A Brief History of Cathodic Arc Coating

  • André Anders
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 50)


This chapter is unusually detailed and describes arc-related research over two and half centuries. Not only do the over 200 references of this chapter cover the well-known milestones of arc physics but we connect the dots to many contributions of researchers that are forgotten. It is clearly shown that many advances have been made several times and they have only become part of permanent knowledge and technology when the community was ready to accept those new ideas. The chapter is subdivided into chronological sections covering each century, starting with Priestley’s experiments on the initially unintentional arc coatings on glass in the 1760s. Since arc discharges require a reasonably high current to exist, the role of the supply of electrical energy plays an important factor for the initial research, and the quality of available vacuum is another important consideration. The development is followed all the way to modern high-resolution plasma diagnostics and the formation of coatings containing nanostructures and nanolaminates.


Electromagnetic Induction Cathode Spot Cathode Fall Animal Electricity Voltaic Pile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Priestley, J., “Experiments on the circular spots made on pieces of metal by large electrical explosions,” in The History and Present State of Electricity with Original Experiments, Third Edition, Vol. II. pp. 260–276, London, (1775).Google Scholar
  2. 2.
    Priestley, J., The History and Present State of Electricity, 3rd ed, London, (1775).Google Scholar
  3. 3.
    Hoppe, E., Geschichte der Elektrizität. J. A. Barth, Leipzig, (1884).Google Scholar
  4. 4.
    Hoppe, E., “Geschichte der Physik – Dritte Periode von Galvani bis 1820 – 12. Galvanismus,” in Handbuch der Physik I - Geschichte der Physik, Geiger, H. and Scheel, K., (Eds.). pp. 70–80, (1926).Google Scholar
  5. 5.
    Dibner, B., Galvani - Volta. A Controversy that led to the Discovery of Useful Electricity. Burndy Library, Norwalk, Connecticut, (1952).Google Scholar
  6. 6.
    Meyer, H.W., A History of Electricity and Magnetism. Burndy Library, Norwalk, Connecticut, (1971).Google Scholar
  7. 7.
    Bowers, B., A History of Electric Light and Power. Peter Peregrinus Ltd., London, (1991).Google Scholar
  8. 8.
    Dahl, P., Flash of the Cathode Ray. A History of J J Thomson's Electron. Institute of Physics Publishing, Bristol, (1997).Google Scholar
  9. 9.
    Heilbron, J.L., Electricity in the 17th and 18th Centuries. Dover Publications, Mineola, New York, (1999).Google Scholar
  10. 10.
    Mott-Smith, H.M., Nature 233, 219, (1971).ADSGoogle Scholar
  11. 11.
    Anders, A., Tracking down the origin of arc plasma physics. I Early pulsed and oscillating discharges, IEEE Trans. Plasma Sci. 31, 1052–1059, (2003).ADSGoogle Scholar
  12. 12.
    Anders, A., Tracking down the origin of arc plasma physics. II Early continuous discharges, IEEE Trans. Plasma Sci. 31, 1060–1069, (2003).ADSGoogle Scholar
  13. 13.
    Gordon, A., Versuch einer Erklärung der Electricität (2 vol.), Erfurt, Germany, (1745, 1746).Google Scholar
  14. 14.
    van Musschenbroek, P., “Letter to Réaumur, dated Jan. 20, 1746, in: Académie des Sciences, Paris, Procès verbaux LXV, 1746; see also p. 313 in J.L. Heilbron, Electricity in the 17th and 18th Century, Dover Publications, Mineola, NY, 1999.Google Scholar
  15. 15.
    Perez, A., Melinon, P., Paillard, V., et al., “Nanocrystalline structures prepared by neutral cluster beam deposition,” Second International Conference on Nanostructured Materials, Stuttgart, Germany, 43–52, (1994).Google Scholar
  16. 16.
    Kuhfeld, E., “The Bakken, Library and Museum of Electricity in Life, Minneapolis, MN, personal communication,” 2002.Google Scholar
  17. 17.
    Gorokhovsky, V., Heckerman, B., Watson, P., and Bekesch, N., The effect of multilayer filtered arc coatings on mechanical properties, corrosion resistance and performance of periodontal dental instruments, Surf. Coat. Technol. 200, 5614–5630, (2006).Google Scholar
  18. 18.
    Priestley, J., Experiments and observations on different kinds of air (in three volumes). J. Johnson, London, (1775).Google Scholar
  19. 19.
    Schofield, R.E., The Enlightment of Joseph Priestley. A Study of His Life and Work from 1733 to 1773. The Pennsylvania State University, University Park, PA, (1997).Google Scholar
  20. 20.
    Priestley, J., Autobiography of Joseph Priestley (with an Introduction by Jack Lindsay, and Memoirs written by Himself). Adams & Dart, Bath, UK, (1970).Google Scholar
  21. 21.
    Schofield, R.E., “Introduction,” in The History and Present State of Electricity by J. Priestley, Reprint of the 3rd edition of 1775, vol. I. pp.ix–xlix, Johnson Reprint Corporation, New York, (1966).Google Scholar
  22. 22.
    Priestley, J., Histoire de l'Electricite. Traduite de 'Anglois avec de Notes critiques, 3rd ed. Herissant, Paris, (1771).Google Scholar
  23. 23.
    Priestley, J., Geschichte und gegenwärtiger Zustand der Elektricität, nebst eigenthümlichen Versuchen. Nach der zweyten und verbesserten Ausgabe aus dem Englischen übersetzt und mit Anmerkungen begleitet von D. Johann Georg Krünitz. Gottlib August Lange, Berlin und Stralsund, (1772).Google Scholar
  24. 24.
    Priestley, J., “Experiments on the effect on the electrical explosion discharged through a brass chain, and other metallic substances,” in The History and Present State of Electricity with Original Experiments, Third Edition, Vol. II. pp. 277–307, London, (1775).Google Scholar
  25. 25.
    Priestley, J., “Experiments in which rings, consisting of all the prismatic colours, where made by electrical explosions on the surface of metals,” in The History and Present State of Electricity, vol. II. pp. 329–335, London, (1775).Google Scholar
  26. 26.
    Galvani, L., De viribus electricitatis in motu musculari, Commentarii Bononiesi VII, 363, (1791).Google Scholar
  27. 27.
    Henly, W., An account of a new electrometer, contrived by Mr. Henly, and of several electrical experiments made by him, Phil. Trans. Roy. Soc. (London) 62, 359–364, (1772).Google Scholar
  28. 28.
    Lane, T., Description of an electrometer invented by Mr. Lane; with an account of some experiments made by him with it: Letter to Benjamin Franklin, LLD FRS, of October 15, 1766., Phil. Trans. 57, 451–460, (1767).Google Scholar
  29. 29.
    Kragh, H., “Confusion and Controversy: Nineteenth-Century Theories of the Voltaic Pile,” in Nuova Voltania: Studies on Volta and his Times, vol. 1, Bevilacqua, F. and Fregonese, L., (Eds.). pp. 133–157, Editore Ulrico Hoepli, Milano, Italy, (2000).Google Scholar
  30. 30.
    Volta, A., On the electricity excited by the mere contact of conducting substances of different kinds, Phil. Trans. II, 403–431, (1800).Google Scholar
  31. 31.
    Volta, A., On the electricity excited by the mere contact of conducting substances of different kinds, Phil. Mag. VIII, 289–311, (1800).Google Scholar
  32. 32.
    de Andrade Martins, R., “Romagnosi and Volta's pile: Early difficulties in the interpretation of Voltaic electricity,” in Nuova Voltania: Studies on Volta and his Times, vol. 3, Bevilacqua, F. and Fregonese, L., (Eds.). pp. 81–102, Editore Ulrico Hoepli, Milano, Italy, (2000).Google Scholar
  33. 33.
    Nicholson, W., Account of the new electrical or galvanic apparatus of Sig. Alex. Volta, and experiments performed with the same, J. Nat. Philos. Chem. Arts. 4, 179, (1800).Google Scholar
  34. 34.
    Nicholson, W., Carlisle, A., and Cruickshank, W., Experiments on galvanic electricity, Phil. Mag. 7, 337–350, (1800).Google Scholar
  35. 35.
    Ritter, J.W., Neue Versuche und Bemerkungen über den Galvanismus, Annalen der Physik 19, 1–44, (1805).Google Scholar
  36. 36.
    Ohm, G.S., Die galvanische Kette, mathematisch bearbeitet. T.H. Riemann, Berlin, (1827).Google Scholar
  37. 37.
    Davy, H., Additional experiments on Galvanic electricity, in a letter to Mr. Nicholson, dated September 22, 1800, (Nicholson's) J. Nat. Philos. Chem. Arts IV, also in The Collected Works of Sir Humphry Davy, edited by his brother John Davy, vol. II, Early Miscellaneous Papers, London: Smith, Elder, and Cornhill, 1839, pp. 155–163, (1800).Google Scholar
  38. 38.
    Priestley, J., “Letter from Dr. Priestley [to Humphry Davy], dated October 31, 1801,” in Fragmentary Remains, Literary and Scientific, of Sir Humphry Davy, Davy, H., (Ed.). pp. 51–53, John Churchill, London, (1858).Google Scholar
  39. 39.
    Davy, H., “An account of some experiments on galvanic electricity made in the theatre of the Royal Institution (From Journals of the Royal Institution, vol. i, 1802),” in The Collected Works of Sir Humphry Davy. Vol. II: Early Miscellaneous Papers, Davy, J., (Ed.). pp. 211–213, Smith, Elder, and Co. Cornhill, London, (1839).Google Scholar
  40. 40.
    Petrov, V.V., Announcements on Galvano-Voltaic experiments, conducted by the Professor of Physics Vasilii Petrov, based on an enormous battery, consisting of 4200 copper and zinc disks, located at St. Petersburg's Medical and Surgical Academy (in Russian). St. Petersburg's Medical and Surgical Academy, St. Petersburg, Russia, (1803).Google Scholar
  41. 41.
    Kartsev, V., Learning and discovering in a library (in Russian). posted at, (2001).
  42. 42.
    Davy, H., On some chemical agencies of electricity (Bakerian Lecture of 1807), Phil. Trans. Roy. Soc. (London) 97, 1–56, (1807).Google Scholar
  43. 43.
    Davy, H., “Bakerian Lecture read before the Royal Society, Nov. 19, 1807: On some new phenomena of chemical changes produced by electricity, particularly the decomposition of the fixed alkalies, and the exhibition of the new substances which constitute their bases; and on the general nature of alkaline bodies,” in The Collected Works of Sir Humphry Davy. Vol. V: Bakerian Lectures and Miscellaneous Papers from 1806 to 1815., Davy, J., (Ed.). pp. 57–101, Smith, Elder, and Co. Cornhill, London, (1840).Google Scholar
  44. 44.
    Alglave, E. and Boulard, J., The Electric Light: Its History, Production, and Application. D. Appleton and Company, New York, (1884).Google Scholar
  45. 45.
    Knight, D., Humphry Davy, Science and Power. Cambridge University Press, Cambridge, UK, (1992).Google Scholar
  46. 46.
    Bowers, B., Lengthening the Day. A History of Lighting Technology. Oxford University Press, Oxford, (1998).Google Scholar
  47. 47.
    James, F.A.J.L., “Guides to the Royal Institution of Great Britain: 1. History,” Royal Institution of Great Britain, London, (2000).
  48. 48.
    Thomas, J.M., Michael Faraday and the Royal Institution. The Genius of Man and Place. Institute of Physics Publishing, Bristol and Philadelphia, (1991).Google Scholar
  49. 49.
    Armagnat, H., The Theory, Design and Construction of Induction Coils. McGraw Publishing Company, New York, (1908).Google Scholar
  50. 50.
    Davis Jr., D., Davis's Manual of Magnetism, including Galvanism, Magnetism, Electro-Magnetism, Electro-Dynamics, Magneto-Electricity, and Thermo-Electricity, 12th ed. Palmer and Hall, Boston, (1857).Google Scholar
  51. 51.
    Porter, R., The Biographical Dictionary of Scientists, 2nd ed. Oxford University Press, New York, (1994).Google Scholar
  52. 52.
    Grove, W.R., On the electro-chemical polarity of gases, Phil. Trans. Roy. Soc. London 142, 87–101, (1852).Google Scholar
  53. 53.
    Grove, W.R., On the electro-chemical polarity of gases, Phil. Mag., 498–515, (1852).Google Scholar
  54. 54.
    Wright, A.W., On the production of transparent films by the electrical discharge in exhausted tubes, Am. J. Sci. Arts 3rd Series 13, 49–55, (1877).Google Scholar
  55. 55.
    Plücker, J., Observations on the electrical discharge through rarefied gases, The London, Edinburgh, and Dublin Philosophical Magazine 16, 408–418, (1858).Google Scholar
  56. 56.
    Faraday, M., Experimental Relations of Gold (and other metals) to light (The Bakerian Lecture), Phil. Trans. 147, 145–181, (1857).Google Scholar
  57. 57.
    Webster, N., Webster's Universal Dictionary. The World Publishing Company, Cleveland, OH, (1940).Google Scholar
  58. 58.
    Stokes, G.G., On the long spectrum of electric light, Phil. Trans. Roy. Soc. London 152 part II, 599–619, (1862).Google Scholar
  59. 59.
    Campbell, L. and Garnett, W., The Life of James Clerk Maxwell, with a Selection from his Correspondence and Occasional Writings and a Sketch of His Contributions to Science. MacMillan and Co., London, (1882).Google Scholar
  60. 60.
    Boxman, R.L. and Goldsmith, S., “Vacuum arc deposition in the 19th century,” XIV Int. Symp. Discharges and Electrical Insulation in Vacuum, Santa Fe, NM, (1990).Google Scholar
  61. 61.
    Boxman, R.L., Early history of vacuum arc deposition, IEEE Trans. Plasma Sci. 29, 759–761, (2001).ADSGoogle Scholar
  62. 62.
    Lecher, E., Ueber electromotorische Gegenkräfte in galvanischen Lichterscheinung, (Wiedemann's) Annalen der Physik und Chemie 33, 609–637, (1888).Google Scholar
  63. 63.
    Goldstein, E., Über eine noch nicht untersuchte Strahlungsform an der Kathode inducirter Entladungen, Sitzungsberichte der Königlichen Akademie der Wissenschaften zu Berlin 39, 691–699, (1886).Google Scholar
  64. 64.
    Edison, T.A., “Art of plating one material with another,” patent U.S. 526,147 (1894).Google Scholar
  65. 65.
    Edison, T.A., “Process of duplicating phonograms,” patent U.S. 484,582 (1892).Google Scholar
  66. 66.
    Edison, T.A., “Process of coating phonograph-records,” patent US 713,863 (1902).Google Scholar
  67. 67.
    Waits, R.K., Edison's vacuum coating patents, J. Vac. Sci. Technol. A 19, 1666–1673, (2001).ADSGoogle Scholar
  68. 68.
    Thomson, J.J., Phil. Mag. 48, 547, (1899).Google Scholar
  69. 69.
    Redhead, P.A., The birth of electronics: Thermionic emission and vacuum, J. Vac. Sci. Technol. A 16, 1394–1401, (1998).ADSGoogle Scholar
  70. 70.
    Schuster, A., On the constitution of the electric spark, Nature 57, 17, (1897).Google Scholar
  71. 71.
    Feddersen, W., Über die electrische Funkenentladung, (Poggendorff's) Annalen der Physik und Chemie 113, 437–467, (1861).ADSGoogle Scholar
  72. 72.
    Arons, L., Ueber den Lichtbogen zwischen Quecksilber-electroden, Amalgamen, und Legirungen, (Wiedemann's) Annalen der Physik und Chemie 58, 73–95, (1896).ADSGoogle Scholar
  73. 73.
    Einstein, A., Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen, Annalen der Physik 17, 549–560, (1905).ADSMATHGoogle Scholar
  74. 74.
    Einstein, A., Zur Elektrodynamik bewegter Körper, Annalen der Physik 17, 891–921, (1905).ADSMATHGoogle Scholar
  75. 75.
    Einstein, A., Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?, Annalen der Physik 18, 639–641, (1905).ADSGoogle Scholar
  76. 76.
    Einstein, A., Über einen die Erzeugung und die Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt, Annalen der Physik 17, 132–148, (1905).ADSMATHGoogle Scholar
  77. 77.
    Stark, J., Retschinsky, T., and Schaposchnikoff, A., Untersuchungen über den Lichtbogen, Annalen der Physik 18 (4th Series), 213–251, (1905).ADSGoogle Scholar
  78. 78.
    Boersma, K., Structural ways to embed a research laboratory into the company. A comparison between General Electric and Philips in the inter war period, Hist. Technol. 19, 109–126, (2003).Google Scholar
  79. 79.
    Cornwell, J., Hitler's Scientists. Viking-Penguin, New York, (2003).Google Scholar
  80. 80.
    Child, C.D., Discharge from hot CaO, Phys. Rev. 32, 492–511, (1911).ADSGoogle Scholar
  81. 81.
    Forrester, A.T., Large Ion Beams. Wiley, New York, (1988).Google Scholar
  82. 82.
    Weintraub, E., Investigation of the arc in metallic vapours in an exhausted space, Phil. Mag. 7 (of Series 6), 95–124, (1904).Google Scholar
  83. 83.
    Ehrich, H., Hasse, B., Mausbach, M., and Müller, K.G., The anodic vacuum arc and its application to coatings, J. Vac. Sci. Technol. A 8, 2160–2164, (1990).ADSGoogle Scholar
  84. 84.
    Beilis, I.I., Boxman, R.L., Goldsmith, S., and Paperny, V.L., Radially expanding plasma parameters in a hot refractory anode vacuum arc, J. Appl. Phys. 88, 6224–6231, (2000).ADSGoogle Scholar
  85. 85.
    Stark, J., Quecksilber als kathodische Basis des Lichtbogens, Physikalische Zeitschrift 5, 750–751, (1904).Google Scholar
  86. 86.
    Child, C.D., The electric arc in a vacuum, Phys. Rev. (Series I) 20, 364–378, (1905).ADSGoogle Scholar
  87. 87.
    Stark, J., Induktionserscheinungen am Quecksilberlichtbogen im Magnetfeld, Z. f. Physik 4, 440–443, (1903).Google Scholar
  88. 88.
    Langmuir, I. and Blodgett, K.B., Current limited by space charge between coaxial cylinders, Phys. Rev. 22, 347–356, (1923).ADSGoogle Scholar
  89. 89.
    Langmuir, I., The effect of space charge and initial velocities on the potential distribution and thermionic current between parallel plane electrodes, Phys. Rev. (Series II) 21, 419–435, (1923).ADSGoogle Scholar
  90. 90.
    Langmuir, I. and Blodgett, K.B., Current limited by space charge between concentric spheres, Phys. Rev. 24, 49–59, (1924).ADSGoogle Scholar
  91. 91.
    Child, C.D., The electric arc, Phys. Rev. (Series I) 19, 117–137, (1904).ADSGoogle Scholar
  92. 92.
    Granqvist, G., Über die Bedeutung des Wärmeleitvermögens der Elektroden bei dem elektrischen Lichtbogen, Nova Acta Reg. Soc. Sc. Upsala 20 (series III), 1-56 and 2 plates, (1903).Google Scholar
  93. 93.
    Zuchristan, Wien. Ber. 102, 567–576, (1893).Google Scholar
  94. 94.
    Stark, J., Zündung des Lichtbogens an Metalloxyden, Physikalische Zeitschrift 5, 81–83, (1904).Google Scholar
  95. 95.
    Buttolph, L.J., The Cooper Hewitt mercury vapor lamp, Gen. Elec. Rev. 23, 741–751, (1920).Google Scholar
  96. 96.
    Germeshausen, K.J., A new form of band igniter for mercury-pool tubes, Phys. Rev. 55, 228, (1939).ADSGoogle Scholar
  97. 97.
    Richardson, O.W., On the negative radiation from hot platinum, Proc. Cambridge Phil. Soc. 11, 286–295, (1901).Google Scholar
  98. 98.
    Richardson, O.W., Emission of Electricity from Hot Bodies, 2nd ed. Longmans, Green & Co., New York, (1921).Google Scholar
  99. 99.
    Dushman, S., Electron emission from metals as a function of temperature, Phys. Rev. 21, 623–636, (1923).ADSGoogle Scholar
  100. 100.
    Dushman, S., Thermionic emission, Rev. Mod. Phys. 2, 381–476, (1930).ADSGoogle Scholar
  101. 101.
    Schottky, W., Zeitschrift für Physik 14, 80, (1923).Google Scholar
  102. 102.
    Dryvesteyn, M.J., Electron emission of the cathode of an arc, Nature 137, 580, (1936).ADSGoogle Scholar
  103. 103.
    Suits, C.G. and Hocker, J.P., Role of oxidation in arc cathodes, Phys. Rev. 53, 670, (1938).ADSGoogle Scholar
  104. 104.
    Cobine, J.D., Gaseous Conductors: Theory and Engineering Applications. Dover, New York, (1958 (first edition 1941)).Google Scholar
  105. 105.
    Cobine, J.D., Effects of oxides and impurities on metallic arc reignition, Phys. Rev. 53, 911, (1938).ADSGoogle Scholar
  106. 106.
    Nottingham, W.B., Remarks on the energy loss attending thermionic emission of electrons from metals, Phys. Rev. 59, 906–907, (1941).ADSGoogle Scholar
  107. 107.
    Smyth, H.D. and Wilson, R.R., “The “Isotron” method of separating tuballoy isotopes. General report covering period from December 1, 1941, to May 15, 1942. Princeton University OSRD project SSRC-5. – SECRET. Classification canceled April 23, 1952.,” Princeton University, Princeton (1942).Google Scholar
  108. 108.
    Brown, I.G., Galvin, J.E., MacGill, R.A., and Wright, R.T., Improved time-of-flight charge state diagnostic, Rev. Sci. Instrum. 58, 1589–1592, (1987).ADSGoogle Scholar
  109. 109.
    Brown, I.G., Feinberg, B., and Galvin, J.E., Multiply stripped ion generation in the metal vapor vacuum arc, J. Appl. Phys. 63, 4889–4898, (1988).ADSGoogle Scholar
  110. 110.
    Günterschulze, A., Z. f. Physik 11, 71, (1922).ADSGoogle Scholar
  111. 111.
    Tonks, L., Physics 6, 294, (1935).ADSGoogle Scholar
  112. 112.
    Cobine, J.D. and Gallagher, C.J., Current density of the arc cathode spot, Phys. Rev. 74, 1524–1530, (1948).ADSGoogle Scholar
  113. 113.
    Erwin, S., Untersuchungen über die Bewegung des Brennflecks auf der Kathode eines Quecksilberdampf-Niederdruckbogens, Annalen der Physik (Leipzig) 439, 246–270, (1949).Google Scholar
  114. 114.
    Froome, K.D., The rate of growth of current and the behavior of the cathode spot in transient arc discharges, Proc. Phys. Soc. (London) 60, 424, (1948).ADSGoogle Scholar
  115. 115.
    Bertele, H.V., Current densities of free-moving cathode spots on mercury, Brit. J. Appl. Phys. 3, 358–360, (1952).ADSGoogle Scholar
  116. 116.
    Froome, K.D., Current densities of free-moving cathode spots on mercury, Brit. J. Appl. Phys. 4, 91, (1953).ADSGoogle Scholar
  117. 117.
    Mueller, E.W., Z. f. Physik 106, 541, (1937).ADSGoogle Scholar
  118. 118.
    Dyke, W.P. and Trolan, J.K., Field Emission: large current densities, space charge, and the vacuum arc, Phys. Rev. 89, 799–808, (1953).ADSGoogle Scholar
  119. 119.
    Kesaev, I.G., Cathode Processes in the Mercury Arc (authorized translation from the Russian). Consultants Bureau, New York, (1964).Google Scholar
  120. 120.
    Kesaev, I.G., Cathode Processes of an Electric Arc (in Russian). Nauka, Moscow, (1968).Google Scholar
  121. 121.
    Rakhovskii, V.I., Physical Foundations of Switching Electric Current in Vacuum (in Russian). Nauka, Moscow, (1970).Google Scholar
  122. 122.
    Anders, S., Anders, A., and Jüttner, B., Brightness distribution and current density of vacuum arc cathode spots, J. Phys. D: Appl. Phys. 25, 1591–1599, (1992).ADSGoogle Scholar
  123. 123.
    Hantzsche, E., Jüttner, B., and Ziegenhagen, G., Why vacuum arc cathode spots can appear larger than they are, IEEE Trans. Plasma Sci. 23, 55–64, (1995).ADSGoogle Scholar
  124. 124.
    Achtert, J., Altrichter, B., Jüttner, B., Pech, P., Pursch, H., Reiner, H.-D., Rohrbeck, W., Siemroth, P., and Wolff, H., Influence of surface contaminations on cathode processes of vacuum discharges, Beitr. Plasmaphys. 17, 419–431, (1977).Google Scholar
  125. 125.
    Jüttner, B., Erosion craters and arc cathode spots, Beitr. Plasmaphys. 19, 25–48, (1979).Google Scholar
  126. 126.
    Bugaev, S.P., Litvinov, E.A., Mesyats, G.A., and Proskurovskii, D.I., Explosive emission of electrons, Sov. Phys. Usp. 18, 51–61, (1975).ADSGoogle Scholar
  127. 127.
    Litvinov, E.A., Mesyats, G.A., and Proskurovskii, D.I., Field emission and explosive emission processes in vacuum discharges, Sov. Phys. Usp. 26, 138, (1983).ADSGoogle Scholar
  128. 128.
    Mesyats, G.A. and Proskurovsky, D.I., Pulsed Electrical Discharge in Vacuum. Springer-Verlag, Berlin, (1989).Google Scholar
  129. 129.
    Schülke, T. and Siemroth, P., Vacuum arcs cathode spots as a self-similarity phenomenon, IEEE Trans. Plasma Sci. 24, 63–64, (1996).ADSGoogle Scholar
  130. 130.
    Anders, A., The fractal nature of cathode spots, IEEE Trans. Plasma Sci. 33, 1456–1464, (2005).ADSGoogle Scholar
  131. 131.
    Feddersen, W., Über die electrische Funkenentladung, (Poggendorff's) Annalen der Physik und Chemie 116, 132–171, (1862).ADSGoogle Scholar
  132. 132.
    Sellerio, A., Phil. Mag. 44, 765–777, (1922).Google Scholar
  133. 133.
    Tanberg, R., On the cathode of an arc drawn in vacuum, Phys. Rev. 35, 1080–1089, (1930).ADSGoogle Scholar
  134. 134.
    Kobel, E., Pressure and high velocity vapour jets at cathodes of a mercury vacuum arc, Phys. Rev. 36, 1636–1638, (1930).ADSGoogle Scholar
  135. 135.
    Compton, K.T., An interpretation of pressure and high velocity vapor jets at cathodes of vacuum arcs, Phys. Rev. 36, 706–708, (1930).ADSGoogle Scholar
  136. 136.
    Slepian, J. and Mason, R.C., High velocity vapor jets at cathodes of vacuum arcs, Phys. Rev. 37, 779–780, (1931).ADSGoogle Scholar
  137. 137.
    Tanberg, R., On the temperature of cathode in vacuum arc, Phys. Rev. 38, 296–304, (1931).ADSGoogle Scholar
  138. 138.
    Tonks, L., The pressure of plasma electrons and the force on the cathode of an arc, Phys. Rev. 46, 278–279, (1934).ADSGoogle Scholar
  139. 139.
    Robertson, R.M., The force on the cathode of a copper arc, Phys. Rev. 53, 578–582, (1938).ADSGoogle Scholar
  140. 140.
    Kesaev, I.G., Laws governing the cathode drop and the threshold currents in an arc discharge on pure metals, Sov. Phys. – Techn. Phys. 9, 1146–1154, (1965).Google Scholar
  141. 141.
    Plyutto, A.A., Ryzhkov, V.N., and Kapin, A.T., High speed plasma streams in vacuum arcs, Sov. Phys. JETP 20, 328–337, (1965).Google Scholar
  142. 142.
    Davis, W.D. and Miller, H.C., Analysis of the electrode products emitted by dc arcs in a vacuum ambient, J. Appl. Phys. 40, 2212–2221, (1969).ADSGoogle Scholar
  143. 143.
    Lunev, V.M., Padalka, V.G., and Khoroshikh, V.M., Plasma properties of a metal vacuum arc. II, Sov. Phys. Tech. Phys. 22, 858–861, (1977).ADSGoogle Scholar
  144. 144.
    Wieckert, C., The expansion of the cathode spot plasma in vacuum arc discharges, Phys. Fluids 30, 1810–1813, (1987).ADSGoogle Scholar
  145. 145.
    Hantzsche, E., Two-dimensional models of expanding vacuum arc plasmas, IEEE Trans. Plasma Sci. 23, 893–898, (1995).ADSGoogle Scholar
  146. 146.
    Beilis, I.I., “Theoretical modeling of cathode spot phenomena,” in Handbook of Vacuum Arc Science and Technology, Boxman, R.L., Martin, P.J., and Sanders, D.M., (Eds.). pp. 208–256, Noyes, Park Ridge, N.J., (1995).Google Scholar
  147. 147.
    Lucas, M.S.P., Owen, J.H.A., Stewart, W.C., and Vail, C.R., Vacuum-arc evaporation of refractory metals, Rev. Sci. Instrum. 32, 203–204, (1961).ADSGoogle Scholar
  148. 148.
    Lucas, M.S.P., Vail, C.R., Stewart, W.C., and Owen, H.A., “A new deposition technique for refractory metal films,” 8th National Vacuum Symposium combined with the Second International Congress on Vacuum Science and Technology, Washington D.C., 988–991, (1961).Google Scholar
  149. 149.
    Catani, L., Cianchi, A., Lorkiewicz, J., et al., Cathodic arc grown niobium films for RF superconducting cavity applications, Physica C: Superconductivity 441, 130–133, (2006).ADSGoogle Scholar
  150. 150.
    Langner, J., Mirowski, R., Sadowski, M.J., et al., Deposition of superconducting niobium films for RF cavities by means of UHV cathodic Arc, Vacuum 80, 1288–1293, (2006).Google Scholar
  151. 151.
    Naoe, M. and Yamanaka, S., Nickel ferrite thick films deposited by vacuum-arc discharge, Jap. J. Appl. Phys. 9, 293–301, (1970).ADSGoogle Scholar
  152. 152.
    Naoe, M. and Yamanaka, S., Vacuum-arc evaporations of ferrites and compositions of their deposits, Jap. J. Appl. Phys. 10, 747–753, (1971).ADSGoogle Scholar
  153. 153.
    Aksenov, I.I. and Andreev, A.A., Vacuum arc coating technologies at NSC KIPT, Problems Atomic Sci. Technol., Series: Plasma Physics 3, 242–246, (1999).Google Scholar
  154. 154.
    Sablev, L.P., Usov, V.V., Romanov, A.A., Dolotov, J.I., Lunev, V.M., Lutsenko, V.N., Atamansky, N.P., and Kushnir, A.S., patent USSR N235523 (1966).Google Scholar
  155. 155.
    Romanov, A.A. and Andreev, A.A., patent USSR N367755 (1970).Google Scholar
  156. 156.
    Romanov, A.A., Andreev, A.A., and Kozlov, V.N., patent USSR N284883 (1969).Google Scholar
  157. 157.
    Lunev, V.M. and Samoilov, V.P., (in Russian), Sintetis Almazy (Diamond Synthesis) no.4, 28, (1977).Google Scholar
  158. 158.
    Aksenov, I.I., Bren', V.G., Padalka, V.G., and Khoroshikh, V.M., Chemical reactions in the condensation of metal-plasma streams, Sov. Phys -Tech. Phys. 23, 651–653, (1978).Google Scholar
  159. 159.
    Andreev, A.A., Bulatova, L.V., Kartmasov, G.N., Kostritsa, T.V., Lunev, V.M., and Romanov, A.A., Fizika i Khimiya Obrabotki Materialov 2, 169, (1979).Google Scholar
  160. 160.
    Odintsov, L.G., Romanov, A.A., Andreev, A.A., Ehtingant, A.A., Gorelik, V.M., Vereshchaka, A.S., and Pylinin, O.V., patent USSR N607659 (1976).Google Scholar
  161. 161.
    Andreev, A.A., Romanov, A.A., Ehtingant, A.A., and Vereshchaka, A.S., patent USSR N819217 (1976).Google Scholar
  162. 162.
    Sablev, L.P., Dolotov, Y.I., Stupak, R.I., and Osipov, V.A., Electric-arc vaporizer of metals with magnetic confinement of cathode spot, Instrum. Exp. Tech. 19, 1211–1213, (1976).Google Scholar
  163. 163.
    Aksenov, I.I. and Andreev, A.A., Motion of the cathode spot of a vacuum arc in an inhomogeneous magnetic field, Sov. Tech. Phys. Lett. 3, 525–526, (1977).Google Scholar
  164. 164.
    Sablev, L.P., Electric-arc vaporizer of metals with magnetic confinement of cathode spot, Instrum. Exp. Tech. 22, 1174, (1979).Google Scholar
  165. 165.
    Aksenov, I.I., Padalka, V.G., and Khoroshykh, V.M., Investigation of a flow of plasma generated by a stationary erosion electric arc accelerator with magnetic confinement of the cathode spot, Sov. J. Plasma Phys. 5, 341, (1979).ADSGoogle Scholar
  166. 166.
    Lunev, V.M., Padalka, V.G., and Khoroshikh, V.M., Plasma properties of a metal vacuum arc. I, Sov. Phys. Tech. Phys. 22, 855–858, (1977).ADSGoogle Scholar
  167. 167.
    Lunev, V.M., Samoilov, V.P., Zubar', V.P., Digtenko, V.G., and Kokoshko, M.D., (in Russian), Sintetis Almazy (Diamond Synthesis) no.4, 26, (1978).Google Scholar
  168. 168.
    Matyushenko, N.N., Strel'nitskii, V.E., and Romanov, A.A., (in Russian), Doklady Akad. Nauk UkrSSR, Ser. A 5, 459, (1976).Google Scholar
  169. 169.
    Strel'nitskii, V.E., Matyushenko, N.N., Romanov, A.A., and Tolok, V.T., (in Russian), Doklady Akad. Nauk UkrSSR, Ser. A 8, 760, (1977).Google Scholar
  170. 170.
    Strel’nitskii, V.E., Padalka, V.G., and Vakula, S.I., Properties of the diamond-like carbon film produced by the condensation of a plasma stream with an RF potential, Sov. Phys.-Techn. Phys. 23, 222–224, (1978).Google Scholar
  171. 171.
    Vakula, S.I., Padalka, V.G., Strel'nitskii, V.E., and Cheoskin, A.I., Sverkhtverdye Materialii (Superhard Materials) no.1, 18, (1980).Google Scholar
  172. 172.
    Vakula, S.I., Padalka, V.G., Strel'nitskii, V.E., and Usoskin, A.I., Optical properties of diamond-like carbon films, Sov. Techn. Phys. Lett. 5, 573–574, (1979).Google Scholar
  173. 173.
    Aksenov, I.I., Vakula, S.I., Kunchenko, V.V., Matyushenko, N.N., Ostapenko, I.L., Padalka, V.G., and Strel'nitskii, V.E., Sverkhtverdye Materialii (Superhard Materials) no.3, 12, (1980).Google Scholar
  174. 174.
    Kikuchi, M., Nagakura, S., Ohmura, H., and Oketani, S., Structures of the metal films produced by vacuum-arc evaporation method, Jap. J. Appl. Phys. 4, 940, (1965).ADSGoogle Scholar
  175. 175.
    Kuznetsov, I., “Electron beam evaporation processes in the Soviet Union,” 21st Annual Technical Conference Proceedings of the Society of Vacuum Coaters, 87, (1978).Google Scholar
  176. 176.
    Wroe, H., The magnetic stabilization of low pressure d.c. arcs, Brit. J. Appl. Phys. 9, 488–491, (1958).ADSGoogle Scholar
  177. 177.
    Wroe, H., “Stabilisation of low pressure D.C. arc discharges,” patent US 2,972,695 (1961).Google Scholar
  178. 178.
    Minorsky, M.N., La rotation de l'arc électrique dans un champ magnétique radial, Le Journal de Physique et Le Radium 9, 127–136, (1928).Google Scholar
  179. 179.
    Smith, C.G., Motion of an arc in a magnetic field, J. Appl. Phys. 28, 1328–1331, (1957).ADSGoogle Scholar
  180. 180.
    Robson, A.E. and von Engel, A., Origin of retrograde motion of arc cathode spots, Phys. Rev. 93, 1121–1122, (1954).ADSGoogle Scholar
  181. 181.
    Daalder, J.E., Components of cathode erosion in vacuum arcs, J. Phys. D: Appl. Phys. 9, 2379–2395, (1976).ADSGoogle Scholar
  182. 182.
    Lafferty, J.M., Vacuum Arcs – Theory and Applications. Wiley, New York, (1980).Google Scholar
  183. 183.
    Gilmour, A. and Lockwood, D.L., Pulsed metallic-plasma generator, Proc. IEEE 60, 977–992, (1972).Google Scholar
  184. 184.
    Snaper, A.A., “Arc deposition process and apparatus,” patent US 3,836,451 (1974).Google Scholar
  185. 185.
    Smith Jr., H.R., “Current vacuum coating processes in the Soviet Union,” 25th Technical Conference Proceedings, Society of Vacuum Coaters, 179–189, (1983).Google Scholar
  186. 186.
    Bergman, C., “Arc plasma physical vapor deposition,” 28th Annual SVC Technical Conference, Philadelphia, PA, 175–191, (1985).Google Scholar
  187. 187.
    Johnson, P.C., “Cathodic arc plasma deposition processes and their applications,” 30th Annual SVC Technical Conference, 317–324, (1987).Google Scholar
  188. 188.
    Randhawa, H., Cathodic arc plasma deposition technology, Thin Solid Films 167, 175–185, (1988).ADSGoogle Scholar
  189. 189.
    Sanders, D.M., Boercker, D.B., and Falabella, S., Coatings technology based on the vacuum arc – a review, IEEE Trans. Plasma Sci. 18, 883–894, (1990).ADSGoogle Scholar
  190. 190.
    Vergason, G. and Papa, A., “Selection of materials and techniques for performance coatings,” 42 nd Annual SVC Technical Conference, 53–57, (1999).Google Scholar
  191. 191.
    Vergason, G. and Papa, A., “Rapid cycle coating techniques for cell manufacturing,” 40th Annual SVC Technical Conference, New Orleans, LA, 54–57, (1997).Google Scholar
  192. 192.
    Fleischer, W., Trinh, T., van der Kolk, G.J., Hurkmans, T., and Franck, M., “Decorative PVD hardcoatings in a wide colour range on different substrate materials,” 41st Annual SVC Technical Conference, 33–37, (1998).Google Scholar
  193. 193.
    Bouix, M.H., “The combination of “gold plating” and high wear resistance of PVD,” 42 nd Annual SVC Technical Conference, Boston, MA, 83–84, (1998).Google Scholar
  194. 194.
    Münz, W.-D., Schulze, D., and Hauzer, F.J.M., A new method for hard coatings – ABS (arc bond sputtering), Surf. Coat. Technol. 50, 169–178, (1992).Google Scholar
  195. 195.
    Burkhardt, W. and Reinecke, R., “Method of coating articles by vaporized coating materials,” patent US 2,157,478 (1939).Google Scholar
  196. 196.
    Lawson, J.D., (ed.) Fusion's History,, (1993).
  197. 197.
    Voitsenya, V.S., Gorbanyuk, A.G., Onishchenko, I.N., Safronov, B.G., Khizhniyak, N.A., and Shkoda, V.V., Motion of a plasmoid in a curvilinear magnetic field, Sov. Phys. Tech. Phys. 12, 185–192, (1967).Google Scholar
  198. 198.
    Aksenov, I.I., Belous, V.A., Padalka, V.G., and Khoroshikh, V.M., Apparatus to rid the plasma of a vacuum arc of macroparticles, Instrum. Exp. Tech. 21, 1416–1418, (1978).Google Scholar
  199. 199.
    Aksenov, I.I., Belous, V.A., Padalka, V.G., and Khoroshikh, V.M., Transport of plasma streams in a curvilinear plasma-optics system, Sov. J. Plasma Phys. 4, 425–428, (1978).ADSGoogle Scholar
  200. 200.
    Axenov, I.I., Belous, V.A., Padalka, V.G., and Khoroshikh, V.M., “Arc plasma generator and a plasma arc apparatus for treating the surface of work-pieces, incorporating the same arc plasma generator,” patent US 4,452,686 (1984).Google Scholar
  201. 201.
    Aksenov, I.I., Belokhvostikov, A.N., Padalka, V.G., Repalov, N.S., and Khoroshikh, V.M., Plasma flux motion in a toroidal plasma guide, Plasma Phys. Controlled Fusion 28, 761–770, (1986).ADSGoogle Scholar
  202. 202.
    Schemmel, T.D., Cunningham, R.L., and Randhawa, H., Process for high rate deposition of Al2O3, Thin Solid Films 181, 597–601, (1989).ADSGoogle Scholar
  203. 203.
    Martin, P.J., Netterfield, R.P., Bendavid, A., and Kinder, T.J., “Properties of thin films produced by filtered arc deposition,” 36th Annual SVC Technical Conference, Dallas, TX, 375–378, (1993).Google Scholar
  204. 204.
    Martin, P.J., Netterfield, R.P., Kinder, T.J., and Descotes, L., Deposition of TiN, TiC, and TiO2 films by filtered arc evaporation, Surf. Coat. Technol. 49, 239–243, (1991).Google Scholar
  205. 205.
    Martin, P.J., Netterfield, R.P., Bendavid, A., and Kinder, T.J., The deposition of thin films by filtered arc evaporation, Surf. Coat. Technol. 54, 136–142, (1992).Google Scholar
  206. 206.
    Baldwin, D.A. and Fallabella, S., “Deposition processes utilizing a new filtered cathodic arc source,” Proc. of the 38th Annual Techn. Conf., Society of Vacuum Coaters, Chicago, 309–316, (1995).Google Scholar
  207. 207.
    Shi, X., Flynn, D.I., Tay, B.K., and Tan, H.S., “Filtered cathodic arc source,” patent WO 96/26531 (1996).Google Scholar
  208. 208.
    Shi, X., Fulton, M., Flynn, D.I., Tay, B.K., and Tan, H.S., “Deposition apparatus,” patent WO 96/26532 (1996).Google Scholar
  209. 209.
    Anders, S., Anders, A., Dickinson, M.R., MacGill, R.A., and Brown, I.G., S-shaped magnetic macroparticle filter for cathodic arc deposition, IEEE Trans. Plasma Sci. 25, 670–674, (1997).ADSGoogle Scholar
  210. 210.
    Anders, A. and MacGill, R.A., Twist filter for the removal of macroparticles from cathodic arc plasmas, Surf. Coat. Technol. 133–134, 96–100, (2000).Google Scholar
  211. 211.
    Ryabchikov, A.I. and Stepanov, I.B., Investigations of forming metal-plasma flows filtered from microparticle fraction in a vacuum arc evaporator, Rev. Sci. Instrum. 69, 810–812, (1998).ADSGoogle Scholar
  212. 212.
    Bilek, M.M.M., Anders, A., and Brown, I.G., Characterization of a linear Venetian-blind macroparticle filter for cathodic vacuum arcs, IEEE Trans. Plasma Sci. 27, 1197–1202, (1999).ADSGoogle Scholar
  213. 213.
    Siemroth, P. and Schülke, T., Copper metallization in microelectronics using filtered vacuum arc deposition – principles and technological development, Surf. Coat. Technol. 133–134, 106–113, (2000).Google Scholar
  214. 214.
    Anders, A., Approaches to rid cathodic arc plasma of macro- and nanoparticles: a review, Surf. Coat. Technol. 120–121, 319–330, (1999).Google Scholar
  215. 215.
    Martin, P.J. and Bendavid, A., Review of the filtered vacuum arc process and materials deposition, Thin Solid Films 394, 1–15, (2001).ADSGoogle Scholar
  216. 216.
    Boxman, R.L. and Zhitomirsky, V.N., Vacuum arc deposition devices, Rev. Sci. Instrum. 77, 021101–15, (2006).ADSGoogle Scholar
  217. 217.
    Jüttner, B., Characterization of the cathode spot, IEEE Trans. Plasma Sci. PS-15, 474–480, (1987).ADSGoogle Scholar
  218. 218.
    Secker, P.E. and George, I.A., Preliminary measurements of arc cathode current density, J. Phys. D: Appl. Phys. 2, 918–920, (1969).ADSGoogle Scholar
  219. 219.
    Guile, A.E. and Jüttner, B., Basic erosion processes of oxidized and clean metal cathodes by electric arcs, IEEE Trans. Plasma Sci. 8, 259–269, (1980).ADSGoogle Scholar
  220. 220.
    Siemroth, P., Schülke, T., and Witke, T., Microscopic high speed investigations of vacuum arc cathode spot, IEEE Trans. Plasma Sci. 23, 919–925, (1995).ADSGoogle Scholar
  221. 221.
    Siemroth, P., Schülke, T., and Witke, T., Investigations of cathode spots and plasma formation of vacuum arcs by high speed microscopy and spectrography, IEEE Trans. Plasma Sci. 25, 571–579, (1997).ADSGoogle Scholar
  222. 222.
    Kleberg, I., “Dynamics of cathode spots in external magnetic field (in German),” Humboldt University: Berlin, Germany, 2001.Google Scholar
  223. 223.
    Jüttner, B. and Kleberg, I., The retrograde motion of arc cathode spots in vacuum, J Phys. D: Appl. Phys. 33, 2025–2036, (2000).ADSGoogle Scholar
  224. 224.
    Anders, A., Anders, S., Jüttner, B., Bötticher, W., Lück, H., and Schröder, G., Pulsed dye laser diagnostics of vacuum arc cathode spots, IEEE Trans. Plasma Sci. 20, 466–472, (1992).ADSGoogle Scholar
  225. 225.
    Jüttner, B., The dynamics of arc cathode spots in vacuum, J. Phys. D: Appl. Phys. 28, 516–522, (1995).ADSGoogle Scholar
  226. 226.
    Vogel, N., The cathode spot plasma in low-current air and vacuum break arcs, J. Phys. D: Appl. Phys. 26, 1655–1661, (1993).ADSGoogle Scholar
  227. 227.
    Mesyats, G.A., Ecton mechanism of the vacuum arc cathode spot, IEEE Trans. Plasma Sci. 23, 879–883, (1995).ADSGoogle Scholar
  228. 228.
    Mesyats, G.A., Explosive Electron Emission. URO Press, Ekaterinburg, (1998).Google Scholar
  229. 229.
    Anders, A., Anders, S., and Brown, I.G., Transport of vacuum arc plasmas through magnetic macroparticle filters, Plasma Sources Sci. Technol. 4, 1–12, (1995).ADSGoogle Scholar
  230. 230.
    Bilek, M.M.M. and Brown, I.G., Deposition probe technique for the determination of film thickness profiles, Rev. Sci. Instrum. 69, 3353–3356, (1998).ADSGoogle Scholar
  231. 231.
    Shi, X., Tu, Y.Q., Tan, H.S., and Tay, B.K., Simulation of plasma flow in toroidal solenoid filters, IEEE Trans. Plasma Sci. 24, 1309–1318, (1996).ADSGoogle Scholar
  232. 232.
    Alterkop, B., Gidalevich, E., Goldsmith, S., and Boxman, R.L., The numerical calculation of plasma beam propagation in a toroidal duct with magnetized electrons and unmagnetized ions, J. Phys. D: Appl. Phys. 29, 3032–3038, (1996).ADSGoogle Scholar
  233. 233.
    Alterkop, B., Gidalevich, E., Goldsmith, S., and Boxman, R.L., Propagation of a magnetized plasma beam in a toroidal filter, J. Phys. D: Appl. Phys. 31, 873–879, (1998).ADSGoogle Scholar
  234. 234.
    Beilis, I., Djakov, B.E., Jüttner, B., and Pursch, H., Structure and dynamics of high-current arc cathode spots in vacuum, J. Phys. D: Appl. Phys 30, 119–130, (1997).ADSGoogle Scholar
  235. 235.
    Beilis, I.I., Keidar, M., Boxman, R.L., and Goldsmith, S., Theoretical study of plasma expansion in a magnetic field in a disk anode vacuum arc, J. Appl. Phys. 83, 709–717, (1998).ADSGoogle Scholar
  236. 236.
    Beilis, I.I., The vacuum arc cathode spot and plasma jet: Physical model and mathematical description, Contrib. Plasma Phys. 43, 224–236, (2003).ADSGoogle Scholar
  237. 237.
    Anders, A., Metal plasma immersion ion implantation and deposition: a review, Surf. Coat. Technol. 93, 157–167, (1997).Google Scholar
  238. 238.
    Bilek, M.M.M. and McKenzie, D.R., A comprehensive model of stress generation and relief processes in thin films deposited with energetic ions, Surf. Coat. Technol. 200, 4345–4354, (2006).Google Scholar
  239. 239.
    Anders, A., Fong, W., Kulkarni, A., Ryan, F.R., and Bhatia, C.S., Ultrathin diamondlike carbon films deposited by filtered carbon vacuum arcs, IEEE Trans. Plasma Sci. 29, 768–775, (2001).ADSGoogle Scholar
  240. 240.
    Casiraghi, C., Ferrari, A.C., Ohr, R., Chu, D., and Robertson, J., Surface properties of ultra-thin tetrahedral amorphous carbon films for magnetic storage technology, Diam. Rel. Mat. 13, 1416–1421, (2004).Google Scholar
  241. 241.
    Druz, B., Yevtukhov, Y., Novotny, V., Zaritsky, I., Kanarov, V., Polyakov, V., and Rukavishnikov, A., Nitrogenated carbon films deposited using filtered cathodic arc, Diam. Rel. Mat. 9, 668–674, (2000).Google Scholar
  242. 242.
    Druz, B., Yevtukhov, Y., and Zaritskiy, I., Diamond-like carbon overcoat for TFMH using filtered cathodic arc system with Ar-assisted arc discharge, Diam. Rel. Mat. 14, 1508–1516, (2005).Google Scholar
  243. 243.
    Monteiro, O.R., Novel metallization technique for filling 100-nm-wide trenches and vias with very high aspect ratio, J. Vac. Sci. Technol. B 17, 1094–1097, (1999).Google Scholar
  244. 244.
    Vergason, G.E., “Electric arc vapor deposition device,” patent US 5,037,522 (1991).Google Scholar
  245. 245.
    Vergason, G.E., Lunger, M., and Gaur, S., “Advances in arc spot travel speed to improve film characteristics,” Annual Technical Conference of the Society of Vacuum Coaters, Philadelphia, 136–140, (2001).Google Scholar
  246. 246.
    Siemroth, P., Zimmer, O., Schulke, T., and Vetter, J., Vacuum arc evaporation with programable erosion and deposition profile, Surf. Coat. Technol. 94–95, 592–596, (1997).Google Scholar
  247. 247.
    Zimmer, O., “Magnetische und elektrische Steuerung der Vakuumbogenbeschichtung,” Ruhr-Universität Bochum: Bochum, Germany, 2002.Google Scholar
  248. 248.
    Gorokhovsky, V.I., “Apparatus for application of coatings in vacuum,” patent US 5,435,900 (1995).Google Scholar
  249. 249.
    Welty, R.P., “Rectangular vacuum-arc plasma source,” patent US 5,840,163 (1998).Google Scholar
  250. 250.
    Boxman, R.L., Zhitomirsky, V., Goldsmith, S., David, T., and Dikhtyar, V., “Deposition of SnO2 coatings using a rectangular filtered vacuum arc source,” 46th Annual Technical Meeting of the Society of Vacuum Coaters, San Francisco, CA, 234–239, (2003).Google Scholar
  251. 251.
    Vetter, J., Vacuum arc coatings for tools – potential and application, Surf. Coat. Technol. 77, 719–724, (1995).Google Scholar
  252. 252.
    Hörling, A., Hultman, L., Odén, M., Sjolén, J., and Karlsson, L., Thermal stability of arc evaporated high aluminum-content Ti1-xAlxN thin films, J. Vac. Sci. Technol. A 20, 1815–1823, (2002).ADSGoogle Scholar
  253. 253.
    Mayrhofer, P.H., Hörling, A., Karlsson, L., Sjolen, J., Larsson, T., Mitterer, C., and Hultman, L., Self-organized nanostructures in the Ti-Al-N system, Appl. Phys. Lett. 83, 2049–2051, (2003).ADSGoogle Scholar
  254. 254.
    Karlsson, L., Hultman, L., Johansson, M.P., Sundgren, J.E., and Ljungcrantz, H., Growth, microstructure, and mechanical properties of arc evaporated TiCxN1-x (0 <= x <= 1) films, Surf. Coat. Technol. 126, 1–14, (2000).Google Scholar
  255. 255.
    Kok, Y.N., Hovsepian, P.E., Luo, Q., Lewis, D.B., Wen, J.G., and Petrov, I., Influence of the bias voltage on the structure and the tribological performance of nanoscale multilayer C/Cr PVD coatings, Thin Solid Films 475, 219–226, (2005).ADSGoogle Scholar
  256. 256.
    Veprek, S., The search for novel, superhard materials, J. Vac. Sci. Technol. A 17, 2401–2420, (1999).ADSGoogle Scholar
  257. 257.
    Veprek, S., J. Veprek-Heijman, M.G., and Zhang, R., Chemistry, physics and fracture mechanics in search for superhard materials, and the origin of superhardness in nc-TiN/a-Si3N4 and related nanocomposites, J. Phys. Chem. Solids 68, 1161–1168, (2007).Google Scholar
  258. 258.
    Hörling, A., Hultman, L., Odén, M., Sjölén, J., and Karlsson, L., Mechanical properties and machining performance of Ti1-xAlxN-coated cutting tools, Surf. Coat. Technol. 191, 384–392, (2005).Google Scholar
  259. 259.
    Hovsepian, P.E., Lewis, D.B., Luo, Q., Munz, W.-D., Mayrhofer, P.H., Mitterer, C., Zhou, Z., and Rainforth, W.M., TiAlN based nanoscale multilayer coatings designed to adapt their tribological properties at elevated temperatures, Thin Solid Films 485, 160–168, (2005).ADSGoogle Scholar
  260. 260.
    Lewis, D.B., Reitz, D., Wüstefeld, C., Ohser-Wiedemann, R., Oettel, H., Ehiasarian, A.P., and Hovsepian, P.E., Chromium nitride/niobium nitride nano-scale multilayer coatings deposited at low temperature by the combined cathodic arc/unbalanced magnetron technique, Thin Solid Films 503, 133–142, (2006).ADSGoogle Scholar
  261. 261.
    Winkelmann, A., Cairney, J.M., Hoffman, M.J., Martin, P.J., and Bendavid, A., Zr-Si-N films fabricated using hybrid cathodic arc and chemical vapour deposition: Structure vs. properties, Surf. Coat. Technol. 200, 4213–4219, (2006).Google Scholar
  262. 262.
    Anders, A., (ed.) Handbook of Plasma Immersion Ion Implantation and Deposition, John Wiley & Sons, New York, (2000).Google Scholar
  263. 263.
    Chun, S.-Y. and Chayahara, A., Pulsed vacuum are deposition of multilayers in the nanometer range, Surf. Coat. Technol. 132, 217–221, (2000).Google Scholar
  264. 264.
    Chen, P., Wong, S.P., Chiah, M.F., Wang, H., Cheung, W.Y., Ke, N., and Xiao, Z.S., Magnetic properties of (Pr0.17Co0.83)(69)C-31 nanocomposite films prepared by pulsed filtered vacuum arc deposition, Appl. Phys. Lett. 81, 4799–4801, (2002).ADSGoogle Scholar
  265. 265.
    Byon, E., Oates, T.H., and Anders, A., Coalescence of nanometer silver islands on oxides grown by filtered cathodic arc deposition, Appl. Phys. Lett. 82, 1634–1636, (2003).ADSGoogle Scholar
  266. 266.
    Huang, H., Woo, C.H., Wei, H.L., and Zhang, X.X., Kinetics-limited surface structures at the nanoscale, Appl. Phys. Lett. 82, 1272–1274, (2003).ADSGoogle Scholar
  267. 267.
    Werner, Z., Stanisawski, J., Piekoszewski, J., Levashov, E.A., and Szymczyk, W., New types of multi-component hard coatings deposited by arc PVD on steel pre-treated by pulsed plasma beam, Vacuum 70, 263–267, (2003).Google Scholar
  268. 268.
    Mayrhofer, P.H., Mitterer, C., Hultman, L., and Clemens, H., Microstructural design of hard coatings, Prog. Mater. Sci. 51, 1032–1114, (2006).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • André Anders
    • 1
  1. 1.BerkeleyUSA

Personalised recommendations