Advertisement

The Physics of Cathode Processes

  • André Anders
Chapter
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 50)

Abstract

This chapter is at the heart of the book. It is the longest chapter that deals with electron emission processes. The basic mechanisms of electron emission are outlined, including thermionic emission, field emission, their nonlinear combination, as well as explosive emission. This leads to the non-stationary emission centers, which are the sources of electrons and plasma. The statistical nature of emission center ignition, coupled with self-similar features of emission centers in space and time, lead naturally to a description of cathode spots as a fractal phenomenon. If taken seriously, the old discussion of the “true” current density and “true” characteristic time of cathode spots needs to be re-evaluated: those properties are fractal down to the physical cutoffs, which are generally still below the resolution limits of the experimental equipment. As a consequence, some new features of cathode phenomena are introduced, such as the existence of transient holes in the cathode sheath.

Keywords

Cathode Material Cathode Surface Emission Center Cathode Spot Sheath Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hantzsche, E., “Über die Katodenmechanismen in Gasentladungen,” Academy of Sciences, Berlin, Germany, 1978.Google Scholar
  2. 2.
    Hantzsche, E., “Theories of cathode spots,” in Handbook of Vacuum Arc Science and Technology, Boxman, R.L., Martin, P.J., and Sanders, D.M., (Eds.). pp. 151–208, Noyes, Park Ridge, New Jersey, (1995).Google Scholar
  3. 3.
    Anders, A., The fractal nature of cathode spots, IEEE Trans. Plasma Sci. 33, 1456–1464, (2005).ADSGoogle Scholar
  4. 4.
    Schulze, G.E.R., Metallphysik, 2nd ed. Akademie-Verlag, Berlin, Germany, (1974).Google Scholar
  5. 5.
    Lide, D.R., (Ed.) Handbook of Chemistry and Physics, 81st ed. CRC Press, Boca Raton, New York, (2000).Google Scholar
  6. 6.
    Skriver, H.L. and Rosengaard, N.M., Surface energy and work function of elemental metals, Phys. Rev. B 46, 7157, (1992).ADSGoogle Scholar
  7. 7.
    Richardson, O.W., On the negative radiation from hot platinum, Proc. Cambridge Phil. Soc. 11, 286–295, (1901).Google Scholar
  8. 8.
    Richardson, O.W., Emission of Electricity from Hot Bodies, 2 nd ed. Longmans, Green & Co., New York, (1921).Google Scholar
  9. 9.
    Dushman, S., Electron emission from metals as a function of temperature, Phys. Rev. 21, 623–636, (1923).ADSGoogle Scholar
  10. 10.
    Dushman, S., Thermionic emission, Rev. Mod. Phys. 2, 381–476, (1930).ADSGoogle Scholar
  11. 11.
    Fowler, R.H. and Nordheim, L., Electron emission in intense electric fields, Proc. Roy. Soc. (London) A119, 173–181, (1928).ADSGoogle Scholar
  12. 12.
    Good Jr., R.H. and Müller, E.W., “Field emission,” in Handbuch der Physik vol. 21. pp. 176–231, Springer, Berlin, (1956).Google Scholar
  13. 13.
    Dobrogowski, J., Moscicka-Grzesiak, H., Seidel, S., and Zalucki, Z., Foundations of Discharges and Electrical Insulation in Vacuum (in Polish). Panstwowe Wydawnictwo Naukowe, Warsaw and Poznan, Poland, (1983).Google Scholar
  14. 14.
    Miller, H.C., “Values of Fowler-Nordheim field emission functions v(y), t(y) and s(y),” General Electric Company, Technical Information Series, No.66-C-148 (1966).Google Scholar
  15. 15.
    Hantzsche, E., The thermo-field emission of electrons in arc discharges, Beitr. Plasmaphys. 22, 325–346, (1982).Google Scholar
  16. 16.
    Dolan, W.W. and Dyke, W.P., Temperature and field emission of electrons from metals, Phys. Rev. 35, 327, (1954).ADSGoogle Scholar
  17. 17.
    Murphy, E.L. and Good Jr., R.H., Thermionic emission, field emission, and the transition region, Phys. Rev. 102, 1446, (1956).ADSGoogle Scholar
  18. 18.
    Christov, S.G., General theory of electron emission from metals, Physica Status Solidi 17, 11, (1966).ADSGoogle Scholar
  19. 19.
    Coulombe, S. and Meunier, J.L., Thermo-field emission – a comparative study, J. Phys. D: Appl. Phys. 30, 776–780, (1997).ADSGoogle Scholar
  20. 20.
    Hudson, J.B., Surface Science. Wiley, New York, (1992).Google Scholar
  21. 21.
    Somorjai, G.A., Introduction to Surface Chemistry and Catalysis. John Wiley & Sons, New York, (1994).Google Scholar
  22. 22.
    Kaminsky, M., Atomic and Ionic Impact Phenomena on Metal Surfaces. Springer-Verlag, Berlin, (1965).Google Scholar
  23. 23.
    Knudsen, M., The Kinetic Theory of Gases. McGraw Hill, New York, (1927).Google Scholar
  24. 24.
    Lafferty, J.M., (Ed.) Foundations of Vacuum Science and Technology, John Wiley & Sons, New York, (1998).Google Scholar
  25. 25.
    Schottky, W., Zeitschrift für Physik 14, 80, (1923).Google Scholar
  26. 26.
    Farrall, G.A., “Vacuum Arc Ignition,” in Handbook of Vacuum Arc Science and Technology, Boxman, R.L., Sanders, D.M., and Martin, P.J., (Eds.). pp. 28–72, Noyes Publications, Park Ridge, New Jersey, (1995).Google Scholar
  27. 27.
    Little, R.P. and Whitney, W.T., J. Appl. Phys. 34, 2430–2432, (1963).ADSGoogle Scholar
  28. 28.
    Latham, R.V. and Wilson, D.A., The energy spectrum of electrons field emitted from carbon fibre micropoint cathodes, J. Phys. D: Appl. Phys. 16, 455–463, (1983).ADSGoogle Scholar
  29. 29.
    Cox, B.M., Variation of the critical breakdown field between copper electrodes in vacuo, J. Phys. D: Appl. Phys. 7, 143–170, (1974).ADSGoogle Scholar
  30. 30.
    Ecker, G. and Müller, K.G., Electron emission from the arc cathode under the influence of the individual field component, J. Appl. Phys. 30, 1466–1467, (1959).ADSGoogle Scholar
  31. 31.
    Jüttner, B. and Vasenin, Y.L., Cathode Processes of the Metal Vapor Arc. E.O. Paton Electric Welding Institute, Kiev, (2003).Google Scholar
  32. 32.
    Mueller, E.W., Z. f. Physik 106, 541, (1937).ADSGoogle Scholar
  33. 33.
    Dyke, W.P., Trolan, J.K., Martin, E.E., and Barbour, J.P., The field emission initiated vacuum arc. I. Experiments on arc initiation, Phys. Rev. 91, 1043–1054, (1953).ADSGoogle Scholar
  34. 34.
    Dyke, W.P. and Trolan, J.K., Field Emission: large current densities, space charge, and the vacuum arc, Phys. Rev. 89, 799–808, (1953).ADSGoogle Scholar
  35. 35.
    Mesyats, G.A. and Barengol'ts, S.A., Mechanism of anomalous ion generation in vacuum arcs, Physics-Uspekhi 45, 1001–1018, (2002).ADSGoogle Scholar
  36. 36.
    Beilis, I.I., “Theoretical modeling of cathode spot phenomena,” in Handbook of Vacuum Arc Science and Technology, Boxman, R.L., Martin, P.J., and Sanders, D.M., (Eds.). pp. 208–256, Noyes, Park Ridge, New Jersey, (1995).Google Scholar
  37. 37.
    Honig, R.E. and Kramer, D.A., Vapor pressure data for the solid and liquid elements, RCA Rev. 30, 285–305, (1969).Google Scholar
  38. 38.
    Nottingham, W.B., Remarks on the energy loss attending thermionic emission of electrons from metals, Phys. Rev. 59, 906–907, (1941).ADSGoogle Scholar
  39. 39.
    Swanson, L.W., Crouser, L.C., and Charbonnier, F.M., Energy exchanges attending field electron emission, Phys. Rev. 151, 327, (1966).ADSGoogle Scholar
  40. 40.
    Chandrasekhar, S., Radiative Transfer, 1960 Reprint of 1950 Edition. Dover, New York, (1960).Google Scholar
  41. 41.
    Mesyats, G.A., Explosive Electron Emission. URO Press, Ekaterinburg, (1998).Google Scholar
  42. 42.
    Mesyats, G.A., Cathode Phenomena in a Vacuum Discharge: The Breakdown, the Spark, and the Arc. Nauka, Moscow, Russia, (2000).Google Scholar
  43. 43.
    Bochkarev, M.B., “Ecton processes of low current vacuum arc imaged with streak technique,” XXIth Int. Symp. Discharges and Electrical Insulation in Vacuum, Yalta, Ukraine, 241–244, (2004).Google Scholar
  44. 44.
    Prock, J., Solidification of hot craters on the cathode of vacuum arcs, J. Phys. D: Appl. Phys. 19, 1917–1924, (1986).ADSGoogle Scholar
  45. 45.
    Anders, A., Anders, S., Förster, A., and Brown, I.G., Pressure ionization: its role in metal vapor vacuum arc plasmas and ion sources, Plasma Sources Sci. Technol. 1, 263–270, (1992).ADSGoogle Scholar
  46. 46.
    Mackeown, S.S., The cathode drop in an electric arc, Phys. Rev. 34, 611–614, (1929).ADSGoogle Scholar
  47. 47.
    Neumann, W., The Mechanism of the Thermoemitting Arc Cathode. Akademie-Verlag, Berlin, (1987).Google Scholar
  48. 48.
    Gabovich, M.D. and Poritskii, V.Y., Nonlinear waves at the surface of a liquid metal in an electric field, JETP Lett. 33, 304–307, (1981).ADSGoogle Scholar
  49. 49.
    Puchkarev, V.F. and Bochkarev, M.B., Cathode spot initiation under plasma, J. Phys. D: Appl. Phys. 27, 1214–1219, (1994).ADSGoogle Scholar
  50. 50.
    Uimanov, I.V., A two-dimensional nonstationary model of the initiation of an explosive center beneath the plasma of a vacuum arc cathode spot, IEEE Trans. Plasma Sci. 31, 822–826, (2003).ADSGoogle Scholar
  51. 51.
    Bugaev, S.P., Litvinov, E.A., Mesyats, G.A., and Proskurovskii, D.I., Explosive emission of electrons, Sov. Phys. Usp. 18, 51–61, (1975).ADSGoogle Scholar
  52. 52.
    Litvinov, E.A., Mesyats, G.A., and Proskurovskii, D.I., Field emission and explosive emission processes in vacuum discharges, Sov. Phys. Usp. 26, 138, (1983).ADSGoogle Scholar
  53. 53.
    Mesyats, G.A. and Proskurovsky, D.I., Pulsed Electrical Discharge in Vacuum. Springer-Verlag, Berlin, (1989).Google Scholar
  54. 54.
    Mesyats, G.A., Ecton mechanism of the vacuum arc cathode spot, IEEE Trans. Plasma Sci. 23, 879–883, (1995).ADSGoogle Scholar
  55. 55.
    Mesyats, G.A., Ecton or electron avalanche from metal, Sov. Phys. Usp. 38, 567–590, (1995).Google Scholar
  56. 56.
    Barengolts, S.A., Mesyats, G.A., and Shmelev, D.L., Structure and time behavior of vacuum arc cathode spots, IEEE Trans. Plasma Sci. 31, 809–816, (2003).ADSGoogle Scholar
  57. 57.
    Kesaev, I.G., Cathode Processes of an Electric Arc (in Russian). Nauka, Moscow, (1968).Google Scholar
  58. 58.
    Jüttner, B., Cathode spots of electrical arcs (Topical Review), J. Phys. D: Appl. Phys. 34, R103–R123, (2001).Google Scholar
  59. 59.
    Seydel, U., Schöfer, R., and Jäger, H., Temperatur und Druck explodierender Drähte beim Verdampfungsbeginn, Z. Naturforsch. 30a, 1166–1174, (1975).ADSGoogle Scholar
  60. 60.
    Klein, T., Paulini, J., and Simon, G., Time-resolved description of cathode spot development in vacuum arcs, J. Phys. D: Appl. Phys. 27, 1914–1921, (1994).ADSGoogle Scholar
  61. 61.
    Chace, W.G. and More, H.K., Exploding Wires. Plenum Press, New York, (1962).Google Scholar
  62. 62.
    Kotov, Y.A., Sedoi, V.S., and Chemezova, L.I., “The integral of action and the energy for electrically exploded wires,” Institute of High Current Electronics, Tomsk, Russia (1986).Google Scholar
  63. 63.
    Beilis, I.I., Mechanism for small electron current fraction in a vacuum arc cathode spot on a refractory cathode, Appl. Phys. Lett. 84, 1269–1271, (2004).ADSGoogle Scholar
  64. 64.
    Coulombe, S. and Meunier, J.-L., Arc-cold cathode interactions – parametric dependence on local pressure, Plasma Sources Sci. Technol. 6, 508–517, (1997).ADSGoogle Scholar
  65. 65.
    Jüttner, B., Erosion craters and arc cathode spots, Beitr. Plasmaphys. 19, 25–48, (1979).Google Scholar
  66. 66.
    Tonks, L., A theory of liquid surface rupture by a uniform electric field, Phys. Rev. 48, 562–568, (1930).ADSGoogle Scholar
  67. 67.
    Forbest, R.G., Understanding how the liquid-metal ion source works, Vacuum 48, 85–97, (1997).Google Scholar
  68. 68.
    Gamero-Castano, M. and de la Mora, J.F., Direct measurement of ion evaporation kinetics from electrified liquid surfaces, J. Chem. Phys. 113, 815–832, (2000).ADSGoogle Scholar
  69. 69.
    Rossetti, P., Paganucci, F., and Andrenucci, M., Numerical model of thermoelectric phenomena leading to cathode-spot ignition, IEEE Trans. Plasma Sci. 30, 1561–1567, (2002).ADSGoogle Scholar
  70. 70.
    Vogel, N. and Skvortsov, V.A., Plasma parameters within the cathode spot of laser-induced vacuum arcs: Experimental and theoretical investigations, IEEE Trans. Plasma Sci. 25, 553–563, (1997).ADSGoogle Scholar
  71. 71.
    Shmelev, D.L. and Litvinov, E.A., The computer simulation of the vacuum arc emission center, IEEE Trans. Plasma Sci. 25, 533–537, (1997).ADSGoogle Scholar
  72. 72.
    Shmelev, D.L. and Litvinov, E.A., Computer simulation of ecton in a vacuum arc, IEEE Trans. Dielec. Electr. Insul. 6, 441–444, (1999).Google Scholar
  73. 73.
    Abbaoui, M., Lefort, A., and Clain, S., “Influence of the material nature (Ag, Cu, Al, Fe, W, C) on the arc root characteristics at the cathode,” XXIth Int. Symp. Discharges and Electrical Insulation in Vacuum, Yalta, Ukraine, 233–236, (2004).Google Scholar
  74. 74.
    Vogel, N. and Höft, H., Cathode spot energy transfer simulated by a focused laser beam, IEEE Trans. Plasma Sci. 17, 638–640, (1989).ADSGoogle Scholar
  75. 75.
    Mandelbrot, B.B., The Fractal Geometry of Nature. W.H. Freeman and Company, New York, (1983).Google Scholar
  76. 76.
    Schroeder, M., Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise, 8th Ed. W.H. Freeman and Company, New York, (2000).Google Scholar
  77. 77.
    Hantzsche, E., Jüttner, B., and Pursch, H., On the random walk of arc cathode spots in vacuum, J. Phys. D: Appl. Phys. 16, L173–L179, (1983).ADSGoogle Scholar
  78. 78.
    Daalder, J.E., Random walk of cathode arc spots in vacuum, J. Phys. D: Appl. Phys. 16, 17–27, (1983).ADSGoogle Scholar
  79. 79.
    Smeets, R.P.P. and Schulpen, F.J.H., Fluctuations of charged particle and light emission in vacuum arcs, J. Phys. D: Appl. Phys. 21, 301–310, (1988).ADSGoogle Scholar
  80. 80.
    Anders, S. and Jüttner, B., Influence of residual gases on cathode spot behavior, IEEE Trans. Plasma Sci. 19, 705–712, (1991).ADSGoogle Scholar
  81. 81.
    Schülke, T. and Siemroth, P., Vacuum arcs cathode spots as a self-similarity phenomenon, IEEE Trans. Plasma Sci. 24, 63–64, (1996).ADSGoogle Scholar
  82. 82.
    Siemroth, P., Schülke, T., and Witke, T., Investigations of cathode spots and plasma formation of vacuum arcs by high speed microscopy and spectrography, IEEE Trans. Plasma Sci. 25, 571–579, (1997).ADSGoogle Scholar
  83. 83.
    Peitgen, H.-O. and Richter, P.H., The Beauty of Fractals. Springer, Berlin, (1986).MATHGoogle Scholar
  84. 84.
    Osborne, A.R. and Pastorello, A., Simultaneous occurrence of low-dimensional chaos and colored random noise in nonlinear physical systems, Phys. Lett. A 181, 159–171, (1993).ADSGoogle Scholar
  85. 85.
    Bak, P., Tang, C., and Wiesenfeld, K., Self-organized criticality: An explanation of 1/f noise, Phys. Rev. Lett. 59, 381–384, (1987).MathSciNetADSGoogle Scholar
  86. 86.
    Anders, A., Lichtenberg Figures on Dielectrics in Gases and in Vacuum, Beitr. Plasmaphys. 25, 315–328, (1985).Google Scholar
  87. 87.
    Meakin, P., Coniglio, A., Stanley, H.E., and Witten, T.A., Scaling properties for the surfaces of fractal and nonfractal objects: An infinite hierarchy of critical exponents, Phys. Rev. A 34, 3325, (1986).MathSciNetADSGoogle Scholar
  88. 88.
    Anders, S., Anders, A., and Jüttner, B., Brightness distribution and current density of vacuum arc cathode spots, J. Phys. D: Appl. Phys. 25, 1591–1599, (1992).ADSGoogle Scholar
  89. 89.
    Hantzsche, E., Jüttner, B., and Ziegenhagen, G., Why vacuum arc cathode spots can appear larger than they are, IEEE Trans. Plasma Sci. 23, 55–64, (1995).ADSGoogle Scholar
  90. 90.
    Jüttner, B., The dynamics of arc cathode spots in vacuum, J. Phys. D: Appl. Phys. 28, 516–522, (1995).ADSGoogle Scholar
  91. 91.
    Anders, A., Oks, E.M., Yushkov, G.Y., Savkin, K.P., Brown, I.G., and Nikolaev, A.G., Measurements of the total ion flux from vacuum arc cathode spots, IEEE Trans. Plasma Sci. 33, 1532–1536, (2005).ADSGoogle Scholar
  92. 92.
    Beilis, I., Djakov, B.E., Jüttner, B., and Pursch, H., Structure and dynamics of high-current arc cathode spots in vacuum, J. Phys. D: Appl. Phys. 30, 119–130, (1997).ADSGoogle Scholar
  93. 93.
    Anders, A., Oks, E.M., and Yushkov, G.Y., Cathodic arcs: Fractal voltage and cohesive energy rule, Appl. Phys. Lett. 86, 211503-1-3, (2005).ADSGoogle Scholar
  94. 94.
    Puchkarev, V.F. and Murzakayev, A.M., Current density and the cathode spot lifetime in a vacuum arc at threshold currents, J. Phys. D: Appl. Phys. 23, 26–35, (1990).ADSGoogle Scholar
  95. 95.
    Hantzsche, E., Arc spot ignition caused by sheath instability, IEEE Trans. Plasma Sci. 25, 527–532, (1997).ADSGoogle Scholar
  96. 96.
    Niemeyer, L., Pietronero, L., and Wiesmann, H.J., Fractal dimension of dielectric breakdown, Phys. Rev. Lett. 52, 1033–1036, (1984).MathSciNetADSGoogle Scholar
  97. 97.
    Batrakov, A., Popov, S., Vogel, N., Jüttner, B., and Proskurovsky, D.I., Plasma parameters of an arc cathode spot at the low-current vacuum discharge, IEEE Trans. Plasma Sci. 31, 817–826, (2003).ADSGoogle Scholar
  98. 98.
    Batrakov, A.V., Juettner, B.J., Popov, S.A., Proskurovsky, D.I., and Vogel, N.I., “Time resolved resonant laser diagnostics of the low-current vacuum arc cathode spot,” XXIth Int. Symp. Discharges and Electrical Insulation in Vacuum, Yalta, Ukraine, 205–208, (2004).Google Scholar
  99. 99.
    Tsuruta, K., Nakajima, M., Kitaura, M., and Yanagidaira, T., “Effect of magnetic field on sustainment of low-current DC vacuum arcs,” XXIth Int. Symp. Discharges and Electrical Insulation in Vacuum, Yalta, Ukraine, 261–264, (2004).Google Scholar
  100. 100.
    Schneider, D., Witke, T., Schwarz, T., Schöneich, B., and Schultrich, B., Testing ultra-thin films by laser-acoustics, Surf. Coat. Technol. 126, 136–141, (2000).Google Scholar
  101. 101.
    Laux, M. and Pursch, H., Sound emission from an arc cathode, IEEE Trans. Plasma Sci. 29, 722–725, (2001).ADSGoogle Scholar
  102. 102.
    Harris, L.P., Transverse forces and motions at cathode spots in vacuum, IEEE Trans. Plasma Sci. 11, 94–102, (1983).Google Scholar
  103. 103.
    Anders, A., Anders, S., Jüttner, B., Bötticher, W., Lück, H., and Schröder, G., Pulsed dye laser diagnostics of vacuum arc cathode spots, IEEE Trans. Plasma Sci. 20, 466–472, (1992).ADSGoogle Scholar
  104. 104.
    Anders, A., Anders, S., Jüttner, B., and Lück, H., High-resolution imaging of vacuum arc cathode spots, IEEE Trans. Plasma Sci. 24, 69–70, (1996).ADSGoogle Scholar
  105. 105.
    Vogel, N., The cathode spot plasma in low-current air and vacuum break arcs, J. Phys. D: Appl. Phys. 26, 1655–1661, (1993).ADSGoogle Scholar
  106. 106.
    Jüttner, B., The dynamics of arc cathode spots in vacuum. Part III: Measurements with improved resolution and UV radiation, J. Phys. D: Appl. Phys. 31, 1728–1736, (1998).ADSGoogle Scholar
  107. 107.
    Jüttner, B., The dynamics of arc cathode spots in vacuum: new measurements, J. Phys. D: Appl. Phys. 30, 221–229, (1997).ADSGoogle Scholar
  108. 108.
    Kleberg, I., “Dynamics of cathode spots in external magnetic field (in German),” Humboldt University, Berlin, Germany, 2001.Google Scholar
  109. 109.
    Jüttner, B., Nanosecond displacement times of arc cathode spots in vacuum, IEEE Trans. Plasma Sci. 27, 836–844, (1999).ADSGoogle Scholar
  110. 110.
    Jüttner, B. and Kleberg, I., The retrograde motion of arc cathode spots in vacuum, J. Phys. D: Appl. Phys. 33, 2025–2036, (2000).ADSGoogle Scholar
  111. 111.
    Dryvesteyn, M.J., Electron emission of the cathode of an arc, Nature 137, 580, (1936).ADSGoogle Scholar
  112. 112.
    Suits, C.G. and Hocker, J.P., Role of oxidation in arc cathodes, Phys. Rev. 53, 670, (1938).ADSGoogle Scholar
  113. 113.
    Cobine, J.D., Effects of oxides and impurities on metallic arc reignition, Phys. Rev. 53, 911, (1938).ADSGoogle Scholar
  114. 114.
    Lyubimov, G.A. and Rakhovsky, V.I., The cathode spot of a vacuum arc, Sov. Phys. Uspekhi 21, 693–718, (1978).ADSGoogle Scholar
  115. 115.
    Achtert, J., Altrichter, B., Jüttner, B., Pech, P., Pursch, H., Reiner, H.-D., Rohrbeck, W., Siemroth, P., and Wolff, H., Influence of surface contaminations on cathode processes of vacuum discharges, Beitr. Plasmaphys. 17, 419–431, (1977).Google Scholar
  116. 116.
    Jüttner, B., On the variety of cathode craters of vacuum arcs, and the influence of the cathode temperature, Physica 114C, 155–261, (1982).Google Scholar
  117. 117.
    Bushik, A.I., Jüttner, B., and Pursch, H., On the nature and the motion of arc cathode spots in UHV, Beitr. Plasmaphys. 19, 177–188, (1979).ADSGoogle Scholar
  118. 118.
    Jakubka, K. and Jüttner, B., The influence of surface conditions on the initiation, propagation and current density of unipolar arcs in fusion devices, J. Nucl. Mat. 102, 259–266, (1980).ADSGoogle Scholar
  119. 119.
    Szente, R.N., Munz, R.J., and Drouet, M.G., Effect of the arc velocity on the cathode erosion rate in argon-nitrogen mixtures, J. Phys. D: Appl. Phys. 20, 754–756, (1987).ADSGoogle Scholar
  120. 120.
    Szente, R.N., Munz, R.J., and Drouet, M.G., Arc velocity and cathode erosion rate in a magnetically driven arc burning in nitrogen, J. Phys. D: Appl. Phys. 21, 909–916, (1988).ADSGoogle Scholar
  121. 121.
    Szente, R.N., Munz, R.J., and Drouet, M.G., The influence of the cathode surface on the movement of magnetically driven electric arcs, J. Phys. D: Appl. Phys. 23, 1193–1200, (1990).ADSGoogle Scholar
  122. 122.
    Laux, M., Schneider, W., Wienhold, P., et al., Arcing at B4C-covered limiters exposed to a SOL-plasma, J. Nuclear Materials 313, 62–66, (2003).ADSGoogle Scholar
  123. 123.
    Beilis, I.I., Application of vacuum arc cathode spot model to graphite cathode, IEEE Trans. Plasma Sci. 27, 821–826, (1999).ADSGoogle Scholar
  124. 124.
    Kandah, M. and Meunier, J.-L., Vacuum arc cathode spot movement on various kinds of graphite cathodes, Plasma Sources Sci. Technol. 5, 349–355, (1996).ADSGoogle Scholar
  125. 125.
    Richter, F., Flemming, G., Kühn, M., Peter, S., and Wagner, H., Characterization of the arc evaporation of a hot boron cathode, Surf. Coat. Technol. 112, 43–47, (1999).Google Scholar
  126. 126.
    Buttolph, L.J., The Cooper Hewitt mercury vapor lamp, General Electric Review 23, 741–751, (1920).Google Scholar
  127. 127.
    Karpov, D.A. and Nazikov, S.N., Multicomponent electric-arc source of metallic plasma, Plasma Devices and Operations 1, 230–246, (1991).Google Scholar
  128. 128.
    Ding, C. and Yanabu, S., Effect of parallel circuit parameters on the instability of a low-current vacuum arc, IEEE Trans. Plasma Sci. 31, 877–883, (2003).ADSGoogle Scholar
  129. 129.
    Chandrasekhar, S., Stochastic problems in physics and astronomy, Rev. Mod. Phys. 15, 1–89, (1943).MATHMathSciNetADSGoogle Scholar
  130. 130.
    Erwin, S., Untersuchungen über die Bewegung des Brennflecks auf der Kathode eines Quecksilberdampf-Niederdruckbogens, Annalen der Physik (Leipzig) 439, 246–270, (1949).Google Scholar
  131. 131.
    Jüttner, B., Puchkarev, V.F., Hantzsche, E., and Beilis, I., “Cathode Spots,” in Handbook of Vacuum Arc Science and Technology, Boxman, R.L., Sanders, D.M., and Martin, P.J., (Eds.). pp. 73–281, Noyes, Park Ridge, New Jersey, (1995).Google Scholar
  132. 132.
    Jüttner, B., Pursch, H., and Shilov, V.A., The influence of surface roughness and surface temperature on arc spot movement in vacuum, J. Phys. D: Appl. Phys. 17, L31–L34, (1984).Google Scholar
  133. 133.
    Daalder, J.E., Random walk of cathode spots: a random walk of definitions?, J. Phys. D: Appl. Phys. 16, L177–L179, (1983).ADSGoogle Scholar
  134. 134.
    Coulombe, S., Probabilistic modelling of the high-pressure arc cathode spot displacement dynamic, J. Phys. D: Appl. Phys. 36, 686–693, (2003).ADSGoogle Scholar
  135. 135.
    Anders, A. and Anders, S., Emission spectroscopy of low-current vacuum arcs, J. Phys. D: Appl. Phys. 24, 1986–1992, (1991).ADSGoogle Scholar
  136. 136.
    Kraft, V.V. and Stuchenkov, V.M., Effect of nonmetallic inclusions in cathodes on vacuum breakdown, Sov. Phys.-Tech. Phys. 17, 66–70, (1972).ADSGoogle Scholar
  137. 137.
    Lawler, G.F., Intersections of Random Walks. Birkhäuser, Boston, MA, (1991).MATHGoogle Scholar
  138. 138.
    Lawler, G.F., Introduction to Stochastic Processes. Chapman & Hall/CRC, New York, (1995).MATHGoogle Scholar
  139. 139.
    Takeda, K. and Sugimoto, M., Effects of active elements on oxide removal by a vacuum arc, IEEE Trans. Plasma Sci. 31, 983–986, (2003).ADSGoogle Scholar
  140. 140.
    Jüttner, B., “Personal communication,” (2004).Google Scholar
  141. 141.
    Stark, J., Induktionserscheinungen am Quecksilberlichtbogen im Magnetfeld, Zeitschrift für Physik 4, 440–443, (1903).Google Scholar
  142. 142.
    Weintraub, E., Investigation of the arc in metallic vapours in an exhausted space, Phil. Mag. 7 (of Series 6), 95–124, (1904).Google Scholar
  143. 143.
    Minorsky, M.N., La rotation de l'arc électrique dans un champ magnétique radial, Le Journal de Physique et Le Radium 9, 127–136, (1928).Google Scholar
  144. 144.
    Longini, R.L., Motion of low pressure arc cathode spots in magnetic fields, Phys. Rev. 71, 184, (1947).Google Scholar
  145. 145.
    Longini, R.L., A note concerning the motion of arc cathode spots in magnetic fields, Phys. Rev. 71, 642–643, (1947).ADSGoogle Scholar
  146. 146.
    Gallagher, C.J. and Cobine, J.D., Retrograde motion of an arc cathode spot in a magnetic field, Phys. Rev. 71, 481, (1947).Google Scholar
  147. 147.
    Smith, C.G., Arc motion reversal in transverse magnetic field by heating cathode, Phys. Rev. 73, 543, (1948).ADSGoogle Scholar
  148. 148.
    Gallagher, C.J., The retrograde motion of the arc cathode spot, J. Appl. Phys. 21, 768–771, (1950).ADSGoogle Scholar
  149. 149.
    Yamamura, S., Immobility phenomena and reverse driving phenomena of the electric arc, J. Appl. Phys. 21, 193–196, (1950).ADSGoogle Scholar
  150. 150.
    Rothstein, J., Holes and retrograde arc spot motion in a magnetic field, Phys. Rev. 78, 331, (1950).Google Scholar
  151. 151.
    Smith, C.G., Retrograde arc motion of supersonic speed, Phys. Rev. 84, 1075, (1951).Google Scholar
  152. 152.
    Miller, C.G., Motion of the arc cathode spot in a magnetic field, Phys. Rev. 93, 654, (1954).ADSGoogle Scholar
  153. 153.
    Robson, A.E. and von Engel, A., Origin of retrograde motion of arc cathode spots, Phys. Rev. 93, 1121–1122, (1954).ADSGoogle Scholar
  154. 154.
    John, R.M.S. and Winans, J.G., The motion of arc cathode spot in a magnetic field, Phys. Rev. 94, 1097–1102, (1954).ADSGoogle Scholar
  155. 155.
    John, R.M.S. and Winans, J.G., Motion and spectrum of the arc cathode spot in a magnetic field, Phys. Rev. 98, 1664–1671, (1955).ADSGoogle Scholar
  156. 156.
    Hernqvist, K.G. and Johnson, E.O., Retrograde motion in gas discharge plasmas, Phys. Rev. 89, 1576–1583, (1955).ADSGoogle Scholar
  157. 157.
    Robson, A.E. and von Engel, A., Motion of a short arc in a magnetic field, Phys. Rev. 104, 15–16, (1956).ADSGoogle Scholar
  158. 158.
    Smith, C.G., Motion of an arc in a magnetic field, J. Appl. Phys. 28, 1328–1331, (1957).ADSGoogle Scholar
  159. 159.
    Ecker, G. and Müller, K.G., Theory of the retrograde motion, J. Appl. Phys. 29, 1606–1608, (1958).ADSGoogle Scholar
  160. 160.
    Guile, A.E. and Secker, P.E., Arc cathode movement in a magnetic field, J. Appl. Phys. 29, 1662–1667, (1958).ADSGoogle Scholar
  161. 161.
    Zei, D. and Winans, J.G., Motion of high speed arc spots in magnetic fields, J. Appl. Phys. 30, 1814–1819, (1959).ADSGoogle Scholar
  162. 162.
    Lewis, T.J. and Secker, P.E., Influence of the cathode surface on arc velocity, J. Appl. Phys. 32, 54–64, (1961).ADSGoogle Scholar
  163. 163.
    Hermoch, V. and Teichmann, J., Cathode jets and the retrograde motion of arcs in magnetic field, Zeitschrift für Physik 195, 125–145, (1966).ADSGoogle Scholar
  164. 164.
    Carter, R.P. and Murphree, D.L., Arc motion reversal in crossed electric and magnetic fields in an argon atmosphere from 200 to 900 Torr, J. Appl. Phys. 44, 5190–5191, (1973).ADSGoogle Scholar
  165. 165.
    Hermoch, V., On the retrograde motion of arcs in magnetic field by heating cathode, IEEE Trans. Plasma Sci. PS-1, 62–64, (1973).ADSGoogle Scholar
  166. 166.
    Auweter-Ming, M. and Schrade, H.O., Explanation of the arc spot motion in the presence of magnetic fields, J. Nucl. Mat. 93–94, 799–805, (1980).Google Scholar
  167. 167.
    Sethumraman, S.K. and Barrault, M.R., Study of the motion of vacuum arcs in high magnetic fields, J. Nucl. Mat. 93–94, 791–798, (1980).Google Scholar
  168. 168.
    Fang, D.Y., Cathode spot velocity of vacuum arcs, J. Phys. D: Appl. Phys. 15, 833–844, (1982).ADSGoogle Scholar
  169. 169.
    Fang, D.Y., Temperature dependence of retrograde velocity of vacuum arcs in magnetic fields, IEEE Trans. Plasma Sci. 11, 110–114, (1983).ADSGoogle Scholar
  170. 170.
    Agrawal, M.S. and Holmes, R., Cathode spot motion in high-current vacuum arcs under self-generated azimuthal and applied axial magnetic fields, J. Phys. D: Appl. Phys. 17, 743–756, (1984).ADSGoogle Scholar
  171. 171.
    Drouet, M.G., The physics of the retrograde motion of the electric arc, IEEE Trans. Plasma Sci. PS-13, 235–241, (1985).ADSGoogle Scholar
  172. 172.
    Sanochkin, Y.V., Velocity of retrograde motion and thermocapillary convection during local heating of a liquid surface, Sov. Phys.-Tech. Phys. 30, 1052–1056, (1985).ADSGoogle Scholar
  173. 173.
    Schrade, H.O., Arc cathode spots: their mechanism and motion, IEEE Trans. Plasma Sci. 17, 635–637, (1989).ADSGoogle Scholar
  174. 174.
    Moizhes, B.Y. and Nemchinskii, V.A., On the theory of the retrograde motion of a vacuum arc, J. Phys. D: Appl. Phys. 24, 2014–2019, (1991).ADSGoogle Scholar
  175. 175.
    Barengol'ts, S.A., Litvinov, E.A., Sadowskaya, E.Y., and Shmelev, D.L., Motion of cathode spot of vacuum arc in an external magnetic field, Zh. Tekh. Fiz. 68, 60–64, (1998).Google Scholar
  176. 176.
    Beilis, I.I., Vacuum arc cathode spot grouping and motion in magnetic fields, IEEE Trans. Plasma Sci. 30, 2124–2132, (2002).ADSGoogle Scholar
  177. 177.
    Zabello, K.K., Barinov, Y.A., Logatchev, A.A., and Shkol'nik, S.M., “Cathode spot motion and burning voltage of low-current vacuum arc with electrodes of copper-chromium composition in magnetic field,” Proc. of XXIth Int. Symp. Discharges and Electrical Insulation in Vacuum, Yalta, Ukraine, 280–281, (2004).Google Scholar
  178. 178.
    Zabello, K.K., Barinov, Y.A., Chaly, A.M., Logatchev, A.A., and Shkol'nik, S.M., Experimental study of cathode spot motion and burning voltage of low-current vacuum arc in magnetic field, IEEE Trans. Plasma Sci. 33, 1553–1559, (2005).ADSGoogle Scholar
  179. 179.
    Ehiasarian, A.P., Hovsepian, P.E., New, R., and Valter, J., Influence of steering magnetic field on the time-resolved plasma chemistry in cathodic arc discharges, J. Phys. D: Appl. Phys. 37, 2101–2106, (2004).ADSGoogle Scholar
  180. 180.
    Care, C.M., Stochastic model for the random motion of a vacuum arc in the presence of driving and confining fields, J. Phys. D: Appl. Phys 25, 1841–1843, (1992).ADSGoogle Scholar
  181. 181.
    Arapov, S.S. and Volkov, N.B., The formation and structure of current cells in a vacuum arc cathode spot, Tech. Phys. Lett. 29, 1–4, (2003).ADSGoogle Scholar
  182. 182.
    Alexandrov, A.F., Bogdankevich, L.S., and Rukhadze, A.A., Principles of Plasma Electrodynamics. Springer-Verlag, Berlin, (1984).Google Scholar
  183. 183.
    Laux, M., Schneider, W., Jüttner, B., Balden, M., Lindig, S., Beilis, I., and Djakov, B., “Ignition and burning of vacuum arcs on tungsten layers,” XXIth Int. Symp. Discharges and Electrical Insulation in Vacuum, Yalta, Ukraine, 253–256, (2004).Google Scholar
  184. 184.
    Elenbaas, W., High Pressure Mercury Discharge Lamps. Philips Gloeilampenfabrieken, Eindhoven, The Netherlands, (1965).Google Scholar
  185. 185.
    Waymouth, J.F., Electric Discharge Lamps. MIT Press, New York, (1971).Google Scholar
  186. 186.
    Sampath, S. and Herman, H., Rapid solidification and microstructure development during plasma spray deposition, Journal of Thermal Spray Technology 5, 445–456, (1996).ADSGoogle Scholar
  187. 187.
    Mattox, D.M., Fundamentals of ion plating, J. Vac. Sci. Technol. 10, 47–52, (1973).ADSGoogle Scholar
  188. 188.
    Dearnley, P.A., “Ion Plating,” Conf. on Ion Plating and Implantation, Atlanta, 31–38, (1985).Google Scholar
  189. 189.
    Benilov, M.S., Nonlinear heat structures and arc-discharge electrode spots, Phys. Rev. A 48, 506–515, (1993).ADSGoogle Scholar
  190. 190.
    Vasin, A.I., Dorodnov, A.M., and Petrosov, V.A., Vacuum arc with a distributed discharge on an expendable cathode, Sov. Tech. Phys. Lett. 5, 634–636, (1979).Google Scholar
  191. 191.
    Dorodnov, A.M., Kuznetsov, A.N., and Petrosov, V.A., New anode-vapor vacuum arc with permanent hollow cathode, Pis’ma Zh. Tekhn. Fiz. 5, 1101–1106, (1979).Google Scholar
  192. 192.
    Dorodnov, A.M., Zelenkov, V.V., and Kuznetsov, A.N., A stationary vacuum arc with two evaporable electrodes, Teplofizika Vysokikh Temperatur 35, 983–984, (1997).Google Scholar
  193. 193.
    Ehrich, H., The anodic vacuum arc. I. Basic construction and phenomenology, J. Vac. Sci. Technol. A 6, 134–138, (1988).ADSGoogle Scholar
  194. 194.
    Ehrich, H., Hasse, B., Mausbach, M., and Müller, K.G., Plasma deposition of thin films utilizing the anodic vacuum arc, IEEE Trans. Plasma Sci. 18, 895–903, (1990).ADSGoogle Scholar
  195. 195.
    Ehrich, H., Hasse, B., Mausbach, M., and Müller, K.G., The anodic vacuum arc and its application to coatings, J. Vac. Sci. Technol. A 8, 2160–2164, (1990).ADSGoogle Scholar
  196. 196.
    Meassick, S., Chan, C., and Allen, R., Thin film deposition techniques utilizing the anodic vacuum arc, Surf. Coat. Technol. 54, 343–348, (1992).Google Scholar
  197. 197.
    Musa, G., Ehrich, H., and Schuhmann, J., Pure metal vapor plasma source with controlled energy of ions, IEEE Trans. Plasma Sci. 25, 386–391, (1997).ADSGoogle Scholar
  198. 198.
    Beilis, I.I., Boxman, R.L., Goldsmith, S., and Paperny, V.L., Radially expanding plasma parameters in a hot refractory anode vacuum arc, J. Appl. Phys. 88, 6224–6231, (2000).ADSGoogle Scholar
  199. 199.
    Miller, H.C., A review of anode phenomena in vacuum arcs, IEEE Trans. Plasma Sci. 13, 242–252, (1985).ADSGoogle Scholar
  200. 200.
    Miller, H.C., “Anode Phenomena,” in Handbook of Vacuum Arc Science and Technology, Boxman, R.L., Martin, P.J., and Sanders, D.N., (Eds.). pp. 308–364, Noyes Publications, Park Ridge, New Jersey, (1995).Google Scholar
  201. 201.
    Anders, A., Energetics of vacuum arc cathode spots, Appl. Phys. Lett. 78, 2837–2839, (2001).ADSGoogle Scholar
  202. 202.
    Anders, A., Yotsombat, B., and Binder, R., Correlation between cathode properties, burning voltage, and plasma parameters of vacuum arcs, J. Appl. Phys. 89, 7764–7771, (2001).ADSGoogle Scholar
  203. 203.
    Kesaev, I.G., Laws governing the cathode drop and the threshold currents in an arc discharge on pure metals, Sov. Phys.-Techn. Phys. 9, 1146–1154, (1965).Google Scholar
  204. 204.
    Grakov, V.E., Cathode fall of an arc discharge in a pure metal, Sov. Phys.-Techn. Phys. 12, 286–292, (1967).Google Scholar
  205. 205.
    Nemirovskii, A.Z. and Puchkarev, V.F., Arc voltage as a function of cathode thermophysical properties, J. Phys. D: Appl. Phys. 25, 798–802, (1992).ADSGoogle Scholar
  206. 206.
    Brown, I.G., Feinberg, B., and Galvin, J.E., Multiply stripped ion generation in the metal vapor vacuum arc, J. Appl. Phys. 63, 4889–4898, (1988).ADSGoogle Scholar
  207. 207.
    Brown, I.G. and Godechot, X., Vacuum arc ion charge-state distributions, IEEE Trans. Plasma Sci. 19, 713–717, (1991).ADSGoogle Scholar
  208. 208.
    Krinberg, I.A. and Lukovnikova, M.P., Application of a vacuum arc model to the determination of cathodic microjet parameters, J. Phys. D: Appl. Phys. 29, 2901–2906, (1996).ADSGoogle Scholar
  209. 209.
    Brown, I.G., Vacuum arc ion sources, Rev. Sci. Instrum. 65, 3061–3081, (1994).ADSGoogle Scholar
  210. 210.
    Krinberg, I.A. and Lukovnikova, M.P., Estimating cathodic plasma jet parameters from vacuum arc charge state distribution, J. Phys. D: Appl. Phys. 28, 711–715, (1995).ADSGoogle Scholar
  211. 211.
    Anders, A., Ion charge state distributions of vacuum arc plasmas: The origin of species, Phys. Rev. E 55, 969–981, (1997).ADSGoogle Scholar
  212. 212.
    Anders, A. and Yushkov, G.Y., Ion flux from vacuum arc cathode spots in the absence and presence of magnetic fields, J. Appl. Phys. 91, 4824–4832, (2002).ADSGoogle Scholar
  213. 213.
    Kittel, C., Introduction to Solid State Physics. John Wiley & Sons, New York, (1986).Google Scholar
  214. 214.
    Anders, A., “Cohesive energy rule for vacuum arcs,” in Emerging Applications of Vacuum-Arc-Produced Plasma, Ion and Electron Beams, NATO Science Series II. Mathematics, Physics and Chemistry vol. 88, Brown, I. and Oks, E., (Eds.). pp. 1–14, Kluwer Academic Publishers, Dordrecht, (2002).Google Scholar
  215. 215.
    Rosén, J. and Anders, A., Material and time dependence of the voltage noise generated by cathodic vacuum arcs, J. Phys. D: Appl. Phys. 38, 4184–4190, (2005).ADSGoogle Scholar
  216. 216.
    Kimblin, C.W., Erosion and ionization in the cathode spot region of a vacuum arc, J. Appl. Phys. 44, 3074–3081, (1973).ADSGoogle Scholar
  217. 217.
    Daalder, J.E., Components of cathode erosion in vacuum arcs, J. Phys. D: Appl. Phys. 9, 2379–2395, (1976).ADSGoogle Scholar
  218. 218.
    Daalder, J.E., Erosion and the origin of charged and neutral species in vacuum arcs, J. Phys. D: Appl. Phys. 8, 1647–1659, (1975).ADSGoogle Scholar
  219. 219.
    Anders, S., Anders, A., Yu, K.M., Yao, X.Y., and Brown, I.G., On the macroparticle flux from vacuum arc cathode spots, IEEE Trans. Plasma Sci. 21, 440–446, (1993).ADSGoogle Scholar
  220. 220.
    Beilis, I.I., Transient cathode spot operation at a microprotrusion in a vacuum arc, IEEE Trans. Plasma Sci. 35, 966–972, (2007).ADSGoogle Scholar
  221. 221.
    Fortov, V.E. and Yakubov, I.T., Physics of Nonideal Plasma. Hemisphere, New York, (1990).Google Scholar
  222. 222.
    Ebeling, W., Förster, A., and Radtke, R., Physics of Nonideal Plasmas, Teubner Texte zur Physik vol. 26. Teubner Verlagsgesellschaft, Stuttgart and Leipzig, (1992).Google Scholar
  223. 223.
    Günther, K. and Radtke, R., Electric Properties of Weakly Nonideal Plasmas. Akademie-Verlag, Berlin, (1984).Google Scholar
  224. 224.
    Spitzer Jr., L., Physics of Fully Ionized Gases, preprint of the 2 nd revised edition, originally published by Wiley, 1962 ed. Dover, New York, (1990).Google Scholar
  225. 225.
    Lyubimov, G.A., Dynamics of cathode vapor jets, Sov. Phys.-Techn. Phys. 23, 173–177, (1978).Google Scholar
  226. 226.
    Wieckert, C., A multicomponent theory of the cathodic plasma jet in vacuum arcs, Contrib. Plasma Phys. 27, 309–330, (1987).Google Scholar
  227. 227.
    Wieckert, C., The expansion of the cathode spot plasma in vacuum arc discharges, Phys. Fluids 30, 1810–1813, (1987).ADSGoogle Scholar
  228. 228.
    Hantzsche, E., A revised theoretical model of vacuum arc spot plasmas, IEEE Trans. Plasma Sci. 21, 419–425, (1993).ADSGoogle Scholar
  229. 229.
    Hantzsche, E., Two-dimensional models of expanding vacuum arc plasmas, IEEE Trans. Plasma Sci. 23, 893–898, (1995).ADSGoogle Scholar
  230. 230.
    Beilis, I.I., Zektser, M.P., and Lyubimov, G.A., Sov. Phys. Techn. Phys. 33, 1132–1137, (1988).Google Scholar
  231. 231.
    Beilis, I.I. and Zektser, M.P., High Temp. 29, 501–504, (1991).Google Scholar
  232. 232.
    Beilis, I.I., Current continuity and instability of the mercury vacuum arc cathode spot, IEEE Trans. Plasma Sci. 24, 1259–1271, (1996).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • André Anders
    • 1
  1. 1.BerkeleyUSA

Personalised recommendations