Skip to main content

A Brief History of Cathodic Arc Coating

  • Chapter
  • First Online:

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 50))

Abstract

This chapter is unusually detailed and describes arc-related research over two and half centuries. Not only do the over 200 references of this chapter cover the well-known milestones of arc physics but we connect the dots to many contributions of researchers that are forgotten. It is clearly shown that many advances have been made several times and they have only become part of permanent knowledge and technology when the community was ready to accept those new ideas. The chapter is subdivided into chronological sections covering each century, starting with Priestley’s experiments on the initially unintentional arc coatings on glass in the 1760s. Since arc discharges require a reasonably high current to exist, the role of the supply of electrical energy plays an important factor for the initial research, and the quality of available vacuum is another important consideration. The development is followed all the way to modern high-resolution plasma diagnostics and the formation of coatings containing nanostructures and nanolaminates.

Examining the spots with a microscope, both the shining dots that formed the central spot, and those which formed the external circle, appeared evidently to consist of cavities, resembling those on the moon, as they appear through a telescope, the edges projecting shadows into them, when they were held in the sun. Joseph Priestley, 1775 ([1], pp. 261, 262)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Although the term “plasma” was introduced by Irving Langmuir (1881–1957) only in 1927 [10], we will apply it also to the earlier science of this field.

  2. 2.

    The Russian word “Bulat” refers to “damascene steel,” relating to the ancient art of making hard materials.

References

  1. Priestley, J., “Experiments on the circular spots made on pieces of metal by large electrical explosions,” in The History and Present State of Electricity with Original Experiments, Third Edition, Vol. II. pp. 260–276, London, (1775).

    Google Scholar 

  2. Priestley, J., The History and Present State of Electricity, 3rd ed, London, (1775).

    Google Scholar 

  3. Hoppe, E., Geschichte der Elektrizität. J. A. Barth, Leipzig, (1884).

    Google Scholar 

  4. Hoppe, E., “Geschichte der Physik – Dritte Periode von Galvani bis 1820 – 12. Galvanismus,” in Handbuch der Physik I - Geschichte der Physik, Geiger, H. and Scheel, K., (Eds.). pp. 70–80, (1926).

    Google Scholar 

  5. Dibner, B., Galvani - Volta. A Controversy that led to the Discovery of Useful Electricity. Burndy Library, Norwalk, Connecticut, (1952).

    Google Scholar 

  6. Meyer, H.W., A History of Electricity and Magnetism. Burndy Library, Norwalk, Connecticut, (1971).

    Google Scholar 

  7. Bowers, B., A History of Electric Light and Power. Peter Peregrinus Ltd., London, (1991).

    Google Scholar 

  8. Dahl, P., Flash of the Cathode Ray. A History of J J Thomson’s Electron. Institute of Physics Publishing, Bristol, (1997).

    Book  Google Scholar 

  9. Heilbron, J.L., Electricity in the 17th and 18th Centuries. Dover Publications, Mineola, New York, (1999).

    Google Scholar 

  10. Mott-Smith, H.M., Nature233, 219, (1971).

    Article  ADS  Google Scholar 

  11. Anders, A., Tracking down the origin of arc plasma physics. I Early pulsed and oscillating discharges, IEEE Trans. Plasma Sci.31, 1052–1059, (2003).

    Article  ADS  Google Scholar 

  12. Anders, A., Tracking down the origin of arc plasma physics. II Early continuous discharges, IEEE Trans. Plasma Sci.31, 1060–1069, (2003).

    Article  ADS  Google Scholar 

  13. Gordon, A., Versuch einer Erklärung der Electricität (2 Vol.), Erfurt, Germany, (1745, 1746).

    Google Scholar 

  14. van Musschenbroek, P., “Letter to Réaumur, dated Jan. 20, 1746, in: Académie des Sciences, Paris, Procès verbaux LXV, 1746; see also p. 313 in J.L. Heilbron, Electricity in the 17th and 18th Century, Dover Publications, Mineola, NY, 1999.

    Google Scholar 

  15. Perez, A., Melinon, P., Paillard, V., et al., “Nanocrystalline structures prepared by neutral cluster beam deposition,” Second International Conference on Nanostructured Materials, Stuttgart, Germany, 43–52, (1994).

    Google Scholar 

  16. Kuhfeld, E., “The Bakken, Library and Museum of Electricity in Life, Minneapolis, MN, personal communication,” 2002.

    Google Scholar 

  17. Gorokhovsky, V., Heckerman, B., Watson, P., and Bekesch, N., The effect of multilayer filtered arc coatings on mechanical properties, corrosion resistance and performance of periodontal dental instruments, Surf. Coat. Technol.200, 5614–5630, (2006).

    Article  Google Scholar 

  18. Priestley, J., Experiments and observations on different kinds of air (in three volumes). J. Johnson, London, (1775).

    Google Scholar 

  19. Schofield, R.E., The Enlightment of Joseph Priestley. A Study of His Life and Work from 1733 to 1773. The Pennsylvania State University, University Park, PA, (1997).

    Google Scholar 

  20. Priestley, J., Autobiography of Joseph Priestley (with an Introduction by Jack Lindsay, and Memoirs written by Himself). Adams & Dart, Bath, UK, (1970).

    Google Scholar 

  21. Schofield, R.E., “Introduction,” in The History and Present State of Electricity by J. Priestley, Reprint of the 3rd edition of 1775, vol. I. pp.ix–xlix, Johnson Reprint Corporation, New York, (1966).

    Google Scholar 

  22. Priestley, J., Histoire de l’Electricite. Traduite de ’Anglois avec de Notes critiques, 3rd ed. Herissant, Paris, (1771).

    Google Scholar 

  23. Priestley, J., Geschichte und gegenwärtiger Zustand der Elektricität, nebst eigenthümlichen Versuchen. Nach der zweyten und verbesserten Ausgabe aus dem Englischen übersetzt und mit Anmerkungen begleitet von D. Johann Georg Krünitz. Gottlib August Lange, Berlin und Stralsund, (1772).

    Google Scholar 

  24. Priestley, J., “Experiments on the effect on the electrical explosion discharged through a brass chain, and other metallic substances,” in The History and Present State of Electricity with Original Experiments, Third Edition, Vol. II. pp. 277–307, London, (1775).

    Google Scholar 

  25. Priestley, J., “Experiments in which rings, consisting of all the prismatic colours, where made by electrical explosions on the surface of metals,” in The History and Present State of Electricity, vol. II. pp. 329–335, London, (1775).

    Google Scholar 

  26. Galvani, L., De viribus electricitatis in motu musculari, Commentarii BononiesiVII, 363, (1791).

    Google Scholar 

  27. Henly, W., An account of a new electrometer, contrived by Mr. Henly, and of several electrical experiments made by him, Phil. Trans. Roy. Soc. (London)62, 359–364, (1772).

    Google Scholar 

  28. Lane, T., Description of an electrometer invented by Mr. Lane; with an account of some experiments made by him with it: Letter to Benjamin Franklin, LLD FRS, of October 15, 1766., Phil. Trans.57, 451–460, (1767).

    Google Scholar 

  29. Kragh, H., “Confusion and Controversy: Nineteenth-Century Theories of the Voltaic Pile,” in Nuova Voltania: Studies on Volta and his Times, vol. 1, Bevilacqua, F. and Fregonese, L., (Eds.). pp. 133–157, Editore Ulrico Hoepli, Milano, Italy, (2000).

    Google Scholar 

  30. Volta, A., On the electricity excited by the mere contact of conducting substances of different kinds, Phil. Trans.II, 403–431, (1800).

    ADS  Google Scholar 

  31. Volta, A., On the electricity excited by the mere contact of conducting substances of different kinds, Phil. Mag.VIII, 289–311, (1800).

    Article  Google Scholar 

  32. de Andrade Martins, R., “Romagnosi and Volta’s pile: Early difficulties in the interpretation of Voltaic electricity,” in Nuova Voltania: Studies on Volta and his Times, vol. 3, Bevilacqua, F. and Fregonese, L., (Eds.). pp. 81–102, Editore Ulrico Hoepli, Milano, Italy, (2000).

    Google Scholar 

  33. Nicholson, W., Account of the new electrical or galvanic apparatus of Sig. Alex. Volta, and experiments performed with the same, J. Nat. Philos. Chem. Arts.4, 179, (1800).

    Google Scholar 

  34. Nicholson, W., Carlisle, A., and Cruickshank, W., Experiments on galvanic electricity, Phil. Mag.7, 337–350, (1800).

    Article  Google Scholar 

  35. Ritter, J.W., Neue Versuche und Bemerkungen über den Galvanismus, Annalen der Physik19, 1–44, (1805).

    Google Scholar 

  36. Ohm, G.S., Die galvanische Kette, mathematisch bearbeitet. T.H. Riemann, Berlin, (1827).

    Google Scholar 

  37. Davy, H., Additional experiments on Galvanic electricity, in a letter to Mr. Nicholson, dated September 22, 1800, (Nicholson’s) J. Nat. Philos. Chem. ArtsIV, also in The Collected Works of Sir Humphry Davy, edited by his brother John Davy, vol. II, Early Miscellaneous Papers, London: Smith, Elder, and Cornhill, 1839, pp. 155–163, (1800).

    Google Scholar 

  38. Priestley, J., “Letter from Dr. Priestley [to Humphry Davy], dated October 31, 1801,” in Fragmentary Remains, Literary and Scientific, of Sir Humphry Davy, Davy, H., (Ed.). pp. 51–53, John Churchill, London, (1858).

    Google Scholar 

  39. Davy, H., “An account of some experiments on galvanic electricity made in the theatre of the Royal Institution (From Journals of the Royal Institution, vol. i, 1802),” in The Collected Works of Sir Humphry Davy. Vol. II: Early Miscellaneous Papers, Davy, J., (Ed.). pp. 211–213, Smith, Elder, and Co. Cornhill, London, (1839).

    Google Scholar 

  40. Petrov, V.V., Announcements on Galvano-Voltaic experiments, conducted by the Professor of Physics Vasilii Petrov, based on an enormous battery, consisting of 4200 copper and zinc disks, located at St. Petersburg’s Medical and Surgical Academy (in Russian). St. Petersburg’s Medical and Surgical Academy, St. Petersburg, Russia, (1803).

    Google Scholar 

  41. Kartsev, V., Learning and discovering in a library (in Russian). posted at http://n-t.ru/ri/kr/pu26.htm, (2001).

  42. Davy, H., On some chemical agencies of electricity (Bakerian Lecture of 1807), Phil. Trans. Roy. Soc. (London)97, 1–56, (1807).

    Google Scholar 

  43. Davy, H., “Bakerian Lecture read before the Royal Society, Nov. 19, 1807: On some new phenomena of chemical changes produced by electricity, particularly the decomposition of the fixed alkalies, and the exhibition of the new substances which constitute their bases; and on the general nature of alkaline bodies,” in The Collected Works of Sir Humphry Davy. Vol. V: Bakerian Lectures and Miscellaneous Papers from 1806 to 1815., Davy, J., (Ed.). pp. 57–101, Smith, Elder, and Co. Cornhill, London, (1840).

    Google Scholar 

  44. Alglave, E. and Boulard, J., The Electric Light: Its History, Production, and Application. D. Appleton and Company, New York, (1884).

    Google Scholar 

  45. Knight, D., Humphry Davy, Science and Power. Cambridge University Press, Cambridge, UK, (1992).

    Google Scholar 

  46. Bowers, B., Lengthening the Day. A History of Lighting Technology. Oxford University Press, Oxford, (1998).

    Google Scholar 

  47. James, F.A.J.L., “Guides to the Royal Institution of Great Britain: 1. History,” Royal Institution of Great Britain, London http://www.rigb.org/heritage/, (2000).

  48. Thomas, J.M., Michael Faraday and the Royal Institution. The Genius of Man and Place. Institute of Physics Publishing, Bristol and Philadelphia, (1991).

    Google Scholar 

  49. Armagnat, H., The Theory, Design and Construction of Induction Coils. McGraw Publishing Company, New York, (1908).

    Google Scholar 

  50. Davis Jr., D., Davis’s Manual of Magnetism, including Galvanism, Magnetism, Electro-Magnetism, Electro-Dynamics, Magneto-Electricity, and Thermo-Electricity, 12th ed. Palmer and Hall, Boston, (1857).

    Google Scholar 

  51. Porter, R., The Biographical Dictionary of Scientists, 2nd ed. Oxford University Press, New York, (1994).

    Google Scholar 

  52. Grove, W.R., On the electro-chemical polarity of gases, Phil. Trans. Roy. Soc. London142, 87–101, (1852).

    Article  ADS  Google Scholar 

  53. Grove, W.R., On the electro-chemical polarity of gases, Phil. Mag., 498–515, (1852).

    Google Scholar 

  54. Wright, A.W., On the production of transparent films by the electrical discharge in exhausted tubes, Am. J. Sci. Arts 3rd Series13, 49–55, (1877).

    Google Scholar 

  55. Plücker, J., Observations on the electrical discharge through rarefied gases, The London, Edinburgh, and Dublin Philosophical Magazine16, 408–418, (1858).

    Article  Google Scholar 

  56. Faraday, M., Experimental Relations of Gold (and other metals) to light (The Bakerian Lecture), Phil. Trans.147, 145–181, (1857).

    Article  Google Scholar 

  57. Webster, N., Webster’s Universal Dictionary. The World Publishing Company, Cleveland, OH, (1940).

    Google Scholar 

  58. Stokes, G.G., On the long spectrum of electric light, Phil. Trans. Roy. Soc. London152 part II, 599–619, (1862).

    Article  ADS  Google Scholar 

  59. Campbell, L. and Garnett, W., The Life of James Clerk Maxwell, with a Selection from his Correspondence and Occasional Writings and a Sketch of His Contributions to Science. MacMillan and Co., London, (1882).

    Google Scholar 

  60. Boxman, R.L. and Goldsmith, S., “Vacuum arc deposition in the 19th century,” XIV Int. Symp. Discharges and Electrical Insulation in Vacuum, Santa Fe, NM, (1990).

    Google Scholar 

  61. Boxman, R.L., Early history of vacuum arc deposition, IEEE Trans. Plasma Sci.29, 759–761, (2001).

    Article  ADS  Google Scholar 

  62. Lecher, E., Ueber electromotorische Gegenkräfte in galvanischen Lichterscheinung, (Wiedemann’s) Annalen der Physik und Chemie33, 609–637, (1888).

    Google Scholar 

  63. Goldstein, E., über eine noch nicht untersuchte Strahlungsform an der Kathode inducirter Entladungen, Sitzungsberichte der Königlichen Akademie der Wissenschaften zu Berlin39, 691–699, (1886).

    Google Scholar 

  64. Edison, T.A., “Art of plating one material with another,” patent U.S. 526,147 (1894).

    Google Scholar 

  65. Edison, T.A., “Process of duplicating phonograms,” patent U.S. 484,582 (1892).

    Google Scholar 

  66. Edison, T.A., “Process of coating phonograph-records,” patent US 713,863 (1902).

    Google Scholar 

  67. Waits, R.K., Edison’s vacuum coating patents, J. Vac. Sci. Technol. A19, 1666–1673, (2001).

    Article  ADS  Google Scholar 

  68. Thomson, J.J., Phil. Mag.48, 547, (1899).

    Article  Google Scholar 

  69. Redhead, P.A., The birth of electronics: Thermionic emission and vacuum, J. Vac. Sci. Technol. A16, 1394–1401, (1998).

    Article  ADS  Google Scholar 

  70. Schuster, A., On the constitution of the electric spark, Nature57, 17, (1897).

    Google Scholar 

  71. Feddersen, W., über die electrische Funkenentladung, (Poggendorff’s) Annalen der Physik und Chemie113, 437–467, (1861).

    Article  ADS  Google Scholar 

  72. Arons, L., Ueber den Lichtbogen zwischen Quecksilber-electroden, Amalgamen, und Legirungen, (Wiedemann’s) Annalen der Physik und Chemie58, 73–95, (1896).

    Article  ADS  Google Scholar 

  73. Einstein, A., über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen, Annalen der Physik17, 549–560, (1905).

    Article  ADS  MATH  Google Scholar 

  74. Einstein, A., Zur Elektrodynamik bewegter Körper, Annalen der Physik17, 891–921, (1905).

    Article  ADS  MATH  Google Scholar 

  75. Einstein, A., Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?, Annalen der Physik18, 639–641, (1905).

    Article  ADS  Google Scholar 

  76. Einstein, A., über einen die Erzeugung und die Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt, Annalen der Physik17, 132–148, (1905).

    Article  ADS  MATH  Google Scholar 

  77. Stark, J., Retschinsky, T., and Schaposchnikoff, A., Untersuchungen über den Lichtbogen, Annalen der Physik18 (4th Series), 213–251, (1905).

    Article  ADS  Google Scholar 

  78. Boersma, K., Structural ways to embed a research laboratory into the company. A comparison between General Electric and Philips in the inter war period, Hist. Technol.19, 109–126, (2003).

    Article  Google Scholar 

  79. Cornwell, J., Hitler’s Scientists. Viking-Penguin, New York, (2003).

    Google Scholar 

  80. Child, C.D., Discharge from hot CaO, Phys. Rev.32, 492–511, (1911).

    ADS  Google Scholar 

  81. Forrester, A.T., Large Ion Beams. Wiley, New York, (1988).

    Google Scholar 

  82. Weintraub, E., Investigation of the arc in metallic vapours in an exhausted space, Phil. Mag.7 (of Series 6), 95–124, (1904).

    Article  Google Scholar 

  83. Ehrich, H., Hasse, B., Mausbach, M., and Müller, K.G., The anodic vacuum arc and its application to coatings, J. Vac. Sci. Technol. A8, 2160–2164, (1990).

    Article  ADS  Google Scholar 

  84. Beilis, I.I., Boxman, R.L., Goldsmith, S., and Paperny, V.L., Radially expanding plasma parameters in a hot refractory anode vacuum arc, J. Appl. Phys.88, 6224–6231, (2000).

    Article  ADS  Google Scholar 

  85. Stark, J., Quecksilber als kathodische Basis des Lichtbogens, Physikalische Zeitschrift5, 750–751, (1904).

    Google Scholar 

  86. Child, C.D., The electric arc in a vacuum, Phys. Rev. (Series I)20, 364–378, (1905).

    Article  ADS  Google Scholar 

  87. Stark, J., Induktionserscheinungen am Quecksilberlichtbogen im Magnetfeld, Z. f. Physik4, 440–443, (1903).

    Google Scholar 

  88. Langmuir, I. and Blodgett, K.B., Current limited by space charge between coaxial cylinders, Phys. Rev.22, 347–356, (1923).

    Article  ADS  Google Scholar 

  89. Langmuir, I., The effect of space charge and initial velocities on the potential distribution and thermionic current between parallel plane electrodes, Phys. Rev. (Series II)21, 419–435, (1923).

    ADS  Google Scholar 

  90. Langmuir, I. and Blodgett, K.B., Current limited by space charge between concentric spheres, Phys. Rev.24, 49–59, (1924).

    Article  ADS  Google Scholar 

  91. Child, C.D., The electric arc, Phys. Rev. (Series I)19, 117–137, (1904).

    Article  ADS  Google Scholar 

  92. Granqvist, G., über die Bedeutung des Wärmeleitvermögens der Elektroden bei dem elektrischen Lichtbogen, Nova Acta Reg. Soc. Sc. Upsala20 (series III), 1-56 and 2 plates, (1903).

    Google Scholar 

  93. Zuchristan, Wien. Ber.102, 567–576, (1893).

    Google Scholar 

  94. Stark, J., Zündung des Lichtbogens an Metalloxyden, Physikalische Zeitschrift5, 81–83, (1904).

    Google Scholar 

  95. Buttolph, L.J., The Cooper Hewitt mercury vapor lamp, Gen. Elec. Rev.23, 741–751, (1920).

    Google Scholar 

  96. Germeshausen, K.J., A new form of band igniter for mercury-pool tubes, Phys. Rev.55, 228, (1939).

    Article  ADS  Google Scholar 

  97. Richardson, O.W., On the negative radiation from hot platinum, Proc. Cambridge Phil. Soc.11, 286–295, (1901).

    Google Scholar 

  98. Richardson, O.W., Emission of Electricity from Hot Bodies, 2nd ed. Longmans, Green & Co., New York, (1921).

    Google Scholar 

  99. Dushman, S., Electron emission from metals as a function of temperature, Phys. Rev.21, 623–636, (1923).

    Article  ADS  Google Scholar 

  100. Dushman, S., Thermionic emission, Rev. Mod. Phys.2, 381–476, (1930).

    Article  ADS  Google Scholar 

  101. Schottky, W., Zeitschrift für Physik14, 80, (1923).

    Article  Google Scholar 

  102. Dryvesteyn, M.J., Electron emission of the cathode of an arc, Nature137, 580, (1936).

    Article  ADS  Google Scholar 

  103. Suits, C.G. and Hocker, J.P., Role of oxidation in arc cathodes, Phys. Rev.53, 670, (1938).

    Article  ADS  Google Scholar 

  104. Cobine, J.D., Gaseous Conductors: Theory and Engineering Applications. Dover, New York, (1958 (first edition 1941)).

    Google Scholar 

  105. Cobine, J.D., Effects of oxides and impurities on metallic arc reignition, Phys. Rev.53, 911, (1938).

    Article  ADS  Google Scholar 

  106. Nottingham, W.B., Remarks on the energy loss attending thermionic emission of electrons from metals, Phys. Rev.59, 906–907, (1941).

    Article  ADS  Google Scholar 

  107. Smyth, H.D. and Wilson, R.R., “The “Isotron” method of separating tuballoy isotopes. General report covering period from December 1, 1941, to May 15, 1942. Princeton University OSRD project SSRC-5. – SECRET. Classification canceled April 23, 1952.,” Princeton University, Princeton (1942).

    Google Scholar 

  108. Brown, I.G., Galvin, J.E., MacGill, R.A., and Wright, R.T., Improved time-of-flight charge state diagnostic, Rev. Sci. Instrum.58, 1589–1592, (1987).

    Article  ADS  Google Scholar 

  109. Brown, I.G., Feinberg, B., and Galvin, J.E., Multiply stripped ion generation in the metal vapor vacuum arc, J. Appl. Phys.63, 4889–4898, (1988).

    Article  ADS  Google Scholar 

  110. Günterschulze, A., Z. f. Physik11, 71, (1922).

    Article  ADS  Google Scholar 

  111. Tonks, L., Physics6, 294, (1935).

    Article  ADS  Google Scholar 

  112. Cobine, J.D. and Gallagher, C.J., Current density of the arc cathode spot, Phys. Rev.74, 1524–1530, (1948).

    Article  ADS  Google Scholar 

  113. Erwin, S., Untersuchungen über die Bewegung des Brennflecks auf der Kathode eines Quecksilberdampf-Niederdruckbogens, Annalen der Physik (Leipzig)439, 246–270, (1949).

    Article  Google Scholar 

  114. Froome, K.D., The rate of growth of current and the behavior of the cathode spot in transient arc discharges, Proc. Phys. Soc. (London)60, 424, (1948).

    Article  ADS  Google Scholar 

  115. Bertele, H.V., Current densities of free-moving cathode spots on mercury, Brit. J. Appl. Phys.3, 358–360, (1952).

    Article  ADS  Google Scholar 

  116. Froome, K.D., Current densities of free-moving cathode spots on mercury, Brit. J. Appl. Phys.4, 91, (1953).

    Article  ADS  Google Scholar 

  117. Mueller, E.W., Z. f. Physik106, 541, (1937).

    Article  ADS  Google Scholar 

  118. Dyke, W.P. and Trolan, J.K., Field Emission: large current densities, space charge, and the vacuum arc, Phys. Rev.89, 799–808, (1953).

    Article  ADS  Google Scholar 

  119. Kesaev, I.G., Cathode Processes in the Mercury Arc (authorized translation from the Russian). Consultants Bureau, New York, (1964).

    Book  Google Scholar 

  120. Kesaev, I.G., Cathode Processes of an Electric Arc (in Russian). Nauka, Moscow, (1968).

    Google Scholar 

  121. Rakhovskii, V.I., Physical Foundations of Switching Electric Current in Vacuum (in Russian). Nauka, Moscow, (1970).

    Google Scholar 

  122. Anders, S., Anders, A., and Jüttner, B., Brightness distribution and current density of vacuum arc cathode spots, J. Phys. D: Appl. Phys.25, 1591–1599, (1992).

    Article  ADS  Google Scholar 

  123. Hantzsche, E., Jüttner, B., and Ziegenhagen, G., Why vacuum arc cathode spots can appear larger than they are, IEEE Trans. Plasma Sci.23, 55–64, (1995).

    Article  ADS  Google Scholar 

  124. Achtert, J., Altrichter, B., Jüttner, B., Pech, P., Pursch, H., Reiner, H.-D., Rohrbeck, W., Siemroth, P., and Wolff, H., Influence of surface contaminations on cathode processes of vacuum discharges, Beitr. Plasmaphys.17, 419–431, (1977).

    Article  Google Scholar 

  125. Jüttner, B., Erosion craters and arc cathode spots, Beitr. Plasmaphys.19, 25–48, (1979).

    Article  Google Scholar 

  126. Bugaev, S.P., Litvinov, E.A., Mesyats, G.A., and Proskurovskii, D.I., Explosive emission of electrons, Sov. Phys. Usp.18, 51–61, (1975).

    Article  ADS  Google Scholar 

  127. Litvinov, E.A., Mesyats, G.A., and Proskurovskii, D.I., Field emission and explosive emission processes in vacuum discharges, Sov. Phys. Usp.26, 138, (1983).

    Article  ADS  Google Scholar 

  128. Mesyats, G.A. and Proskurovsky, D.I., Pulsed Electrical Discharge in Vacuum. Springer-Verlag, Berlin, (1989).

    Book  Google Scholar 

  129. Schülke, T. and Siemroth, P., Vacuum arcs cathode spots as a self-similarity phenomenon, IEEE Trans. Plasma Sci.24, 63–64, (1996).

    Article  ADS  Google Scholar 

  130. Anders, A., The fractal nature of cathode spots, IEEE Trans. Plasma Sci.33, 1456–1464, (2005).

    Article  ADS  Google Scholar 

  131. Feddersen, W., über die electrische Funkenentladung, (Poggendorff’s) Annalen der Physik und Chemie116, 132–171, (1862).

    Article  ADS  Google Scholar 

  132. Sellerio, A., Phil. Mag.44, 765–777, (1922).

    Article  Google Scholar 

  133. Tanberg, R., On the cathode of an arc drawn in vacuum, Phys. Rev.35, 1080–1089, (1930).

    Article  ADS  Google Scholar 

  134. Kobel, E., Pressure and high velocity vapour jets at cathodes of a mercury vacuum arc, Phys. Rev.36, 1636–1638, (1930).

    Article  ADS  Google Scholar 

  135. Compton, K.T., An interpretation of pressure and high velocity vapor jets at cathodes of vacuum arcs, Phys. Rev.36, 706–708, (1930).

    Article  ADS  Google Scholar 

  136. Slepian, J. and Mason, R.C., High velocity vapor jets at cathodes of vacuum arcs, Phys. Rev.37, 779–780, (1931).

    Article  ADS  Google Scholar 

  137. Tanberg, R., On the temperature of cathode in vacuum arc, Phys. Rev.38, 296–304, (1931).

    Article  ADS  Google Scholar 

  138. Tonks, L., The pressure of plasma electrons and the force on the cathode of an arc, Phys. Rev.46, 278–279, (1934).

    Article  ADS  Google Scholar 

  139. Robertson, R.M., The force on the cathode of a copper arc, Phys. Rev.53, 578–582, (1938).

    Article  ADS  Google Scholar 

  140. Kesaev, I.G., Laws governing the cathode drop and the threshold currents in an arc discharge on pure metals, Sov. Phys. – Techn. Phys.9, 1146–1154, (1965).

    Google Scholar 

  141. Plyutto, A.A., Ryzhkov, V.N., and Kapin, A.T., High speed plasma streams in vacuum arcs, Sov. Phys. JETP20, 328–337, (1965).

    Google Scholar 

  142. Davis, W.D. and Miller, H.C., Analysis of the electrode products emitted by dc arcs in a vacuum ambient, J. Appl. Phys.40, 2212–2221, (1969).

    Article  ADS  Google Scholar 

  143. Lunev, V.M., Padalka, V.G., and Khoroshikh, V.M., Plasma properties of a metal vacuum arc. II, Sov. Phys. Tech. Phys.22, 858–861, (1977).

    ADS  Google Scholar 

  144. Wieckert, C., The expansion of the cathode spot plasma in vacuum arc discharges, Phys. Fluids30, 1810–1813, (1987).

    Article  ADS  Google Scholar 

  145. Hantzsche, E., Two-dimensional models of expanding vacuum arc plasmas, IEEE Trans. Plasma Sci.23, 893–898, (1995).

    Article  ADS  Google Scholar 

  146. Beilis, I.I., “Theoretical modeling of cathode spot phenomena,” in Handbook of Vacuum Arc Science and Technology, Boxman, R.L., Martin, P.J., and Sanders, D.M., (Eds.). pp. 208–256, Noyes, Park Ridge, N.J., (1995).

    Google Scholar 

  147. Lucas, M.S.P., Owen, J.H.A., Stewart, W.C., and Vail, C.R., Vacuum-arc evaporation of refractory metals, Rev. Sci. Instrum.32, 203–204, (1961).

    Article  ADS  Google Scholar 

  148. Lucas, M.S.P., Vail, C.R., Stewart, W.C., and Owen, H.A., “A new deposition technique for refractory metal films,” 8th National Vacuum Symposium combined with the Second International Congress on Vacuum Science and Technology, Washington D.C., 988–991, (1961).

    Google Scholar 

  149. Catani, L., Cianchi, A., Lorkiewicz, J., et al., Cathodic arc grown niobium films for RF superconducting cavity applications, Physica C: Superconductivity441, 130–133, (2006).

    Article  ADS  Google Scholar 

  150. Langner, J., Mirowski, R., Sadowski, M.J., et al., Deposition of superconducting niobium films for RF cavities by means of UHV cathodic Arc, Vacuum80, 1288–1293, (2006).

    Article  ADS  Google Scholar 

  151. Naoe, M. and Yamanaka, S., Nickel ferrite thick films deposited by vacuum-arc discharge, Jap. J. Appl. Phys.9, 293–301, (1970).

    Article  ADS  Google Scholar 

  152. Naoe, M. and Yamanaka, S., Vacuum-arc evaporations of ferrites and compositions of their deposits, Jap. J. Appl. Phys.10, 747–753, (1971).

    Article  ADS  Google Scholar 

  153. Aksenov, I.I. and Andreev, A.A., Vacuum arc coating technologies at NSC KIPT, Problems Atomic Sci. Technol., Series: Plasma Physics3, 242–246, (1999).

    Article  Google Scholar 

  154. Sablev, L.P., Usov, V.V., Romanov, A.A., Dolotov, J.I., Lunev, V.M., Lutsenko, V.N., Atamansky, N.P., and Kushnir, A.S., patent USSR N235523 (1966).

    Google Scholar 

  155. Romanov, A.A. and Andreev, A.A., patent USSR N367755 (1970).

    Google Scholar 

  156. Romanov, A.A., Andreev, A.A., and Kozlov, V.N., patent USSR N284883 (1969).

    Google Scholar 

  157. Lunev, V.M. and Samoilov, V.P., (in Russian), Sintetis Almazy (Diamond Synthesis)no.4, 28, (1977).

    Google Scholar 

  158. Aksenov, I.I., Bren’, V.G., Padalka, V.G., and Khoroshikh, V.M., Chemical reactions in the condensation of metal-plasma streams, Sov. Phys -Tech. Phys.23, 651–653, (1978).

    Google Scholar 

  159. Andreev, A.A., Bulatova, L.V., Kartmasov, G.N., Kostritsa, T.V., Lunev, V.M., and Romanov, A.A., Fizika i Khimiya Obrabotki Materialov2, 169, (1979).

    Google Scholar 

  160. Odintsov, L.G., Romanov, A.A., Andreev, A.A., Ehtingant, A.A., Gorelik, V.M., Vereshchaka, A.S., and Pylinin, O.V., patent USSR N607659 (1976).

    Google Scholar 

  161. Andreev, A.A., Romanov, A.A., Ehtingant, A.A., and Vereshchaka, A.S., patent USSR N819217 (1976).

    Google Scholar 

  162. Sablev, L.P., Dolotov, Y.I., Stupak, R.I., and Osipov, V.A., Electric-arc vaporizer of metals with magnetic confinement of cathode spot, Instrum. Exp. Tech.19, 1211–1213, (1976).

    Google Scholar 

  163. Aksenov, I.I. and Andreev, A.A., Motion of the cathode spot of a vacuum arc in an inhomogeneous magnetic field, Sov. Tech. Phys. Lett.3, 525–526, (1977).

    Google Scholar 

  164. Sablev, L.P., Electric-arc vaporizer of metals with magnetic confinement of cathode spot, Instrum. Exp. Tech.22, 1174, (1979).

    Google Scholar 

  165. Aksenov, I.I., Padalka, V.G., and Khoroshykh, V.M., Investigation of a flow of plasma generated by a stationary erosion electric arc accelerator with magnetic confinement of the cathode spot, Sov. J. Plasma Phys.5, 341, (1979).

    ADS  Google Scholar 

  166. Lunev, V.M., Padalka, V.G., and Khoroshikh, V.M., Plasma properties of a metal vacuum arc. I, Sov. Phys. Tech. Phys.22, 855–858, (1977).

    ADS  Google Scholar 

  167. Lunev, V.M., Samoilov, V.P., Zubar’, V.P., Digtenko, V.G., and Kokoshko, M.D., (in Russian), Sintetis Almazy (Diamond Synthesis)no.4, 26, (1978).

    Google Scholar 

  168. Matyushenko, N.N., Strel’nitskii, V.E., and Romanov, A.A., (in Russian), Doklady Akad. Nauk UkrSSR, Ser. A5, 459, (1976).

    Google Scholar 

  169. Strel’nitskii, V.E., Matyushenko, N.N., Romanov, A.A., and Tolok, V.T., (in Russian), Doklady Akad. Nauk UkrSSR, Ser. A8, 760, (1977).

    Google Scholar 

  170. Strel’nitskii, V.E., Padalka, V.G., and Vakula, S.I., Properties of the diamond-like carbon film produced by the condensation of a plasma stream with an RF potential, Sov. Phys.-Techn. Phys.23, 222–224, (1978).

    Google Scholar 

  171. Vakula, S.I., Padalka, V.G., Strel’nitskii, V.E., and Cheoskin, A.I., Sverkhtverdye Materialii (Superhard Materials)no.1, 18, (1980).

    Google Scholar 

  172. Vakula, S.I., Padalka, V.G., Strel’nitskii, V.E., and Usoskin, A.I., Optical properties of diamond-like carbon films, Sov. Techn. Phys. Lett.5, 573–574, (1979).

    Google Scholar 

  173. Aksenov, I.I., Vakula, S.I., Kunchenko, V.V., Matyushenko, N.N., Ostapenko, I.L., Padalka, V.G., and Strel’nitskii, V.E., Sverkhtverdye Materialii (Superhard Materials)no.3, 12, (1980).

    Google Scholar 

  174. Kikuchi, M., Nagakura, S., Ohmura, H., and Oketani, S., Structures of the metal films produced by vacuum-arc evaporation method, Jap. J. Appl. Phys.4, 940, (1965).

    Article  ADS  Google Scholar 

  175. Kuznetsov, I., “Electron beam evaporation processes in the Soviet Union,” 21st Annual Technical Conference Proceedings of the Society of Vacuum Coaters, 87, (1978).

    Google Scholar 

  176. Wroe, H., The magnetic stabilization of low pressure d.c. arcs, Brit. J. Appl. Phys.9, 488–491, (1958).

    Article  ADS  Google Scholar 

  177. Wroe, H., “Stabilisation of low pressure D.C. arc discharges,” patent US 2,972,695 (1961).

    Google Scholar 

  178. Minorsky, M.N., La rotation de l’arc électrique dans un champ magnétique radial, Le Journal de Physique et Le Radium9, 127–136, (1928).

    Article  Google Scholar 

  179. Smith, C.G., Motion of an arc in a magnetic field, J. Appl. Phys.28, 1328–1331, (1957).

    Article  ADS  Google Scholar 

  180. Robson, A.E. and von Engel, A., Origin of retrograde motion of arc cathode spots, Phys. Rev.93, 1121–1122, (1954).

    Article  ADS  Google Scholar 

  181. Daalder, J.E., Components of cathode erosion in vacuum arcs, J. Phys. D: Appl. Phys.9, 2379–2395, (1976).

    Article  ADS  Google Scholar 

  182. Lafferty, J.M., Vacuum Arcs – Theory and Applications. Wiley, New York, (1980).

    Google Scholar 

  183. Gilmour, A. and Lockwood, D.L., Pulsed metallic-plasma generator, Proc. IEEE60, 977–992, (1972).

    Article  Google Scholar 

  184. Snaper, A.A., “Arc deposition process and apparatus,” patent US 3,836,451 (1974).

    Google Scholar 

  185. Smith Jr., H.R., “Current vacuum coating processes in the Soviet Union,” 25th Technical Conference Proceedings, Society of Vacuum Coaters, 179–189, (1983).

    Google Scholar 

  186. Bergman, C., “Arc plasma physical vapor deposition,” 28th Annual SVC Technical Conference, Philadelphia, PA, 175–191, (1985).

    Google Scholar 

  187. Johnson, P.C., “Cathodic arc plasma deposition processes and their applications,” 30th Annual SVC Technical Conference, 317–324, (1987).

    Google Scholar 

  188. Randhawa, H., Cathodic arc plasma deposition technology, Thin Solid Films167, 175–185, (1988).

    Article  ADS  Google Scholar 

  189. Sanders, D.M., Boercker, D.B., and Falabella, S., Coatings technology based on the vacuum arc – a review, IEEE Trans. Plasma Sci.18, 883–894, (1990).

    Article  ADS  Google Scholar 

  190. Vergason, G. and Papa, A., “Selection of materials and techniques for performance coatings,” 42 nd Annual SVC Technical Conference, 53–57, (1999).

    Google Scholar 

  191. Vergason, G. and Papa, A., “Rapid cycle coating techniques for cell manufacturing,” 40th Annual SVC Technical Conference, New Orleans, LA, 54–57, (1997).

    Google Scholar 

  192. Fleischer, W., Trinh, T., van der Kolk, G.J., Hurkmans, T., and Franck, M., “Decorative PVD hardcoatings in a wide colour range on different substrate materials,” 41st Annual SVC Technical Conference, 33–37, (1998).

    Google Scholar 

  193. Bouix, M.H., “The combination of “gold plating” and high wear resistance of PVD,” 42 nd Annual SVC Technical Conference, Boston, MA, 83–84, (1998).

    Google Scholar 

  194. Münz, W.-D., Schulze, D., and Hauzer, F.J.M., A new method for hard coatings – ABS (arc bond sputtering), Surf. Coat. Technol.50, 169–178, (1992).

    Article  Google Scholar 

  195. Burkhardt, W. and Reinecke, R., “Method of coating articles by vaporized coating materials,” patent US 2,157,478 (1939).

    Google Scholar 

  196. Lawson, J.D., (ed.) Fusion’s History, http://www.iter.org/, (1993).

  197. Voitsenya, V.S., Gorbanyuk, A.G., Onishchenko, I.N., Safronov, B.G., Khizhniyak, N.A., and Shkoda, V.V., Motion of a plasmoid in a curvilinear magnetic field, Sov. Phys. Tech. Phys.12, 185–192, (1967).

    Google Scholar 

  198. Aksenov, I.I., Belous, V.A., Padalka, V.G., and Khoroshikh, V.M., Apparatus to rid the plasma of a vacuum arc of macroparticles, Instrum. Exp. Tech.21, 1416–1418, (1978).

    Google Scholar 

  199. Aksenov, I.I., Belous, V.A., Padalka, V.G., and Khoroshikh, V.M., Transport of plasma streams in a curvilinear plasma-optics system, Sov. J. Plasma Phys.4, 425–428, (1978).

    ADS  Google Scholar 

  200. Axenov, I.I., Belous, V.A., Padalka, V.G., and Khoroshikh, V.M., “Arc plasma generator and a plasma arc apparatus for treating the surface of work-pieces, incorporating the same arc plasma generator,” patent US 4,452,686 (1984).

    Google Scholar 

  201. Aksenov, I.I., Belokhvostikov, A.N., Padalka, V.G., Repalov, N.S., and Khoroshikh, V.M., Plasma flux motion in a toroidal plasma guide, Plasma Phys. Controlled Fusion28, 761–770, (1986).

    Article  ADS  Google Scholar 

  202. Schemmel, T.D., Cunningham, R.L., and Randhawa, H., Process for high rate deposition of Al2O3, Thin Solid Films181, 597–601, (1989).

    Article  ADS  Google Scholar 

  203. Martin, P.J., Netterfield, R.P., Bendavid, A., and Kinder, T.J., “Properties of thin films produced by filtered arc deposition,” 36th Annual SVC Technical Conference, Dallas, TX, 375–378, (1993).

    Google Scholar 

  204. Martin, P.J., Netterfield, R.P., Kinder, T.J., and Descotes, L., Deposition of TiN, TiC, and TiO2 films by filtered arc evaporation, Surf. Coat. Technol.49, 239–243, (1991).

    Article  Google Scholar 

  205. Martin, P.J., Netterfield, R.P., Bendavid, A., and Kinder, T.J., The deposition of thin films by filtered arc evaporation, Surf. Coat. Technol.54, 136–142, (1992).

    Article  Google Scholar 

  206. Baldwin, D.A. and Fallabella, S., “Deposition processes utilizing a new filtered cathodic arc source,” Proc. of the 38th Annual Techn. Conf., Society of Vacuum Coaters, Chicago, 309–316, (1995).

    Google Scholar 

  207. Shi, X., Flynn, D.I., Tay, B.K., and Tan, H.S., “Filtered cathodic arc source,” patent WO 96/26531 (1996).

    Google Scholar 

  208. Shi, X., Fulton, M., Flynn, D.I., Tay, B.K., and Tan, H.S., “Deposition apparatus,” patent WO 96/26532 (1996).

    Google Scholar 

  209. Anders, S., Anders, A., Dickinson, M.R., MacGill, R.A., and Brown, I.G., S-shaped magnetic macroparticle filter for cathodic arc deposition, IEEE Trans. Plasma Sci.25, 670–674, (1997).

    Article  ADS  Google Scholar 

  210. Anders, A. and MacGill, R.A., Twist filter for the removal of macroparticles from cathodic arc plasmas, Surf. Coat. Technol.133–134, 96–100, (2000).

    Article  Google Scholar 

  211. Ryabchikov, A.I. and Stepanov, I.B., Investigations of forming metal-plasma flows filtered from microparticle fraction in a vacuum arc evaporator, Rev. Sci. Instrum.69, 810–812, (1998).

    Article  ADS  Google Scholar 

  212. Bilek, M.M.M., Anders, A., and Brown, I.G., Characterization of a linear Venetian-blind macroparticle filter for cathodic vacuum arcs, IEEE Trans. Plasma Sci.27, 1197–1202, (1999).

    Article  ADS  Google Scholar 

  213. Siemroth, P. and Schülke, T., Copper metallization in microelectronics using filtered vacuum arc deposition – principles and technological development, Surf. Coat. Technol.133–134, 106–113, (2000).

    Article  Google Scholar 

  214. Anders, A., Approaches to rid cathodic arc plasma of macro- and nanoparticles: a review, Surf. Coat. Technol.120–121, 319–330, (1999).

    Article  Google Scholar 

  215. Martin, P.J. and Bendavid, A., Review of the filtered vacuum arc process and materials deposition, Thin Solid Films394, 1–15, (2001).

    Article  ADS  Google Scholar 

  216. Boxman, R.L. and Zhitomirsky, V.N., Vacuum arc deposition devices, Rev. Sci. Instrum.77, 021101–15, (2006).

    Article  ADS  Google Scholar 

  217. Jüttner, B., Characterization of the cathode spot, IEEE Trans. Plasma Sci.PS-15, 474–480, (1987).

    Article  ADS  Google Scholar 

  218. Secker, P.E. and George, I.A., Preliminary measurements of arc cathode current density, J. Phys. D: Appl. Phys.2, 918–920, (1969).

    Article  ADS  Google Scholar 

  219. Guile, A.E. and Jüttner, B., Basic erosion processes of oxidized and clean metal cathodes by electric arcs, IEEE Trans. Plasma Sci.8, 259–269, (1980).

    Article  ADS  Google Scholar 

  220. Siemroth, P., Schülke, T., and Witke, T., Microscopic high speed investigations of vacuum arc cathode spot, IEEE Trans. Plasma Sci.23, 919–925, (1995).

    Article  ADS  Google Scholar 

  221. Siemroth, P., Schülke, T., and Witke, T., Investigations of cathode spots and plasma formation of vacuum arcs by high speed microscopy and spectrography, IEEE Trans. Plasma Sci.25, 571–579, (1997).

    Article  ADS  Google Scholar 

  222. Kleberg, I., “Dynamics of cathode spots in external magnetic field (in German),” Humboldt University: Berlin, Germany, 2001.

    Google Scholar 

  223. Jüttner, B. and Kleberg, I., The retrograde motion of arc cathode spots in vacuum, J Phys. D: Appl. Phys.33, 2025–2036, (2000).

    Article  ADS  Google Scholar 

  224. Anders, A., Anders, S., Jüttner, B., Bötticher, W., Lück, H., and Schröder, G., Pulsed dye laser diagnostics of vacuum arc cathode spots, IEEE Trans. Plasma Sci.20, 466–472, (1992).

    Article  ADS  Google Scholar 

  225. Jüttner, B., The dynamics of arc cathode spots in vacuum, J. Phys. D: Appl. Phys.28, 516–522, (1995).

    Article  ADS  Google Scholar 

  226. Vogel, N., The cathode spot plasma in low-current air and vacuum break arcs, J. Phys. D: Appl. Phys.26, 1655–1661, (1993).

    Article  ADS  Google Scholar 

  227. Mesyats, G.A., Ecton mechanism of the vacuum arc cathode spot, IEEE Trans. Plasma Sci.23, 879–883, (1995).

    Article  ADS  Google Scholar 

  228. Mesyats, G.A., Explosive Electron Emission. URO Press, Ekaterinburg, (1998).

    Google Scholar 

  229. Anders, A., Anders, S., and Brown, I.G., Transport of vacuum arc plasmas through magnetic macroparticle filters, Plasma Sources Sci. Technol.4, 1–12, (1995).

    Article  ADS  Google Scholar 

  230. Bilek, M.M.M. and Brown, I.G., Deposition probe technique for the determination of film thickness profiles, Rev. Sci. Instrum.69, 3353–3356, (1998).

    Article  ADS  Google Scholar 

  231. Shi, X., Tu, Y.Q., Tan, H.S., and Tay, B.K., Simulation of plasma flow in toroidal solenoid filters, IEEE Trans. Plasma Sci.24, 1309–1318, (1996).

    Article  ADS  Google Scholar 

  232. Alterkop, B., Gidalevich, E., Goldsmith, S., and Boxman, R.L., The numerical calculation of plasma beam propagation in a toroidal duct with magnetized electrons and unmagnetized ions, J. Phys. D: Appl. Phys.29, 3032–3038, (1996).

    Article  ADS  Google Scholar 

  233. Alterkop, B., Gidalevich, E., Goldsmith, S., and Boxman, R.L., Propagation of a magnetized plasma beam in a toroidal filter, J. Phys. D: Appl. Phys.31, 873–879, (1998).

    Article  ADS  Google Scholar 

  234. Beilis, I., Djakov, B.E., Jüttner, B., and Pursch, H., Structure and dynamics of high-current arc cathode spots in vacuum, J. Phys. D: Appl. Phys30, 119–130, (1997).

    Article  ADS  Google Scholar 

  235. Beilis, I.I., Keidar, M., Boxman, R.L., and Goldsmith, S., Theoretical study of plasma expansion in a magnetic field in a disk anode vacuum arc, J. Appl. Phys.83, 709–717, (1998).

    Article  ADS  Google Scholar 

  236. Beilis, I.I., The vacuum arc cathode spot and plasma jet: Physical model and mathematical description, Contrib. Plasma Phys.43, 224–236, (2003).

    Article  ADS  Google Scholar 

  237. Anders, A., Metal plasma immersion ion implantation and deposition: a review, Surf. Coat. Technol.93, 157–167, (1997).

    Article  Google Scholar 

  238. Bilek, M.M.M. and McKenzie, D.R., A comprehensive model of stress generation and relief processes in thin films deposited with energetic ions, Surf. Coat. Technol.200, 4345–4354, (2006).

    Article  Google Scholar 

  239. Anders, A., Fong, W., Kulkarni, A., Ryan, F.R., and Bhatia, C.S., Ultrathin diamondlike carbon films deposited by filtered carbon vacuum arcs, IEEE Trans. Plasma Sci.29, 768–775, (2001).

    Article  ADS  Google Scholar 

  240. Casiraghi, C., Ferrari, A.C., Ohr, R., Chu, D., and Robertson, J., Surface properties of ultra-thin tetrahedral amorphous carbon films for magnetic storage technology, Diam. Rel. Mat.13, 1416–1421, (2004).

    Article  Google Scholar 

  241. Druz, B., Yevtukhov, Y., Novotny, V., Zaritsky, I., Kanarov, V., Polyakov, V., and Rukavishnikov, A., Nitrogenated carbon films deposited using filtered cathodic arc, Diam. Rel. Mat.9, 668–674, (2000).

    Article  Google Scholar 

  242. Druz, B., Yevtukhov, Y., and Zaritskiy, I., Diamond-like carbon overcoat for TFMH using filtered cathodic arc system with Ar-assisted arc discharge, Diam. Rel. Mat.14, 1508–1516, (2005).

    Article  Google Scholar 

  243. Monteiro, O.R., Novel metallization technique for filling 100-nm-wide trenches and vias with very high aspect ratio, J. Vac. Sci. Technol. B17, 1094–1097, (1999).

    Article  Google Scholar 

  244. Vergason, G.E., “Electric arc vapor deposition device,” patent US 5,037,522 (1991).

    Google Scholar 

  245. Vergason, G.E., Lunger, M., and Gaur, S., “Advances in arc spot travel speed to improve film characteristics,” Annual Technical Conference of the Society of Vacuum Coaters, Philadelphia, 136–140, (2001).

    Google Scholar 

  246. Siemroth, P., Zimmer, O., Schulke, T., and Vetter, J., Vacuum arc evaporation with programable erosion and deposition profile, Surf. Coat. Technol.94–95, 592–596, (1997).

    Article  Google Scholar 

  247. Zimmer, O., “Magnetische und elektrische Steuerung der Vakuumbogenbeschichtung,” Ruhr-Universität Bochum: Bochum, Germany, 2002.

    Google Scholar 

  248. Gorokhovsky, V.I., “Apparatus for application of coatings in vacuum,” patent US 5,435,900 (1995).

    Google Scholar 

  249. Welty, R.P., “Rectangular vacuum-arc plasma source,” patent US 5,840,163 (1998).

    Google Scholar 

  250. Boxman, R.L., Zhitomirsky, V., Goldsmith, S., David, T., and Dikhtyar, V., “Deposition of SnO2 coatings using a rectangular filtered vacuum arc source,” 46th Annual Technical Meeting of the Society of Vacuum Coaters, San Francisco, CA, 234–239, (2003).

    Google Scholar 

  251. Vetter, J., Vacuum arc coatings for tools – potential and application, Surf. Coat. Technol.77, 719–724, (1995).

    Article  Google Scholar 

  252. Hörling, A., Hultman, L., Odén, M., Sjolén, J., and Karlsson, L., Thermal stability of arc evaporated high aluminum-content Ti1-xAlxN thin films, J. Vac. Sci. Technol. A20, 1815–1823, (2002).

    Article  ADS  Google Scholar 

  253. Mayrhofer, P.H., Hörling, A., Karlsson, L., Sjolen, J., Larsson, T., Mitterer, C., and Hultman, L., Self-organized nanostructures in the Ti-Al-N system, Appl. Phys. Lett.83, 2049–2051, (2003).

    Article  ADS  Google Scholar 

  254. Karlsson, L., Hultman, L., Johansson, M.P., Sundgren, J.E., and Ljungcrantz, H., Growth, microstructure, and mechanical properties of arc evaporated TiCxN1-x (0 <= x <= 1) films, Surf. Coat. Technol.126, 1–14, (2000).

    Article  Google Scholar 

  255. Kok, Y.N., Hovsepian, P.E., Luo, Q., Lewis, D.B., Wen, J.G., and Petrov, I., Influence of the bias voltage on the structure and the tribological performance of nanoscale multilayer C/Cr PVD coatings, Thin Solid Films475, 219–226, (2005).

    Article  ADS  Google Scholar 

  256. Veprek, S., The search for novel, superhard materials, J. Vac. Sci. Technol. A17, 2401–2420, (1999).

    Article  ADS  Google Scholar 

  257. Veprek, S., J. Veprek-Heijman, M.G., and Zhang, R., Chemistry, physics and fracture mechanics in search for superhard materials, and the origin of superhardness in nc-TiN/a-Si3N4 and related nanocomposites, J. Phys. Chem. Solids68, 1161–1168, (2007).

    Google Scholar 

  258. Hörling, A., Hultman, L., Odén, M., Sjölén, J., and Karlsson, L., Mechanical properties and machining performance of Ti1-xAlxN-coated cutting tools, Surf. Coat. Technol.191, 384–392, (2005).

    Article  Google Scholar 

  259. Hovsepian, P.E., Lewis, D.B., Luo, Q., Munz, W.-D., Mayrhofer, P.H., Mitterer, C., Zhou, Z., and Rainforth, W.M., TiAlN based nanoscale multilayer coatings designed to adapt their tribological properties at elevated temperatures, Thin Solid Films485, 160–168, (2005).

    Article  ADS  Google Scholar 

  260. Lewis, D.B., Reitz, D., Wüstefeld, C., Ohser-Wiedemann, R., Oettel, H., Ehiasarian, A.P., and Hovsepian, P.E., Chromium nitride/niobium nitride nano-scale multilayer coatings deposited at low temperature by the combined cathodic arc/unbalanced magnetron technique, Thin Solid Films503, 133–142, (2006).

    Article  ADS  Google Scholar 

  261. Winkelmann, A., Cairney, J.M., Hoffman, M.J., Martin, P.J., and Bendavid, A., Zr-Si-N films fabricated using hybrid cathodic arc and chemical vapour deposition: Structure vs. properties, Surf. Coat. Technol.200, 4213–4219, (2006).

    Article  Google Scholar 

  262. Anders, A., (ed.) Handbook of Plasma Immersion Ion Implantation and Deposition, John Wiley & Sons, New York, (2000).

    Google Scholar 

  263. Chun, S.-Y. and Chayahara, A., Pulsed vacuum are deposition of multilayers in the nanometer range, Surf. Coat. Technol.132, 217–221, (2000).

    Article  Google Scholar 

  264. Chen, P., Wong, S.P., Chiah, M.F., Wang, H., Cheung, W.Y., Ke, N., and Xiao, Z.S., Magnetic properties of (Pr0.17Co0.83)(69)C-31 nanocomposite films prepared by pulsed filtered vacuum arc deposition, Appl. Phys. Lett.81, 4799–4801, (2002).

    Article  ADS  Google Scholar 

  265. Byon, E., Oates, T.H., and Anders, A., Coalescence of nanometer silver islands on oxides grown by filtered cathodic arc deposition, Appl. Phys. Lett.82, 1634–1636, (2003).

    Article  ADS  Google Scholar 

  266. Huang, H., Woo, C.H., Wei, H.L., and Zhang, X.X., Kinetics-limited surface structures at the nanoscale, Appl. Phys. Lett.82, 1272–1274, (2003).

    Article  ADS  Google Scholar 

  267. Werner, Z., Stanisawski, J., Piekoszewski, J., Levashov, E.A., and Szymczyk, W., New types of multi-component hard coatings deposited by arc PVD on steel pre-treated by pulsed plasma beam, Vacuum70, 263–267, (2003).

    Article  ADS  Google Scholar 

  268. Mayrhofer, P.H., Mitterer, C., Hultman, L., and Clemens, H., Microstructural design of hard coatings, Prog. Mater. Sci.51, 1032–1114, (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Anders, A. (2008). A Brief History of Cathodic Arc Coating. In: Cathodic Arcs. Springer Series on Atomic, Optical, and Plasma Physics, vol 50. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79108-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-79108-1_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-79107-4

  • Online ISBN: 978-0-387-79108-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics