Skip to main content

The Interelectrode Plasma

  • Chapter
  • First Online:

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 50))

Abstract

After plasma production at non-stationary cathode spots, the plasma expands into the interelectrode space. Plasma properties such as local density, temperature, streaming velocity, and ion charge state distribution are described for the expanding plasma. We are interested in the subject because it is one way to look back at cathode process and learn about plasma generation. Knowledge about the interelectrode plasma is also relevant to the application. Much of the information on arc plasmas is based on averaging over extended periods of time (DC arcs) or many pulses (pulsed arcs). In doing so, correlations between the solid-state cathode properties and the plasma properties can be established, which allowed us to formulate empirical rules. One section is dedicated to discuss the sources and effects of neutrals in the interelectrode plasma.

While the electric arc is one of the most common things of modern life, an understanding of it is not common.Clement D. Child, in: Electric Arc, 1913

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anders, A. and Yushkov, G. Y., Angularly resolved measurements of the ion energy of vacuum arc plasmas, Appl. Phys. Lett.80, 2457–2459, (2002).

    Article  ADS  Google Scholar 

  2. Kutzner, J. and Miller, H. C., In flux from the cathode region of a vacuum arc, IEEE Trans. Plasma Sci.17, 688–694, (1989).

    Article  ADS  Google Scholar 

  3. Sutton, G. W. and Sherman, A., Engineering Magnetohydrodynamics, reprint of the 1965 first edition by McGraw-Hill ed. Dover, Mineola, NY, (2006).

    Google Scholar 

  4. Wieckert, C., A multicomponent theory of the cathodic plasma jet in vacuum arcs, Contrib. Plasma Phys.27, 309–330, (1987).

    Google Scholar 

  5. Keidar, M., Beilis, I.I., Anders, A., and Brown, I.G., Free-boundary vacuum arc plasma jet expansion in a curved magnetic field, IEEE Trans. Plasma Sci.27, 613–619, (1999).

    Article  ADS  Google Scholar 

  6. Keidar, M., Beilis, I.I., Boxman, R.L., and Goldsmith, S., 2D expansion of the low-density interelectrode vacuum arc plasma jet in an axial magnetic field, J. Phys. D, Appl. Phys.29, 1973–1983, (1996).

    Article  ADS  Google Scholar 

  7. Gidalevich, E., Goldsmith, S., and Boxman, R.L., Modeling of nonstationary vacuum arc plasma jet interaction with a neutral background gas, J. Appl. Phys.90, 4355–4360, (2001).

    Article  ADS  Google Scholar 

  8. Beilis, I.I., The vacuum arc cathode spot and plasma jet, Physical model and mathematical description, Contrib. Plasma Phys.43, 224–236, (2003).

    Article  ADS  Google Scholar 

  9. Ivanov, V.A., Jüttner, B., and Pursch, H., Time-resolved measurements of the parameters of arc cathode plasmas in vacuum, IEEE Trans. Plasma Sci.13, 334–336, (1985).

    Article  ADS  Google Scholar 

  10. Jüttner, B., Characterization of the cathode spot, IEEE Trans. Plasma Sci.PS-15, 474–480, (1987).

    Article  ADS  Google Scholar 

  11. Aksenov, I.I., Padalka, V.G., and Khoroshykh, V.M., Investigation of a flow of plasma generated by a stationary erosion electric arc accelerator with magnetic confinement of the cathode spot, Sov. J. Plasma Phys.5, 341, (1979).

    ADS  Google Scholar 

  12. Cohen, Y., Boxman, R.L., and Goldsmith, S., Angular distribution of ion current emerging from an aperture anode in a vacuum arc, IEEE Trans. Plasma Sci.17, 713–716, (1989).

    Article  ADS  Google Scholar 

  13. Anders, S., Anders, A., and Brown, I.G., Focused injection of vacuum arc plasmas into curved magnetic filters, J. Appl. Phys.75, 4895–4899, (1994).

    Article  ADS  Google Scholar 

  14. Anders, A. and MacGill, R.A., Asymmetric injection of cathodic arc plasma into a macroparticle filter, J. Appl. Phys.95, 7602–7606, (2004).

    Article  ADS  Google Scholar 

  15. Chen, F.F., Plasma Physics and Controlled Fusion. Plenum Press, New York, (1984).

    Book  Google Scholar 

  16. Goldston, R.J. and Rutherford, P.H., Introduction to Plasma Physics. Institute of Physics, Bristol, (1997).

    MATH  Google Scholar 

  17. Golant, V.E., Zhilinsky, A.P., and Sakharov, I.E., Fundamentals of Plasma Physics. Wiley, New York, (1980).

    Google Scholar 

  18. Cap, F., Introduction to Plasma Physics I. Theoretical Foundation, 2nd ed. Akademie-Verlag, Berlin, (1975).

    Google Scholar 

  19. Krall, N.A. and Trivelpiece, A.W., Principles of Plasma Physics. McGraw-Hill, New York, (1973).

    Book  Google Scholar 

  20. Heberlein, J.V.R. and Porto, D., The interaction of vacuum arc ion currents with axial magnetic fields, IEEE Trans. Plasma Sci.11, 152–159, (1983).

    Article  ADS  Google Scholar 

  21. Nemchinskii, V.A., Focusing of the plasma jet of a vacuum arc by a magnetic field, Sov. Phys. Tech. Phys.35, 518–519, (1990).

    Google Scholar 

  22. Beilis, I.I., “Theoretical modeling of cathode spot phenomena,” in Handbook of Vacuum Arc Science and Technology, Boxman, R.L., Martin, P.J., and Sanders, D.M., (Eds.). pp. 208–256, Noyes, Park Ridge, NJ, (1995).

    Google Scholar 

  23. Beilis, I., Djakov, B.E., Jüttner, B., and Pursch, H., Structure and dynamics of high-current arc cathode spots in vacuum, J. Phys. D, Appl. Phys30, 119–130, (1997).

    Article  ADS  Google Scholar 

  24. Chaly, A.M., Logatchev, A.A., Zabello, K.K., and Shkol’nik, S.M., High-current vacuum arc appearance in nonhomogenous axial magnetic field, IEEE Trans. Plasma Sci.31, 884–889, (2003).

    Article  ADS  Google Scholar 

  25. Westwood, W.D., Sputter Deposition, AVS Education Committee Book Series, vol. 2. AVS, New York, (2003).

    Google Scholar 

  26. Shah, S.I., “Sputtering: Introduction and General Discussion,” in Handbook of Thin Film Processing Technology, Glocker, D.A. and Shah, S.I., (Eds.). pp. A3.0:1–A3.0:18, IOP Publishing, Bristol, UK, (1995).

    Google Scholar 

  27. Meunier, J.-L. and Drouet, M.G., Experimental study of the effect of gas pressure on arc cathode erosion and redeposition in He, Ar, and SF6 from vacuum to atmospheric pressure, IEEE Trans. Plasma Sci.15, 515–519, (1987).

    Article  ADS  Google Scholar 

  28. Meunier, J.-L., Pressure limits for the vacuum arc deposition technique, IEEE Trans. Plasma Sci.18, 904–910, (1990).

    Article  ADS  Google Scholar 

  29. Gidalevich, E., Goldsmith, S., and Boxman, R.L., J. Phys. D: Appl. Phys.33, 2598, (2000).

    Article  ADS  Google Scholar 

  30. Gidalevich, E., Goldsmith, S., and Boxman, R.L., Plasma Sources Sci. Technol.10, 24, (2001).

    Article  ADS  Google Scholar 

  31. Kelly, H., Márquez, A., and Minotti, F.O., A simplified fluid model of the metallic plasma and neutral gas interaction in a multicathode spot vacuum arc, IEEE Trans. Plasma Sci.26, 1322–1329, (1998).

    Article  ADS  Google Scholar 

  32. Grondona, D., Kelly, H., Márquez, A., Minotti, F., and Zebrowski, O.J., Experimental investigation of ion parameters in a cathodic arcplasma operated with nitrogen gas, IEEE Trans. Plasma Sci.28, 1280–1286, (2000).

    Article  ADS  Google Scholar 

  33. Grondona, D., Kelly, H., and Minotti, F.O., Hydrodynamic model for a vacuum arc operated with background gas: Theory and experimental validation, J. Appl. Phys.99, 043304–7, (2006).

    Article  ADS  Google Scholar 

  34. Lunev, V.M., Padalka, V.G., and Khoroshikh, V.M., Plasma properties of a metal vacuum arc. II, Sov. Phys. Tech. Phys.22, 858–861, (1977).

    ADS  Google Scholar 

  35. Davis, W.D. and Miller, H.C., Analysis of the electrode products emitted by dc arcs in a vacuum ambient, J. Appl. Phys.40, 2212–2221, (1969).

    Article  ADS  Google Scholar 

  36. Plyutto, A.A., Ryzhkov, V.N., and Kapin, A.T., High speed plasma streams in vacuum arcs, Sov. Phys. JETP20, 328–337, (1965).

    Google Scholar 

  37. Brown, I.G., Feinberg, B., and Galvin, J.E., Multiply stripped ion generation in the metal vapor vacuum arc, J. Appl. Phys.63, 4889–4898, (1988).

    Article  ADS  Google Scholar 

  38. Brown, I.G. and Godechot, X., Vacuum arc ion charge-state distributions, IEEE Trans. Plasma Sci.19, 713–717, (1991).

    Article  ADS  Google Scholar 

  39. Anders, A., Anders, S., Jüttner, B., and Brown, I.G., Time dependence of vacuum arc parameters, IEEE Trans. Plasma Sci.PS-21, 305–311, (1993).

    Article  ADS  Google Scholar 

  40. Oks, E., Brown, I.G., Dickinson, M.R., MacGill, R.A., Spädtke, P., Emig, H., and Wolf, B.H., Elevated ion charge states in vacuum arc plasmas in a magnetic field, Appl. Phys. Lett.67, 200–202, (1995).

    Article  ADS  Google Scholar 

  41. Paoloni, F.J. and Brown, I.G., Some observations of the effect of magnetic field and arc current on the vacuum arc charge state distribution, Rev. Sci. Instrum.66, 3855–3858, (1995).

    Article  ADS  Google Scholar 

  42. Brown, I.G., Vacuum arc ion sources, Rev. Sci. Instrum.65, 3061–3081, (1994).

    Article  ADS  Google Scholar 

  43. Pustovit, A.N., Zhila, V.I., and Sikharulidze, G.G., Mass spectral diagnostics of plasma formed at cathode tip explosion, Sov. Phys. Tech. Phys.31, 496–497, (1986).

    Google Scholar 

  44. Anders, A. and Yushkov, G.Y., Ion flux from vacuum arc cathode spots in the absence and presence of magnetic fields, J. Appl. Phys.91, 4824–4832, (2002).

    Article  ADS  Google Scholar 

  45. Sasaki, J. and Brown, I.G., Ion spectra of vacuum arc plasma with compound and alloy cathodes, J. Appl. Phys.66, 5198–5203, (1989).

    Article  ADS  Google Scholar 

  46. Sasaki, J., Sugiyama, K., Yao, X., and Brown, I., Multiple-species ion beams from titanium-hafnium alloy cathodes in vacuum arc plasmas, J. Appl. Phys.73, 7184–7187, (1993).

    Article  ADS  Google Scholar 

  47. Brown, I.G., Galvin, J.E., MacGill, R.A., and West, M.W., Multiply charged metal ion beams, Nucl. Instrum Meth. Phys. Res. B43, 455–458, (1989).

    Article  ADS  Google Scholar 

  48. Anders, A., Brown, I., MacGill, R., and Dickinson, M., High ion charge states in a high-current, short-pulse, vacuum arc ion source, Rev. Sci. Instrum.67, 1203–1204, (1996).

    ADS  Google Scholar 

  49. Baksht, R.B., Kudinov, A.P., and Litvinov, E.A., Cathode plasma in the initial stage of a vacuum discharge, Sov. Phys.Techn. Phys.18, 94–97, (1973).

    ADS  Google Scholar 

  50. Radic, N. and Santic, B., “Composition of vacuum arc plasma,” Int. Symp. on Discharges and Electrical Insulation in Vacuum, Paris, pp. 217–219, (1988).

    Google Scholar 

  51. Anders, S. and Anders, A., Frozen state of ionization in a cathodic plasma jet of a vacuum arc, J. Phys. D: Appl. Phys.21, 213–215, (1988).

    Article  ADS  Google Scholar 

  52. Hantzsche, E., Consequences of balance equations applied to the diffuse plasma of vacuum arcs, IEEE Trans. Plasma Sci.17, 657–660, (1989).

    Article  ADS  Google Scholar 

  53. Griem, H.R., Plasma Spectroscopy. McGraw-Hill, New York, (1964).

    Google Scholar 

  54. Ebeling, W., Kremp, W.-D., and Kraeft, D., Theory of Bound States and Ionization Equilibrium in Plasmas and Solids. Akademie-Verlag, Berlin, (1976).

    Google Scholar 

  55. Richter, J., “Radiation of Hot Gases,” in Plasma Diagnostics, Lochte-Holtgreven, W., (Ed.). pp. 1–65, AIP Press, New York, (1995).

    Google Scholar 

  56. Drawin, H.-W. and Felenbok, P., Data for Plasmas in Local Thermodynamic Equilibrium. Gauthier-Villars, Paris, (1965).

    Google Scholar 

  57. Anders, A., Ion charge state distributions of vacuum arc plasmas: The origin of species, Phys. Rev. E55, 969–981, (1997).

    Article  ADS  Google Scholar 

  58. Anders, A., Plasma fluctuations, local partial Saha equilibrium, and the broadening of vacuum-arc ion charge state distributions, IEEE Trans. Plasma Sci.27, 1060–1067, (1999).

    Article  ADS  Google Scholar 

  59. Griem, H.R., Validity of local thermal equilibrium in plasma spectroscopy, Phys. Rev.131, 1170–1176, (1963).

    Article  ADS  Google Scholar 

  60. Biberman, L.M., Vorobev, V.S., and Yakubov, I.T., Kinetics of the Non-Equilibrium and Low-Temperature Plasma (in Russ.). Nauka, Moscow, (1982).

    Google Scholar 

  61. Anders, A. and Schülke, T., “Predicting ion charge state distributions of vacuum arc plasmas,” XVIIth Int. Symp. on Discharges and Electrical Insulation in Vacuum, Berkeley, pp. 199–203, (1996).

    Google Scholar 

  62. Richter, F., Flemming, G., Kühn, M., Peter, S., and Wagner, H., Characterization of the arc evaporation of a hot boron cathode, Surf. Coat. Technol.112, 43–47, (1999).

    Article  Google Scholar 

  63. Yushkov, G.Y. and Anders, A., Cathodic vacuum arc plasma of thallium, IEEE Trans. Plasma Sci.35, 516–517, (2007).

    Article  ADS  Google Scholar 

  64. Anders, A., Yotsombat, B., and Binder, R., Correlation between cathode properties, burning voltage, and plasma parameters of vacuum arcs, J. Appl. Phys.89, 7764–7771, (2001).

    Article  ADS  Google Scholar 

  65. Puchkarev, V.F. and Murzakayev, A.M., Current density and the cathode spot lifetime in a vacuum arc at threshold currents, J. Phys. D: Appl. Phys.23, 26–35, (1990).

    Article  ADS  Google Scholar 

  66. Jüttner, B., On the plasma density of metal vapour arcs, J. Phys. D: Appl. Phys.18, 2221–2231, (1985).

    Article  ADS  Google Scholar 

  67. Oks, E.M., Anders, A., Brown, I.G., Dickinson, M.R., and MacGill, R.A., Ion charge state distributions in high current vacuum arc plasma in a magnetic field, IEEE Trans. Plasma Sci.24, 1174–1183, (1996).

    Article  ADS  Google Scholar 

  68. Anders, A., Oks, E.M., Yushkov, G.Y., and Brown, I.G., “Measurement of total ion flux in vacuum arc discharges,” Proc. of XXIth Int. Symp. on Discharges and Electrical Insulation in Vacuum, Yalta, Ukraine, pp. 272–275, (2004).

    Google Scholar 

  69. Brown, I.G., Galvin, J.E., MacGill, R.A., and Wright, R.T., Improved time-of-flight charge state diagnostic, Rev. Sci. Instrum58, 1589–1592, (1987).

    Article  ADS  Google Scholar 

  70. Anders, A. and Hollinger, R., Reducing ion-beam noise of vacuum arc ion sources, Rev. Sci. Instrum.73, 732–734, (2002).

    Article  ADS  Google Scholar 

  71. Lunev, V.M., Padalka, V.G., and Khoroshikh, V.M., Use of a monopole mass spectrometer for investigating the ion component of a plasma stream generated by a vacuum arc, Instrum. Exp. Tech.19, 1465–1467, (1976).

    Google Scholar 

  72. Oks, E., Spädtke, P., Emig, H., and Wolf, B.H., Ion beam noise reduction method for the MEVVA ion source, Rev. Sci. Instrum.65, 3109–3112, (1994).

    Article  ADS  Google Scholar 

  73. Brown, I.G., Spädtke, P., Rück, D.M., and Wolf, B.H., Beam intensity fluctuation characteristics of the metal vapor vacuum arc ion source, Nucl. Instrum. Meth. Phys. Res. A295, 12–20, (1990).

    Article  ADS  Google Scholar 

  74. Anders, A., Yushkov, G., Oks, E., Nikolaev, A., and Brown, I., Ion charge state distributions of pulsed vacuum arc plasmas in strong magnetic fields, Rev. Sci. Instrum.69, 1332–1335, (1998).

    Article  ADS  Google Scholar 

  75. Krinberg, I.A., On the mechanism of the external magnetic field action on the electron temperature and ion charge state distribution in a vacuum arc plasma, Techn. Phys. Lett.29, 504–506, (2003).

    Article  ADS  Google Scholar 

  76. Krinberg, I.A., The ion charge-current strength relationship in stationary and pulsed vacuum discharges, Tech. Phys. Lett.27, 45–48, (2001).

    Article  ADS  Google Scholar 

  77. McDaniel, E.W., Collision Phenomena in Ionized Gases. Wiley, New York, (1964).

    Google Scholar 

  78. Kimblin, C.W., A review of arcing phenomena in vacuum and in the transition to atmospheric pressure arcs, IEEE Trans. Plasma Sci.10, 322–330, (1971).

    Article  ADS  Google Scholar 

  79. Demidenko, I.I., Lomino, N.S., Ovcharenko, V.D., Padalka, V.G., and Polyakova, G.N., Ionization mechanism for nitrogen in a vacuum arc discharge, Sov. Phys -Tech. Phys.29, 895–897, (1984).

    Google Scholar 

  80. Martin, P.J., McKenzie, D.R., Netterfield, R.P., Swift, P., Filipczuk, S.W., Müller, K.-H., Pacey, C.G., and James, B., Characteristics of titanium arc evaporation processes, Thin Solid Films153, 91–102, (1987).

    Article  ADS  Google Scholar 

  81. Sakaki, M. and Sakakibara, T., Excitation, ionization, and reaction mechanism of a reactive cathodic arc deposition of TiN, IEEE Trans. Plasma Sci.22, 1049–1054, (1994).

    Article  ADS  Google Scholar 

  82. Oks, E. and Yushkov, G., “Some features of vacuum arc plasmas with increasing gas pressure in the discharge gap,” XVIIth Int. Symp. on Discharges and Electrical Insulation in Vacuum, Berkeley, CA, pp. 584–588, (1996).

    Google Scholar 

  83. Bilek, M.M.M., Martin, P.J., and McKenzie, D.R., Influence of gas pressure and cathode composition on ion energy distributions in filtered cathodic vacuum arcs, J. Appl. Phys.83, 2965–2970, (1998).

    Article  ADS  Google Scholar 

  84. Schneider, J.M., Anders, A., Brown, I.G., Hjörvarsson, B., and Hultman, L., Temporal development of the plasma composition of a pulsed aluminum plasma stream in the presence of oxygen, Appl. Phys. Lett.75, 612–614, (1999).

    Article  ADS  Google Scholar 

  85. Rosén, J., Anders, A., Hultman, L., and Schneider, J.M., Temporal development of the composition of Zr and Cr cathodic arc plasma streams in a N2 environment, J. Appl. Phys.94, 1414–1419, (2003).

    Article  ADS  Google Scholar 

  86. Rosén, J., Anders, A., Hultman, L., and Schneider, J.M., Charge state and time resolved plasma composition of a pulsed zirconium arc in a nitrogen environment, J. Appl. Phys.96, 4793–4799, (2004).

    Article  ADS  Google Scholar 

  87. Rosén, J., Anders, A., Mráz, S., Atiser, A., and Schneider, J.M., Influence of argon and oxygen on charge-state-resolved ion energy distributions of filtered aluminum arc, J. Appl. Phys.99, 123303-1-5, (2006).

    Article  ADS  Google Scholar 

  88. Ginzburg, V.L., Propagation of Electromagnetic Waves in Plasma. Pergamon, Oxford, (1964).

    Google Scholar 

  89. Stix, T.H., Waves in Plasmas. American Institute of Physics, New York, (1992).

    Google Scholar 

  90. Kutzner, J. and Miller, H.C., Integrated ion flux emitted from the cathode spot region of a diffuse vacuum arc, J. Phys. D: Appl. Phys.25, 686–693, (1992).

    Article  ADS  Google Scholar 

  91. Rosén, J., Anders, A., Mráz, S., and Schneider, J.M., Charge-state-resolved ion energy distributions of aluminum vacuum arcs in the absence and presence of a magnetic field, J. Appl. Phys.97, 103306-1-6, (2005).

    Article  ADS  Google Scholar 

  92. Rosén, J., Schneider, J.M., and Anders, A., Charge state dependence of cathodic vacuum arc ion energy and velocity distributions, Appl. Phys. Lett.89, 141502-1-3, (2006).

    Article  ADS  Google Scholar 

  93. Rusteberg, C., Lindmayer, M., Jüttner, B., and Pursch, H., On the ion energy distribution of high current arcs in vacuum, IEEE Trans. Plasma Sci.23, 909–914, (1995).

    Article  ADS  Google Scholar 

  94. Yushkov, G., “Measurements of directed ion velocity in vacuum arc plasmas by arc current perturbation methods,” Proc. of XXth Int. Symp. on Discharges and Electrical Insulation in Vacuum, Xi’an, P.R. China, pp. 260–263, (2000).

    Google Scholar 

  95. Byon, E. and Anders, A., Ion energy distribution functions of vacuum arc plasmas, J. Appl. Phys.93, 1899–1906, (2003).

    Article  ADS  Google Scholar 

  96. Lieberman, M.A. and Lichtenberg, A.J., Principles of Plasma Discharges and Materials Processing. John Wiley & Sons, New York, (1994).

    Google Scholar 

  97. Tsuruta, K., Skiya, K., and Watanabe, G., Velocities of copper and silver ions generated from an impulse vacuum arc, IEEE Trans. Plasma Sci.25, 603–608, (1997).

    Article  ADS  Google Scholar 

  98. Bugaev, A.S., Gushenets, V.I., Nikolaev, A.G., Oks, E.M., and Yushkov, G.Y., Influence of a current jump on vacuum arc parameters, IEEE Trans. Plasma Sci.27, 882–887, (1999).

    Article  ADS  Google Scholar 

  99. Bugaev, A.S., Oks, E.M., Yushkov, G.Y., Anders, A., and Brown, I.G., Enhanced ion charge states in vacuum arc plasmas using a “current spike” method, Rev. Sci. Instrum.71, 701–703, (2000).

    Article  ADS  Google Scholar 

  100. Yushkov, G.Y., Anders, A., Oks, E.M., and Brown, I.G., Ion velocities in vacuum arc plasmas, J. Appl. Phys.88, 5618–5622, (2000).

    Article  ADS  Google Scholar 

  101. Anders, A. and Oks, E., Charge-state-resolved ion energy distribution functions of cathodic vacuum arcs, A study involving the plasma potential and biased plasmas, J. Appl. Phys.101, 043304-1-6, (2007).

    Article  ADS  Google Scholar 

  102. Yushkov, G.Y., Oks, E.M., Anders, A., and Brown, I.G., Effect of multiple current spikes on the enhancement of ion charges states of vacuum arc plasmas, J. Appl. Phys.87, 8345–8350, (2000).

    Article  ADS  Google Scholar 

  103. Kelly, H., Minotti, F., Marquez, A., and Grondona, D., Kinetic model for the evaluation of spatial charge effects in retarding field analysers applied to vacuum arc devices, Measurement Sci. Technol.13, 623–630, (2002).

    Article  ADS  Google Scholar 

  104. Stenzel, R.L., Instability of the sheath-plasma resonance, Phys. Rev. Lett60, 704–707, (1988).

    Article  ADS  Google Scholar 

  105. Iizuka, S., Michelsen, P., Rasmussen, J.J., Schrittwieser, R., Hatakeyama, R., Saeki, K., and Sato, N., Dynamics of a potential barrier formed on the tail of a moving double layer in a collisionless plasma, Phys. Rev. Lett48, 145–148, (1982).

    Article  ADS  Google Scholar 

  106. Litvinov, E.A., “Kinetic of cathode jet at explosive emission of electrons,” in High Current Nanosecond Pulsed Sources of Accelerated Electrons (in Russian), Mesyats, G.A., (Ed.), Nauka, Novosibirsk, (1974).

    Google Scholar 

  107. Mesyats, G.A. and Proskurovsky, D.I., Pulsed Electrical Discharge in Vacuum. Springer-Verlag, Berlin, (1989).

    Book  Google Scholar 

  108. Krinberg, I.A. and Lukovnikova, M.P., Application of a vacuum arc model to the determination of cathodic microjet parameters, J. Phys. D: Appl. Phys.29, 2901–2906, (1996).

    Article  ADS  Google Scholar 

  109. Yushkov, G.Y., Bugaev, A.S., Krinberg, I.A., and Oks, E.M., On a mechanism of ion acceleration in vacuum arc-discharge plasma, Doklady Physics46, 307–309, (2001).

    Article  ADS  Google Scholar 

  110. Krinberg, I.A., Acceleration of multicomponent plasma in the cathode region of vacuum arc, Techn. Phys.46, 1371–1378, (2001).

    Article  ADS  Google Scholar 

  111. Tarrant, R.N., Bilek, M.M.M., Oates, T.W.H., Pigott, J., and McKenzie, D.R., Influence of gas flow and entry point on ion charge, ion counts and ion energy distribution in a filtered cathodic arc, Surf. Coat. Technol.156, 110–114, (2002).

    Article  Google Scholar 

  112. Lepone, A., Kelly, H., and Marquez, A., Role of metallic neutrals and gaseous molecular ions in a copper cathodic arc operated with oxygen gas, J. Appl. Phys.90, 3174–3181, (2001).

    Article  ADS  Google Scholar 

  113. Aksenov, I.I., Konovalov, I.I., Padalka, V.G., Sizonenko, V.L., and Khoroshikh, V.M., Instabilities in the plasma of a vacuum arc with gas in the discharge: I., Sov. J. Plasma Phys.11, 787–791, (1985).

    Google Scholar 

  114. Spitzer Jr., L., Physics of Fully Ionized Gases, preprint of the 2 nd revised edition, originally published by Wiley, 1962 ed. Dover, New York, (1990).

    Google Scholar 

  115. Anders, A., Observation of self-sputtering in energetic condensation of metal ions, Appl. Phys. Lett.85, 6137–6139, (2004).

    Article  ADS  Google Scholar 

  116. Lins, G., Evolution of copper vapor from the cathode of a diffuse vacuum arc, IEEE Trans. Plasma Sci.15, 552–556, (1987).

    Article  ADS  Google Scholar 

  117. Prock, J., Solidification of hot craters on the cathode of vacuum arcs, J. Phys. D: Appl. Phys.19, 1917–1924, (1986).

    Article  ADS  Google Scholar 

  118. Anders, A., Time-dependence of ion charge state distributions of vacuum arcs: An interpretation involving atoms and charge exchange collisions, IEEE Trans. Plasma Sci.33, 205–209, (2005).

    Article  ADS  Google Scholar 

  119. Smirnov, B.M., Atomic structure and the resonant charge exchange process, Uspekhi Fizicheskikh Nauk171, 233–266, (2001).

    Article  Google Scholar 

  120. Janev, R.K. and Gallagher, J.W., Evaluated theoretical cross-section data for charge exchange of multiply charged ions with atoms. III. Nonhydrogenic target atoms, J. Phys. Chem. Reference Data13, 1199–249, (1984).

    Article  ADS  Google Scholar 

  121. Smirnov, B.M., Tables for cross sections of the resonant charge exchange process, Physica Scripta61, 595–602, (2000).

    Article  ADS  Google Scholar 

  122. Grozdanov, T.P. and Janev, R.K., Charge-exchange collisions of multiply charged ions with atoms, Physical Review A17, 880, (1978).

    Article  ADS  Google Scholar 

  123. Bransden, B.H. and McDowell, M.R.C., Charge Exchange and the Theory of Ion-Atom Collisions. Clarendon Press, Oxford, UK, (1992).

    Google Scholar 

  124. Presnyakov, L.P. and Ulantsev, A.D., Charge exchange between multiply charged ions and atoms, Sov. J. Quantum Electronics4, 1320–1324, (1975).

    Article  Google Scholar 

  125. Beuhler, R.J., Friedman, L., and Porter, R.F., Electron-transfer reactions of fast Xen+ ions with Xe in the energy range 15 KeV to 1.6 MeV, Phys. Rev. A19, 486–494, (1979).

    Article  ADS  Google Scholar 

  126. McDaniel, E.W., Mitchell, J.B.A., and Rudd, M.E., Atomic Collisions: Heavy Particle Projectiles. Wiley, New York, (1993).

    Google Scholar 

  127. Anders, A. and Yushkov, G.Y., Puzzling differences in bismuth and lead plasmas: evidence for the significant role of neutrals in cathodic vacuum arcs, Appl. Phys. Lett.91, 091502, (2007).

    Article  ADS  Google Scholar 

  128. Anders, A., Oks, E.M., and Yushkov, G.Y., Production of neutrals and their effects on the ion charge states in cathodic vacuum arc plasmas, J. Appl. Phys.102, 043303, (2007).

    Article  ADS  Google Scholar 

  129. Yushkov, G.Y. and Anders, A., Extractable, elevated ion charge states in the transition regime from vacuum sparks to high current vacuum arcs, Appl. Phys. Lett.92, 201501, (2008).

    Article  Google Scholar 

  130. Hasted, J.B., Physics of Atomic Collisions, 2 nd ed. Butterworths, London, (1972).

    Google Scholar 

  131. Bilek, M.M.M., Chhowalla, M., and Milne, W.I., Influence of reactive gas on ion energy distribution in filtered cathodic vacuum arcs, Appl. Phys. Lett.71, 1777–1779, (1997).

    Article  ADS  Google Scholar 

  132. Chhowalla, M., Ion energy and charge state distributions in zirconium nitride arc plasma, Appl. Phys. Lett.83, 1542–1544, (2004).

    Article  ADS  Google Scholar 

  133. Hopwood, J.A., (ed.) Ionized Physical Vapor Deposition, Academic Press, San Diego, CA, (2000).

    Google Scholar 

  134. Kimblin, C.W., Cathode spot erosion and ionization phenomena in the transition region from vacuum to atmospheric pressure arcs, J. Appl. Phys.45, 5235–5244, (1974).

    Article  ADS  Google Scholar 

  135. Spädtke, P., Emig, H., Wolf, B.H., and Oks, E., Influence of gas added to the MEVVA discharge on the extracted ion beam, Rev. Sci. Instrum.65, 3113–3118, (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Anders, A. (2008). The Interelectrode Plasma. In: Cathodic Arcs. Springer Series on Atomic, Optical, and Plasma Physics, vol 50. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79108-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-79108-1_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-79107-4

  • Online ISBN: 978-0-387-79108-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics