentals of Plasma Physics. Wiley, New York, (1980).Google Scholar
  18. 18.
    Cap, F., Introduction to Plasma Physics I. Theoretical Foundation, 2nd ed. Akademie-Verlag, Berlin, (1975).Google Scholar
  19. 19.
    Krall, N.A. and Trivelpiece, A.W., Principles of Plasma Physics. McGraw-Hill, New York, (1973).Google Scholar
  20. 20.
    Heberlein, J.V.R. and Porto, D., The interaction of vacuum arc ion currents with axial magnetic fields, IEEE Trans. Plasma Sci. 11, 152–159, (1983).ADSGoogle Scholar
  21. 21.
    Nemchinskii, V.A., Focusing of the plasma jet of a vacuum arc by a magnetic field, Sov. Phys. Tech. Phys. 35, 518–519, (1990).Google Scholar
  22. 22.
    Beilis, I.I., “Theoretical modeling of cathode spot phenomena,” in Handbook of Vacuum Arc Science and Technology, Boxman, R.L., Martin, P.J., and Sanders, D.M., (Eds.). pp. 208–256, Noyes, Park Ridge, NJ, (1995).Google Scholar
  23. 23.
    Beilis, I., Djakov, B.E., Jüttner, B., and Pursch, H., Structure and dynamics of high-current arc cathode spots in vacuum, J. Phys. D, Appl. Phys 30, 119–130, (1997).ADSGoogle Scholar
  24. 24.
    Chaly, A.M., Logatchev, A.A., Zabello, K.K., and Shkol'nik, S.M., High-current vacuum arc appearance in nonhomogenous axial magnetic field, IEEE Trans. Plasma Sci. 31, 884–889, (2003).ADSGoogle Scholar
  25. 25.
    Westwood, W.D., Sputter Deposition, AVS Education Committee Book Series, vol. 2. AVS, New York, (2003).Google Scholar
  26. 26.
    Shah, S.I., “Sputtering: Introduction and General Discussion,” in Handbook of Thin Film Processing Technology, Glocker, D.A. and Shah, S.I., (Eds.). pp. A3.0:1–A3.0:18, IOP Publishing, Bristol, UK, (1995).Google Scholar
  27. 27.
    Meunier, J.-L. and Drouet, M.G., Experimental study of the effect of gas pressure on arc cathode erosion and redeposition in He, Ar, and SF6 from vacuum to atmospheric pressure, IEEE Trans. Plasma Sci. 15, 515–519, (1987).ADSGoogle Scholar
  28. 28.
    Meunier, J.-L., Pressure limits for the vacuum arc deposition technique, IEEE Trans. Plasma Sci. 18, 904–910, (1990).ADSGoogle Scholar
  29. 29.
    Gidalevich, E., Goldsmith, S., and Boxman, R.L., J. Phys. D: Appl. Phys. 33, 2598, (2000).ADSGoogle Scholar
  30. 30.
    Gidalevich, E., Goldsmith, S., and Boxman, R.L., Plasma Sources Sci. Technol. 10, 24, (2001).ADSGoogle Scholar
  31. 31.
    Kelly, H., Márquez, A., and Minotti, F.O., A simplified fluid model of the metallic plasma and neutral gas interaction in a multicathode spot vacuum arc, IEEE Trans. Plasma Sci. 26, 1322–1329, (1998).ADSGoogle Scholar
  32. 32.
    Grondona, D., Kelly, H., Márquez, A., Minotti, F., and Zebrowski, O.J., Experimental investigation of ion parameters in a cathodic arcplasma operated with nitrogen gas, IEEE Trans. Plasma Sci. 28, 1280–1286, (2000).ADSGoogle Scholar
  33. 33.
    Grondona, D., Kelly, H., and Minotti, F.O., Hydrodynamic model for a vacuum arc operated with background gas: Theory and experimental validation, J. Appl. Phys. 99, 043304–7, (2006).ADSGoogle Scholar
  34. 34.
    Lunev, V.M., Padalka, V.G., and Khoroshikh, V.M., Plasma properties of a metal vacuum arc. II, Sov. Phys. Tech. Phys. 22, 858–861, (1977).ADSGoogle Scholar
  35. 35.
    Davis, W.D. and Miller, H.C., Analysis of the electrode products emitted by dc arcs in a vacuum ambient, J. Appl. Phys. 40, 2212–2221, (1969).ADSGoogle Scholar
  36. 36.
    Plyutto, A.A., Ryzhkov, V.N., and Kapin, A.T., High speed plasma streams in vacuum arcs, Sov. Phys. JETP 20, 328–337, (1965).Google Scholar
  37. 37.
    Brown, I.G., Feinberg, B., and Galvin, J.E., Multiply stripped ion generation in the metal vapor vacuum arc, J. Appl. Phys. 63, 4889–4898, (1988).ADSGoogle Scholar
  38. 38.
    Brown, I.G. and Godechot, X., Vacuum arc ion charge-state distributions, IEEE Trans. Plasma Sci. 19, 713–717, (1991).ADSGoogle Scholar
  39. 39.
    Anders, A., Anders, S., Jüttner, B., and Brown, I.G., Time dependence of vacuum arc parameters, IEEE Trans. Plasma Sci. PS-21, 305–311, (1993).ADSGoogle Scholar
  40. 40.
    Oks, E., Brown, I.G., Dickinson, M.R., MacGill, R.A., Spädtke, P., Emig, H., and Wolf, B.H., Elevated ion charge states in vacuum arc plasmas in a magnetic field, Appl. Phys. Lett. 67, 200–202, (1995).ADSGoogle Scholar
  41. 41.
    Paoloni, F.J. and Brown, I.G., Some observations of the effect of magnetic field and arc current on the vacuum arc charge state distribution, Rev. Sci. Instrum. 66, 3855–3858, (1995).ADSGoogle Scholar
  42. 42.
    Brown, I.G., Vacuum arc ion sources, Rev. Sci. Instrum. 65, 3061–3081, (1994).ADSGoogle Scholar
  43. 43.
    Pustovit, A.N., Zhila, V.I., and Sikharulidze, G.G., Mass spectral diagnostics of plasma formed at cathode tip explosion, Sov. Phys. Tech. Phys. 31, 496–497, (1986).Google Scholar
  44. 44.
    Anders, A. and Yushkov, G.Y., Ion flux from vacuum arc cathode spots in the absence and presence of magnetic fields, J. Appl. Phys. 91, 4824–4832, (2002).ADSGoogle Scholar
  45. 45.
    Sasaki, J. and Brown, I.G., Ion spectra of vacuum arc plasma with compound and alloy cathodes, J. Appl. Phys. 66, 5198–5203, (1989).ADSGoogle Scholar
  46. 46.
    Sasaki, J., Sugiyama, K., Yao, X., and Brown, I., Multiple-species ion beams from titanium-hafnium alloy cathodes in vacuum arc plasmas, J. Appl. Phys. 73, 7184–7187, (1993).ADSGoogle Scholar
  47. 47.
    Brown, I.G., Galvin, J.E., MacGill, R.A., and West, M.W., Multiply charged metal ion beams, Nucl. Instrum Meth. Phys. Res. B 43, 455–458, (1989).ADSGoogle Scholar
  48. 48.
    Anders, A., Brown, I., MacGill, R., and Dickinson, M., High ion charge states in a high-current, short-pulse, vacuum arc ion source, Rev. Sci. Instrum. 67, 1203–1204, (1996).ADSGoogle Scholar
  49. 49.
    Baksht, R.B., Kudinov, A.P., and Litvinov, E.A., Cathode plasma in the initial stage of a vacuum discharge, Sov. Phys.Techn. Phys. 18, 94–97, (1973).ADSGoogle Scholar
  50. 50.
    Radic, N. and Santic, B., “Composition of vacuum arc plasma,” Int. Symp. on Discharges and Electrical Insulation in Vacuum, Paris, pp. 217–219, (1988).Google Scholar
  51. 51.
    Anders, S. and Anders, A., Frozen state of ionization in a cathodic plasma jet of a vacuum arc, J. Phys. D: Appl. Phys. 21, 213–215, (1988).ADSGoogle Scholar
  52. 52.
    Hantzsche, E., Consequences of balance equations applied to the diffuse plasma of vacuum arcs, IEEE Trans. Plasma Sci. 17, 657–660, (1989).ADSGoogle Scholar
  53. 53.
    Griem, H.R., Plasma Spectroscopy. McGraw-Hill, New York, (1964).Google Scholar
  54. 54.
    Ebeling, W., Kremp, W.-D., and Kraeft, D., Theory of Bound States and Ionization Equilibrium in Plasmas and Solids. Akademie-Verlag, Berlin, (1976).Google Scholar
  55. 55.
    Richter, J., “Radiation of Hot Gases,” in Plasma Diagnostics, Lochte-Holtgreven, W., (Ed.). pp. 1–65, AIP Press, New York, (1995).Google Scholar
  56. 56.
    Drawin, H.-W. and Felenbok, P., Data for Plasmas in Local Thermodynamic Equilibrium. Gauthier-Villars, Paris, (1965).Google Scholar
  57. 57.
    Anders, A., Ion charge state distributions of vacuum arc plasmas: The origin of species, Phys. Rev. E 55, 969–981, (1997).ADSGoogle Scholar
  58. 58.
    Anders, A., Plasma fluctuations, local partial Saha equilibrium, and the broadening of vacuum-arc ion charge state distributions, IEEE Trans. Plasma Sci. 27, 1060–1067, (1999).ADSGoogle Scholar
  59. 59.
    Griem, H.R., Validity of local thermal equilibrium in plasma spectroscopy, Phys. Rev. 131, 1170–1176, (1963).ADSGoogle Scholar
  60. 60.
    Biberman, L.M., Vorobev, V.S., and Yakubov, I.T., Kinetics of the Non-Equilibrium and Low-Temperature Plasma (in Russ.). Nauka, Moscow, (1982).Google Scholar
  61. 61.
    Anders, A. and Schülke, T., “Predicting ion charge state distributions of vacuum arc plasmas,” XVIIth Int. Symp. on Discharges and Electrical Insulation in Vacuum, Berkeley, pp. 199–203, (1996).Google Scholar
  62. 62.
    Richter, F., Flemming, G., Kühn, M., Peter, S., and Wagner, H., Characterization of the arc evaporation of a hot boron cathode, Surf. Coat. Technol. 112, 43–47, (1999).Google Scholar
  63. 63.
    Yushkov, G.Y. and Anders, A., Cathodic vacuum arc plasma of thallium, IEEE Trans. Plasma Sci. 35, 516–517, (2007).ADSGoogle Scholar
  64. 64.
    Anders, A., Yotsombat, B., and Binder, R., Correlation between cathode properties, burning voltage, and plasma parameters of vacuum arcs, J. Appl. Phys. 89, 7764–7771, (2001).ADSGoogle Scholar
  65. 65.
    Puchkarev, V.F. and Murzakayev, A.M., Current density and the cathode spot lifetime in a vacuum arc at threshold currents, J. Phys. D: Appl. Phys. 23, 26–35, (1990).ADSGoogle Scholar
  66. 66.
    Jüttner, B., On the plasma density of metal vapour arcs, J. Phys. D: Appl. Phys. 18, 2221–2231, (1985).ADSGoogle Scholar
  67. 67.
    Oks, E.M., Anders, A., Brown, I.G., Dickinson, M.R., and MacGill, R.A., Ion charge state distributions in high current vacuum arc plasma in a magnetic field, IEEE Trans. Plasma Sci. 24, 1174–1183, (1996).ADSGoogle Scholar
  68. 68.
    Anders, A., Oks, E.M., Yushkov, G.Y., and Brown, I.G., “Measurement of total ion flux in vacuum arc discharges,” Proc. of XXIth Int. Symp. on Discharges and Electrical Insulation in Vacuum, Yalta, Ukraine, pp. 272–275, (2004).Google Scholar
  69. 69.
    Brown, I.G., Galvin, J.E., MacGill, R.A., and Wright, R.T., Improved time-of-flight charge state diagnostic, Rev. Sci. Instrum 58, 1589–1592, (1987).ADSGoogle Scholar
  70. 70.
    Anders, A. and Hollinger, R., Reducing ion-beam noise of vacuum arc ion sources, Rev. Sci. Instrum. 73, 732–734, (2002).ADSGoogle Scholar
  71. 71.
    Lunev, V.M., Padalka, V.G., and Khoroshikh, V.M., Use of a monopole mass spectrometer for investigating the ion component of a plasma stream generated by a vacuum arc, Instrum. Exp. Tech. 19, 1465–1467, (1976).Google Scholar
  72. 72.
    Oks, E., Spädtke, P., Emig, H., and Wolf, B.H., Ion beam noise reduction method for the MEVVA ion source, Rev. Sci. Instrum. 65, 3109–3112, (1994).ADSGoogle Scholar
  73. 73.
    Brown, I.G., Spädtke, P., Rück, D.M., and Wolf, B.H., Beam intensity fluctuation characteristics of the metal vapor vacuum arc ion source, Nucl. Instrum. Meth. Phys. Res. A 295, 12–20, (1990).ADSGoogle Scholar
  74. 74.
    Anders, A., Yushkov, G., Oks, E., Nikolaev, A., and Brown, I., Ion charge state distributions of pulsed vacuum arc plasmas in strong magnetic fields, Rev. Sci. Instrum. 69, 1332–1335, (1998).ADSGoogle Scholar
  75. 75.
    Krinberg, I.A., On the mechanism of the external magnetic field action on the electron temperature and ion charge state distribution in a vacuum arc plasma, Techn. Phys. Lett. 29, 504–506, (2003).ADSGoogle Scholar
  76. 76.
    Krinberg, I.A., The ion charge-current strength relationship in stationary and pulsed vacuum discharges, Tech. Phys. Lett. 27, 45–48, (2001).ADSGoogle Scholar
  77. 77.
    McDaniel, E.W., Collision Phenomena in Ionized Gases. Wiley, New York, (1964).Google Scholar
  78. 78.
    Kimblin, C.W., A review of arcing phenomena in vacuum and in the transition to atmospheric pressure arcs, IEEE Trans. Plasma Sci. 10, 322–330, (1971).ADSGoogle Scholar
  79. 79.
    Demidenko, I.I., Lomino, N.S., Ovcharenko, V.D., Padalka, V.G., and Polyakova, G.N., Ionization mechanism for nitrogen in a vacuum arc discharge, Sov. Phys -Tech. Phys. 29, 895–897, (1984).Google Scholar
  80. 80.
    Martin, P.J., McKenzie, D.R., Netterfield, R.P., Swift, P., Filipczuk, S.W., Müller, K.-H., Pacey, C.G., and James, B., Characteristics of titanium arc evaporation processes, Thin Solid Films 153, 91–102, (1987).ADSGoogle Scholar
  81. 81.
    Sakaki, M. and Sakakibara, T., Excitation, ionization, and reaction mechanism of a reactive cathodic arc deposition of TiN, IEEE Trans. Plasma Sci. 22, 1049–1054, (1994).ADSGoogle Scholar
  82. 82.
    Oks, E. and Yushkov, G., “Some features of vacuum arc plasmas with increasing gas pressure in the discharge gap,” XVIIth Int. Symp. on Discharges and Electrical Insulation in Vacuum, Berkeley, CA, pp. 584–588, (1996).Google Scholar
  83. 83.
    Bilek, M.M.M., Martin, P.J., and McKenzie, D.R., Influence of gas pressure and cathode composition on ion energy distributions in filtered cathodic vacuum arcs, J. Appl. Phys. 83, 2965–2970, (1998).ADSGoogle Scholar
  84. 84.
    Schneider, J.M., Anders, A., Brown, I.G., Hjörvarsson, B., and Hultman, L., Temporal development of the plasma composition of a pulsed aluminum plasma stream in the presence of oxygen, Appl. Phys. Lett. 75, 612–614, (1999).ADSGoogle Scholar
  85. 85.
    Rosén, J., Anders, A., Hultman, L., and Schneider, J.M., Temporal development of the composition of Zr and Cr cathodic arc plasma streams in a N2 environment, J. Appl. Phys. 94, 1414–1419, (2003).ADSGoogle Scholar
  86. 86.
    Rosén, J., Anders, A., Hultman, L., and Schneider, J.M., Charge state and time resolved plasma composition of a pulsed zirconium arc in a nitrogen environment, J. Appl. Phys. 96, 4793–4799, (2004).ADSGoogle Scholar
  87. 87.
    Rosén, J., Anders, A., Mráz, S., Atiser, A., and Schneider, J.M., Influence of argon and oxygen on charge-state-resolved ion energy distributions of filtered aluminum arc, J. Appl. Phys. 99, 123303-1-5, (2006).ADSGoogle Scholar
  88.  88.
    Ginzburg, V.L., Propagation of Electromagnetic Waves in Plasma. Pergamon, Oxford, (1964).Google Scholar
  89.  89.
    Stix, T.H., Waves in Plasmas. American Institute of Physics, New York, (1992).Google Scholar
  90.  90.
    Kutzner, J. and Miller, H.C., Integrated ion flux emitted from the cathode spot region of a diffuse vacuum arc, J. Phys. D: Appl. Phys. 25, 686–693, (1992).ADSGoogle Scholar
  91.  91.
    Rosén, J., Anders, A., Mráz, S., and Schneider, J.M., Charge-state-resolved ion energy distributions of aluminum vacuum arcs in the absence and presence of a magnetic field, J. Appl. Phys. 97, 103306-1-6, (2005).ADSGoogle Scholar
  92.  92.
    Rosén, J., Schneider, J.M., and Anders, A., Charge state dependence of cathodic vacuum arc ion energy and velocity distributions, Appl. Phys. Lett. 89, 141502-1-3, (2006).ADSGoogle Scholar
  93.  93.
    Rusteberg, C., Lindmayer, M., Jüttner, B., and Pursch, H., On the ion energy distribution of high current arcs in vacuum, IEEE Trans. Plasma Sci. 23, 909–914, (1995).ADSGoogle Scholar
  94.  94.
    Yushkov, G., “Measurements of directed ion velocity in vacuum arc plasmas by arc current perturbation methods,” Proc. of XXth Int. Symp. on Discharges and Electrical Insulation in Vacuum, Xi'an, P.R. China, pp. 260–263, (2000).Google Scholar
  95.  95.
    Byon, E. and Anders, A., Ion energy distribution functions of vacuum arc plasmas, J. Appl. Phys. 93, 1899–1906, (2003).ADSGoogle Scholar
  96.  96.
    Lieberman, M.A. and Lichtenberg, A.J., Principles of Plasma Discharges and Materials Processing. John Wiley & Sons, New York, (1994).Google Scholar
  97.  97.
    Tsuruta, K., Skiya, K., and Watanabe, G., Velocities of copper and silver ions generated from an impulse vacuum arc, IEEE Trans. Plasma Sci. 25, 603–608, (1997).ADSGoogle Scholar
  98.  98.
    Bugaev, A.S., Gushenets, V.I., Nikolaev, A.G., Oks, E.M., and Yushkov, G.Y., Influence of a current jump on vacuum arc parameters, IEEE Trans. Plasma Sci. 27, 882–887, (1999).ADSGoogle Scholar
  99.  99.
    Bugaev, A.S., Oks, E.M., Yushkov, G.Y., Anders, A., and Brown, I.G., Enhanced ion charge states in vacuum arc plasmas using a “current spike” method, Rev. Sci. Instrum. 71, 701–703, (2000).ADSGoogle Scholar
  100. 100.
    Yushkov, G.Y., Anders, A., Oks, E.M., and Brown, I.G., Ion velocities in vacuum arc plasmas, J. Appl. Phys. 88, 5618–5622, (2000).ADSGoogle Scholar
  101. 101.
    Anders, A. and Oks, E., Charge-state-resolved ion energy distribution functions of cathodic vacuum arcs, A study involving the plasma potential and biased plasmas, J. Appl. Phys. 101, 043304-1-6, (2007).ADSGoogle Scholar
  102. 102.
    Yushkov, G.Y., Oks, E.M., Anders, A., and Brown, I.G., Effect of multiple current spikes on the enhancement of ion charges states of vacuum arc plasmas, J. Appl. Phys. 87, 8345–8350, (2000).ADSGoogle Scholar
  103. 103.
    Kelly, H., Minotti, F., Marquez, A., and Grondona, D., Kinetic model for the evaluation of spatial charge effects in retarding field analysers applied to vacuum arc devices, Measurement Sci. Technol. 13, 623–630, (2002).ADSGoogle Scholar
  104. 104.
    Stenzel, R.L., Instability of the sheath-plasma resonance, Phys. Rev. Lett 60, 704–707, (1988).ADSGoogle Scholar
  105. 105.
    Iizuka, S., Michelsen, P., Rasmussen, J.J., Schrittwieser, R., Hatakeyama, R., Saeki, K., and Sato, N., Dynamics of a potential barrier formed on the tail of a moving double layer in a collisionless plasma, Phys. Rev. Lett 48, 145–148, (1982).ADSGoogle Scholar
  106. 106.
    Litvinov, E.A., “Kinetic of cathode jet at explosive emission of electrons,” in High Current Nanosecond Pulsed Sources of Accelerated Electrons (in Russian), Mesyats, G.A., (Ed.), Nauka, Novosibirsk, (1974).Google Scholar
  107. 107.
    Mesyats, G.A. and Proskurovsky, D.I., Pulsed Electrical Discharge in Vacuum. Springer-Verlag, Berlin, (1989).Google Scholar
  108. 108.
    Krinberg, I.A. and Lukovnikova, M.P., Application of a vacuum arc model to the determination of cathodic microjet parameters, J. Phys. D: Appl. Phys. 29, 2901–2906, (1996).ADSGoogle Scholar
  109. 109.
    Yushkov, G.Y., Bugaev, A.S., Krinberg, I.A., and Oks, E.M., On a mechanism of ion acceleration in vacuum arc-discharge plasma, Doklady Physics 46, 307–309, (2001).ADSGoogle Scholar
  110. 110.
    Krinberg, I.A., Acceleration of multicomponent plasma in the cathode region of vacuum arc, Techn. Phys. 46, 1371–1378, (2001).ADSGoogle Scholar
  111. 111.
    Tarrant, R.N., Bilek, M.M.M., Oates, T.W.H., Pigott, J., and McKenzie, D.R., Influence of gas flow and entry point on ion charge, ion counts and ion energy distribution in a filtered cathodic arc, Surf. Coat. Technol. 156, 110–114, (2002).Google Scholar
  112. 112.
    Lepone, A., Kelly, H., and Marquez, A., Role of metallic neutrals and gaseous molecular ions in a copper cathodic arc operated with oxygen gas, J. Appl. Phys. 90, 3174–3181, (2001).ADSGoogle Scholar
  113. 113.
    Aksenov, I.I., Konovalov, I.I., Padalka, V.G., Sizonenko, V.L., and Khoroshikh, V.M., Instabilities in the plasma of a vacuum arc with gas in the discharge: I., Sov. J. Plasma Phys. 11, 787–791, (1985).Google Scholar
  114. 114.
    Spitzer Jr., L., Physics of Fully Ionized Gases, preprint of the 2 nd revised edition, originally published by Wiley, 1962 ed. Dover, New York, (1990).Google Scholar
  115. 115.
    Anders, A., Observation of self-sputtering in energetic condensation of metal ions, Appl. Phys. Lett. 85, 6137–6139, (2004).ADSGoogle Scholar
  116. 116.
    Lins, G., Evolution of copper vapor from the cathode of a diffuse vacuum arc, IEEE Trans. Plasma Sci. 15, 552–556, (1987).ADSGoogle Scholar
  117. 117.
    Prock, J., Solidification of hot craters on the cathode of vacuum arcs, J. Phys. D: Appl. Phys. 19, 1917–1924, (1986).ADSGoogle Scholar
  118. 118.
    Anders, A., Time-dependence of ion charge state distributions of vacuum arcs: An interpretation involving atoms and charge exchange collisions, IEEE Trans. Plasma Sci. 33, 205–209, (2005).ADSGoogle Scholar
  119. 119.
    Smirnov, B.M., Atomic structure and the resonant charge exchange process, Uspekhi Fizicheskikh Nauk 171, 233–266, (2001).Google Scholar
  120. 120.
    Janev, R.K. and Gallagher, J.W., Evaluated theoretical cross-section data for charge exchange of multiply charged ions with atoms. III. Nonhydrogenic target atoms, J. Phys. Chem. Reference Data 13, 1199–249, (1984).ADSGoogle Scholar
  121. 121.
    Smirnov, B.M., Tables for cross sections of the resonant charge exchange process, Physica Scripta 61, 595–602, (2000).ADSGoogle Scholar
  122. 122.
    Grozdanov, T.P. and Janev, R.K., Charge-exchange collisions of multiply charged ions with atoms, Physical Review A 17, 880, (1978).ADSGoogle Scholar
  123. 123.
    Bransden, B.H. and McDowell, M.R.C., Charge Exchange and the Theory of Ion-Atom Collisions. Clarendon Press, Oxford, UK, (1992).Google Scholar
  124. 124.
    Presnyakov, L.P. and Ulantsev, A.D., Charge exchange between multiply charged ions and atoms, Sov. J. Quantum Electronics 4, 1320–1324, (1975).Google Scholar
  125. 125.
    Beuhler, R.J., Friedman, L., and Porter, R.F., Electron-transfer reactions of fast Xen+ ions with Xe in the energy range 15 keV to 1.6 MeV, Phys. Rev. A 19, 486–494, (1979).ADSGoogle Scholar
  126. 126.
    McDaniel, E.W., Mitchell, J.B.A., and Rudd, M.E., Atomic Collisions: Heavy Particle Projectiles. Wiley, New York, (1993).Google Scholar
  127. 127.
    Anders, A. and Yushkov, G.Y., Puzzling differences in bismuth and lead plasmas: evidence for the significant role of neutrals in cathodic vacuum arcs, Appl. Phys. Lett. 91, 091502, (2007).ADSGoogle Scholar
  128. 128.
    Anders, A., Oks, E.M., and Yushkov, G.Y., Production of neutrals and their effects on the ion charge states in cathodic vacuum arc plasmas, J. Appl. Phys. 102, 043303, (2007).ADSGoogle Scholar
  129. 129.
    Yushkov, G.Y. and Anders, A., Extractable, elevated ion charge states in the transition regime from vacuum sparks to high current vacuum arcs, Appl. Phys. Lett. 92, 201501, (2008).Google Scholar
  130. 130.
    Hasted, J.B., Physics of Atomic Collisions, 2 nd ed. Butterworths, London, (1972).Google Scholar
  131. 131.
    Bilek, M.M.M., Chhowalla, M., and Milne, W.I., Influence of reactive gas on ion energy distribution in filtered cathodic vacuum arcs, Appl. Phys. Lett. 71, 1777–1779, (1997).ADSGoogle Scholar
  132. 132.
    Chhowalla, M., Ion energy and charge state distributions in zirconium nitride arc plasma, Appl. Phys. Lett. 83, 1542–1544, (2004).ADSGoogle Scholar
  133. 133.
    Hopwood, J.A., (ed.) Ionized Physical Vapor Deposition, Academic Press, San Diego, CA, (2000).Google Scholar
  134. 134.
    Kimblin, C.W., Cathode spot erosion and ionization phenomena in the transition region from vacuum to atmospheric pressure arcs, J. Appl. Phys. 45, 5235–5244, (1974).ADSGoogle Scholar
  135. 135.
    Spädtke, P., Emig, H., Wolf, B.H., and Oks, E., Influence of gas added to the MEVVA discharge on the extracted ion beam, Rev. Sci. Instrum. 65, 3113–3118, (1994).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • André Anders
    • 1
  1. 1.BerkeleyUSA

Personalised recommendations