Some Applications of Cathodic Arc Coatings

  • André Anders
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 50)


The choice of words “some applications” indicates that it is impossible to give a truly comprehensive account about all the films, coatings, multilayers, and nanostructures made by energetic condensation. Some important examples are selected, this time sorted and driven by the application rather than by the material or process. The range of applications includes hard coatings on tools, which are typically nitrides or carbides, corrosion-resistant and protective coatings such as ta-C (tetrahedral amorphous carbon), decorative coatings (nitrides, oxynitrides, carbides), optical coatings (oxides), metallization for the semiconductor industry, some wide band gap semiconductors (e.g., transparent conducting oxides), and bio-compatible coatings, and here we reconsider ta-C, among others.


Contact Angle Spinodal Decomposition Composite Cathode Decorative Coating Negative Substrate Bias 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bergman, C., Ion flux characteristics in arc vapor deposition of TiN, Surf. Coat. Technol. 36, 243–255, (1988).Google Scholar
  2. 2.
    Vetter, J., Burgmer, W., and Perry, A.J., Arc-enhanced glow discharge in vacuum arc machines, Surf. Coat. Technol. 59, 152–155, (1993).Google Scholar
  3. 3.
    Martin, P.J., Netterfield, R.P., Kinder, T.J., and Descotes, L., Deposition of TiN, TiC, and TiO2 films by filtered arc evaporation, Surf. Coat. Technol. 49, 239–243, (1991).Google Scholar
  4. 4.
    Ryabchikov, A.I., Stepanov, I.B., Shulepov, I.A., Sharkeyev, Y.P., and Fortuna, S.V., “Application of a shutter-type filter for removing microparticle fraction from arc discharge plasma in technology of TiN coating formation,” 5th Conf. on Modification of Materials with Particle Beams and Plasma Flows, Tomsk, Russia, 319–322, (2000).Google Scholar
  5. 5.
    Tang, B., Wang, Y., Wang, L., Wang, X., Liu, H., Yu, Y., and Sun, T., Adhesion strength of TiN films synthesized on GCr15-bearing steel using plasma immersion ion implantation and deposition, Surf. Coat. Technol. 186, 153–156, (2004).Google Scholar
  6. 6.
    Vetter, J., Knaup, R., Dwuletzki, H., Schneider, E., and Vogler, S., Hard coatings for lubrication reduction in metal forming, Surf. Coat. Technol. 86–87, 739–746, (1996).Google Scholar
  7. 7.
    Johansen, O.A., Dontje, J.H., and Zenner, R.L.D., Reactive arc vapor ion deposition of TiN, ZrN and HfN, Thin Solid Films 153, 75–82, (1987).ADSGoogle Scholar
  8. 8.
    Boelens, S. and Veltrop, H., Hard coatings of TiN, (TiHf)N and (TiNb)N deposited by random and steered arc evaporation, Surf. Coat. Technol. 33, 63–71, (1987).Google Scholar
  9. 9.
    Johnson, P.C. and Randhawa, H., Zirconium nitride films prepared by cathodic arc plasma deposition process, Surf. Coat. Technol. 33, 53–62, (1987).Google Scholar
  10. 10.
    Conrad, J.R., Radtke, J.L., Dodd, R.A., Worzala, F.J., and Tran, N.C., Plasma source ion-implantation technique for surface modification, J. Appl. Phys. 62, 4591–4596, (1987).ADSGoogle Scholar
  11. 11.
    Blawert, C., Mordike, B.L., Collins, G.A., Hutchings, R., Short, K.T., and Tendys, J., Plasma immersion ion implantation of 100Cr6 ball bearing steel, Surf. Coat. Technol. 83, 228–234, (1996).Google Scholar
  12. 12.
    Johns, S.M., Bell, T., Samandi, M., and Collins, G.A., Wear resistance of plasma immersion ion implanted Ti6Al4V, Surf. Coat. Technol. 85, 7–14, (1996).Google Scholar
  13. 13.
    Mändl, S., Günzel, R., Richter, E., and Möller, W., Nitriding of austenitic stainless steels using plasma immersion ion implantation, Surf. Coat. Technol. 100–101, 372–376, (1998).Google Scholar
  14. 14.
    Vetter, J. and Perry, A.J., Advances in cathodic arc technology using electrons extracted from the vacuum arc, Surf. Coat. Technol. 61, 305–309, (1993).Google Scholar
  15. 15.
    Vetter, J., (Alx : Tiy)N coatings deposited by cathodic vacuum arc evaporation, J. Advanced Materials 31, 41–47, (1999).Google Scholar
  16. 16.
    Freller, H. and Haessler, H., TixAl1-xN films deposited by ion plating with an arc evaporator, Thin Solid Films 153, 67–74, (1987).ADSGoogle Scholar
  17. 17.
    Hörling, A., Hultman, L., Odén, M., Sjölén, J., and Karlsson, L., Mechanical properties and machining performance of Ti1-xAlxN-coated cutting tools, Surf. Coat. Technol. 191, 384–392, (2005).Google Scholar
  18. 18.
    Hörling, A., Hultman, L., Odén, M., Sjolén, J., and Karlsson, L., Thermal stability of arc evaporated high aluminum-content Ti1-xAlxN thin films, J. Vac. Sci. Technol. A 20, 1815–1823, (2002).ADSGoogle Scholar
  19. 19.
    Mayrhofer, P.H., Hörling, A., Karlsson, L., Sjolen, J., Larsson, T., Mitterer, C., and Hultman, L., Self-organized nanostructures in the Ti-Al-N system, Appl. Phys. Lett. 83, 2049–2051, (2003).ADSGoogle Scholar
  20. 20.
    Gersten, J.I. and Smith, F.W., The Physics and Chemistry of Materials. John Wiley & Sons, New York, (2001).Google Scholar
  21. 21.
    PalDey, S. and Deevi, S.C., Properties of single layer and gradient (Ti,Al)N coatings, Mater. Sci. Eng. A 361, 1–8, (2003).Google Scholar
  22. 22.
    Knotek, O., Loffler, F., Scholl, H.J., and Barimani, C., The multisource arc process for depositing ternary Cr- and Ti-based coatings, Surf. Coat. Technol. 68–69, 309–313, (1994).Google Scholar
  23. 23.
    Vetter, J., Scholl, H.J., and Knotek, O., (TiCr)N coatings deposited by cathodic vacuum arc evaporation, Surf. Coat. Technol. 74–75, 286–291, (1995).Google Scholar
  24. 24.
    Chang, Y.-Y., Yang, S.-J., and Wang, D.-Y., Characterization of TiCr(C,N)/amorphous carbon coatings synthesized by a cathodic arc deposition process, Thin Solid Films 515, 4722–4726, (2007).ADSGoogle Scholar
  25. 25.
    Karlsson, L., Hultman, L., Johansson, M.P., Sundgren, J.E., and Ljungcrantz, H., Growth, microstructure, and mechanical properties of arc evaporated TiCxN1–x (0 <= x <= 1) films, Surf. Coat. Technol. 126, 1–14, (2000).Google Scholar
  26. 26.
    Karlsson, L., Hultman, L., and Sundgren, J.E., Influence of residual stresses on the mechanical properties of TiCxN1–x (x=0, 0.15, 0.45) thin films deposited by arc evaporation, Thin Solid Films 371, 167–177, (2000).ADSGoogle Scholar
  27. 27.
    Yamamoto, K., Sato, T., Takahara, K., and Hanaguri, K., Properties of (Ti,Cr,AI)N coatings with high Al content deposited by new plasma enhanced arc-cathode, Surf. Coat. Technol. 174–175, 620–626, (2003).Google Scholar
  28. 28.
    Lee, H.Y., Han, J.G., Baeg, S.H., and Yang, S.H., Characterization of WC–CrAlN heterostructures obtained using a cathodic arc ion plating process, Surf. Coat. Technol. 174–175, 303–309, (2003).Google Scholar
  29. 29.
    Gorokhovsky, V.I., Bhat, D.G., Shivpuri, R., Kulkarni, K., Bhattacharya, R., and Rai, A.K., Characterization of large area filtered arc deposition technology: part II – coating properties and application, Surf. Coat. Technol. 140, 215–224, (2001).Google Scholar
  30. 30.
    Gorokhovsky, V., Heckerman, B., Watson, P., and Bekesch, N., The effect of multilayer filtered arc coatings on mechanical properties, corrosion resistance and performance of periodontal dental instruments, Surf. Coat. Technol. 200, 5614–5630, (2006).Google Scholar
  31. 31.
    Music, D., Sun, Z., Voevodin, A.A., and Schneider, J.M., Electronic structure and shearing in nanolaminated ternary carbides, Solid State Communications 139, 139–143, (2006).ADSGoogle Scholar
  32. 32.
    Barsoum, M.W. and El-Raghy, T., Synthesis and Characterization of a Remarkable Ceramic: Ti3SiC2, J. American Ceramic Society 79, 1953–1956, (1996).Google Scholar
  33. 33.
    Barsoum, M.W. and El-Raghy, T., The MAX phases: Unique new carbide and nitride materials, Am. Sci. 89, 334, (2001).ADSGoogle Scholar
  34. 34.
    Rosén, J., Ryves, L., Persson, P.O.Å., and Bilek, M.M.M., Deposition of epitaxial Ti2AlC thin films by pulsed cathodic arc, J. Appl. Phys. 101, 056101–2, (2007).ADSGoogle Scholar
  35. 35.
    Brondum, K. and Larson, G., “Low-temperature arc vapor deposition as a hexavalent chrome electroplating alternative,” Vapor Technologies Inc., Longmont, CO May 13, 2005 (2005).Google Scholar
  36. 36.
    Esteve, J., Romero, J., Gomez, M., and Lousa, A., Cathodic chromium carbide coatings for molding die applications, Surf. Coat. Technol. 188–189, 506–510, (2004).Google Scholar
  37. 37.
    Lide, D.R., (ed.) Handbook of Chemistry and Physics, 81st Edition, CRC Press, Boca Raton, New York, (2000).Google Scholar
  38. 38.
    Kubaschewski, O. and Evans, E.L., Metallurgical Thermochemistry, Reprint of 3rd edition, Pergamon Press, Oxford, (1965).Google Scholar
  39. 39.
    Kubaschewski, O., Alcock, C.B., and Spencer, P.J., Materials Thermochemistry, 6th ed. Pergamon Press, Oxford, (1993).Google Scholar
  40. 40.
    Cardarelli, F., Materials Handbook. Springer, London, (2000).Google Scholar
  41. 41.
    Pierson, H.O., Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications. Noyes, Park Ridge, NJ, (1996).Google Scholar
  42. 42.
    Braic, V., Balaceanu, M., Braic, M., and Vladescu, A., Synthesis and characterization of hard layers obtained by vacuum arc technology, Romanian Reports in Physics 56, 481–486, (2004).Google Scholar
  43. 43.
    Knotek, O., Lugscheider, E., Löffler, F., Beele, W., and Barimani, C., Arc evaporation of multicomponent MCrAlY cathodes, Surf. Coat. Technol. 74/75, 118–122, (1995).Google Scholar
  44. 44.
    Shinno, H., Tanabe, T., Fujitsuka, M., and Sakai, Y., Characterization of carbon-boron coatings prepared on molybdenum by a vacuum arc deposition method, Thin Solid Films 189, 149–159, (1990).ADSGoogle Scholar
  45. 45.
    Morrow, M.S., Schechter, D.E., Tsai, C.-C., Klepper, C.C., Niemel, J., and Hazelton, R.C., “Microwave processing of pressure boron powders for use as cathodes in vacuum arc sources,” patent US 6,562,418 (2003).Google Scholar
  46. 46.
    Richter, F., Krannich, G., Hahn, J., Pintaske, R., Friedrich, M., Schmidbauer, S., and Zahn, D.R.T., Utilization of cathodic arc evaporation for the deposition of boron nitride thin films, Surf. Coat. Technol. 90, 178–183, (1997).Google Scholar
  47. 47.
    Richter, F., Flemming, G., Kühn, M., Peter, S., and Wagner, H., Characterization of the arc evaporation of a hot boron cathode, Surf. Coat. Technol. 112, 43–47, (1999).Google Scholar
  48. 48.
    Klepper, C.C., Hazelton, R.C., Yadlowsky, E.J., Carlson, E.P., Keitz, M.D., Williams, J.M., Zuhr, R.A., and Poker, D.B., Amorphous boron coatings produced with vacuum arc deposition technology, J. Vac. Sci. Technol. A 20, 725–732, (2002).ADSGoogle Scholar
  49. 49.
    Werner, Z., Stanisawski, J., Piekoszewski, J., Levashov, E.A., and Szymczyk, W., New types of multi-component hard coatings deposited by arc PVD on steel pre-treated by pulsed plasma beam, Vacuum 70, 263–267, (2003).Google Scholar
  50. 50.
    Klepper, C.C., Niemel, J., Hazelton, R.C., Yadlowsky, E.J., and Monteiro, O.R., Vacuum arc deposited boron carbide films for fusion plasma facing components, Fusion Technol. 39, 910–915, (2001).Google Scholar
  51. 51.
    Klepper, C.C., Niemel, J., Hazelton, R.C., and Keitz, M.D., “Method and apparatus for depositing ceramic films by vacuum arc deposition,” patent US 6,495,002 (2002).Google Scholar
  52. 52.
    Monteiro, O.R., Delplancke-Ogletree, M.P., and Klepper, C.C., Boron carbide coatings prepared by cathodic arc deposition, J. Materials Sci. 38, 3117–3120, (2003).ADSGoogle Scholar
  53. 53.
    Mackiewicz Ludtka, G., Sikka, V.K., Williams, J.M., Klepper, C.C., Hazelton, R.C., and E.J. Yadlowsky, “Aluminum soldering performance testing of H13 steel as boron coated by the cathodic arc technique,” 47th Annual Technical Conference Proceedings of the Society of Vacuum Coaters, Dallas, TX, 168–173, (2004).Google Scholar
  54. 54.
    Cuomo, J.J., Pappas, D.L., Bruley, J., Doyle, J.P., and Saenger, K.K., Vapor deposition process for amorphous carbon films with sp3 fractions approaching diamond, J. Appl. Phys. 70, 1706–1711, (1991).ADSGoogle Scholar
  55. 55.
    Ager III, J.W., Anders, S., Anders, A., and Brown, I.G., Effect of intrinsic growth stress on the Raman spectra of vacuum-arc-deposited amorphous carbon films, Appl. Phys. Lett. 66, 3444–3446, (1995).ADSGoogle Scholar
  56. 56.
    Pharr, G.M., Callahan, D.L., McAdams, D., et al., Hardness, elastic modulus, and structure of very hard carbon films produced by cathodic-arc deposition with substrate bias, Appl. Phys. Lett. 68, 779–781, (1996).ADSGoogle Scholar
  57. 57.
    Lossy, R., Pappas, D.L., Roy, R.A., Cuomo, J.J., and Sura, V.H., Filtered arc deposition of amorphous diamond, Appl. Phys. Lett. 61, 171–173, (1992).ADSGoogle Scholar
  58. 58.
    Falabella, S., Boercker, D.B., and Sanders, D.M., Fabrication of amorphous diamond films, Thin Solid Films 236, 82–86, (1993).ADSGoogle Scholar
  59. 59.
    Hakovirta, M., Salo, J., Lappalainen, R., and Anttila, A., Correlation of carbon ion energy with sp(2)/sp(3) ratio in amorphous diamond films produced with a mass-separated ion beam, Phys. Lett. A 205, 287–289, (1995).ADSGoogle Scholar
  60. 60.
    Wang, X., Zhao, J.P., Chen, Z.Y., Yang, S.Q., Shi, T.S., and Liu, X.H., Field emission from amorphous diamond films prepared by filtered arc deposition, Thin Solid Films 317, 356–358, (1998).ADSGoogle Scholar
  61. 61.
    Andersson, J., Erck, R.A., and Erdemir, A., Friction of diamond-like carbon films in different atmospheres, Wear 254, 1070–1075, (2003).Google Scholar
  62. 62.
    Erdemir, A. and Donnet, C., Tribology of diamondlike carbon films: recent progress and future prospects, J. Phys. D: Appl. Phys. 39, R1–R17, (2006).Google Scholar
  63. 63.
    Anders, S., Brown, I.G., Bhatia, C.S., and Bogy, D.B., Wanted: hard, thin coatings for near-contact recording, Data Storage 4, 31–38, (1997).Google Scholar
  64. 64.
    Robertson, J., Requirements of ultrathin carbon coatings for magnetic storage technology, Tribology International 36, 405–415, (2003).Google Scholar
  65. 65.
    Jacoby, B., Wienss, A., Ohr, R., von Gradowski, M., and Hilgers, H., Nanotribological properties of ultra-thin carbon coatings for magnetic storage devices, Surf. Coat. Technol. 174–175, 1126–1130, (2003).Google Scholar
  66. 66.
    Casiraghi, C., Ferrari, A.C., Ohr, R., Chu, D., and Robertson, J., Surface properties of ultra-thin tetrahedral amorphous carbon films for magnetic storage technology, Diam. Rel. Mat. 13, 1416–1421, (2004).Google Scholar
  67. 67.
    Robertson, J., Diamond-like amorphous carbon, Mat. Sci. Eng. R 37, 129–281, (2002).Google Scholar
  68. 68.
    Anders, A., Fong, W., Kulkarni, A., Ryan, F.R., and Bhatia, C.S., Ultrathin diamondlike carbon films deposited by filtered carbon vacuum arcs, IEEE Trans. Plasma Sci. 29, 768–775, (2001).ADSGoogle Scholar
  69. 69.
    Druz, B., Yevtukhov, Y., and Zaritskiy, I., Diamond-like carbon overcoat for TFMH using filtered cathodic arc system with Ar-assisted arc discharge, Diam. Rel. Mat. 14, 1508–1516, (2005).Google Scholar
  70. 70.
    Anders, S., Anders, A., Dickinson, M.R., MacGill, R.A., and Brown, I.G., S-shaped magnetic macroparticle filter for cathodic arc deposition, IEEE Trans. Plasma Sci. 25, 670–674, (1997).ADSGoogle Scholar
  71. 71.
    Shi, X., Tay, B.G., and Lau, S.P., The double bend filtered cathodic arc technology and its applications, Int. J. Mod. Phys. B 14, 136–153, (2000).ADSGoogle Scholar
  72. 72.
    You, G.F., Tay, B.K., Lau, S.P., Chua, D.H.C., and Milne, W.I., Carbon arc plasma transport through different off-plane double bend filters, Surf. Coat. Technol. 150, 50–56, (2002).Google Scholar
  73. 73.
    Tay, B.K. and Zhang, P., On the properties of nanocomposite amorphous carbon films prepared by off-plane double bend filtered cathodic vacuum arc, Thin Solid Films 420–421, 177–184, (2002).Google Scholar
  74. 74.
    Anders, S., Stammler, T., Fong, W., Chen, C.-Y., Bogy, D.B., Bhatia, C.S., and Stöhr, J., Study of tribochemical processes on hard disks using photoemission electron microscopy, J. Tribology 121, 961–967, (1999).Google Scholar
  75. 75.
    Anders, S., Stammler, T., Fong, W., Bogy, D.B., Bhatia, C.S., and Stöhr, J., Investigation of slider surfaces after wear using photoemission electron microscopy, J. Vac. Sci. Technol. A 17, 2731–2736, (1999).ADSGoogle Scholar
  76. 76.
    Bhatia, C.S., Fong, W., Chen, C.-Y., Wei, J., Bogy, D.B., Anders, S., Stammler, T., and Stöhr, J., Tribochemistry at the head/disk interface, IEEE Trans. Magnetics 35, 910–915, (1999).ADSGoogle Scholar
  77. 77.
    Tsui, T.Y., Pharr, G.M., Oliver, W.C., Bhatia, C.S., White, R.L., Anders, S., Anders, A., and Brown, I.G., Nanoindentation and nanoscratching of hard carbon coatings for magnetic disks, Mat. Res. Soc. Symp. Proc. 383, 447–452, (1995).Google Scholar
  78. 78.
    Decker, T.G., Lundie, G.P., Pappas, D.L., Welty, R.P., and Parent, C.R., “Amorphous diamond coating of blades,” patent WO 9529044 (1995).Google Scholar
  79. 79.
    Decker, T.G., Lundie, G.P., Pappas, D.L., Welty, R.P., and Parent, C.R., “Amorphous diamond coating of blades,” patent US 5799549 (1998).Google Scholar
  80. 80.
    Sheeja, D., Tay, B.K., Yu, L., and Lau, S.P., Low stress thick diamond-like carbon films prepared by filtered arc deposition for tribological applications, Surf. Coat. Technol. 154, 289–293, (2002).Google Scholar
  81. 81.
    Liujiang, Y., Tay, B.K., Sheeja, D., Fu, Y.Q., and Miao, J.M., Micromachining of large area amorphous carbon membranes prepared by filtered cathodic vacuum arc technique, Appl. Surf. Sci. 223, 286–293, (2004).ADSGoogle Scholar
  82. 82.
    Sheeja, D., Tay, B.K., Lau, S.P., Yu, L.J., Miao, J.M., Chua, H.C., and Milne, W.I., Fabrication of smooth amorphous carbon micro-cantilevers by lift-off, Sens. Actuators B: Chem. 98, 275–281, (2004).Google Scholar
  83. 83.
    Yu, L.J., Sheeja, D., Tay, B.K., Chua, D.H.C., Milne, W.I., Miao, J., and Fu, Y.Q., Etching behaviour of pure and metal containing amorphous carbon films prepared using filtered cathodic vacuum arc technique, Appl. Surf. Sci. 195, 107–116, (2002).ADSGoogle Scholar
  84. 84.
    Lemoine, P., Quinn, J.P., Maguire, P., and McLaughlin, J.A., Comparing hardness and wear data for tetrahedral amorphous carbon and hydrogenated amorphous carbon thin films, Wear 257, 509–522, (2004).Google Scholar
  85. 85.
    Oliver, W.C. and Pharr, G.M., An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7, 1564–1583, (1992).ADSGoogle Scholar
  86. 86.
    Zou, Y.S., Wang, W., Song, G.H., Du, H., Gong, J., Huang, R.F., and Wen, L.S., Influence of the gas atmosphere on the microstructure and mechanical properties of diamond-like carbon films by arc ion plating, Mater. Lett. 58, 3271–3275, (2004).Google Scholar
  87. 87.
    Miyakawa, N., Minamisawa, S., Takikawa, H., and Sakakibar, T., Physical–chemical hybrid deposition of DLC film on rubber by T-shape filtered-arc-deposition, Vacuum 73, 611–617, (2004).Google Scholar
  88. 88.
    Druz, B., Yevtukhov, Y., Novotny, V., Zaritsky, I., Kanarov, V., Polyakov, V., and Rukavishnikov, A., Nitrogenated carbon films deposited using filtered cathodic arc, Diam. Rel. Mat. 9, 668–674, (2000).Google Scholar
  89. 89.
    Liu, E., Shi, X., Tan, H.S., Cheah, L.K., Sun, Z., Tay, B.K., and Shi, J.R., The effect of nitrogen on the mechanical properties of tetrahedral amorphous carbon films deposited with a filtered cathodic vacuum arc, Surf. Coat. Technol. 120–121, 601–606, (1999).Google Scholar
  90. 90.
    Silva, S.R.P., Robertson, J., Amaratunga, G.A.J., Rafferty, B., Brown, L.M., Schwan, J., Franceschini, D.F., and Mariotto, G., Nitrogen modification of hydrogenated amorphous carbon films, J. Appl. Phys. 81, 2626–2634, (1997).ADSGoogle Scholar
  91. 91.
    Kühn, M., Spaeth, C., Pintaske, R., Peter, S., Richter, F., and Anders, A., The effect of additional ion/plasma assistance in CNx-film deposition based on a filtered cathodic arc, Thin Solid Films 311, 151–156, (1997).Google Scholar
  92. 92.
    Tan, A.H. and Cheng, Y.C., Optimization of wear-corrosion properties of a-C:N films using filtered cathodic arc deposition, Diam. Rel. Mat. 17, 36–42, (2008).Google Scholar
  93. 93.
    Chang, Y.-Y. and Wang, D.-Y., Structural and electrical properties of nitrogen-doped Cr-C:H films synthesized by a cathodic-arc activated deposition process, Thin Solid Films 485, 1–7, (2005).ADSGoogle Scholar
  94. 94.
    Fu, R.K.Y., Mei, Y.F., Shen, L.R., Siu, G.G., Chu, P.K., Cheung, W.Y., and Wong, S.P., Molybdenum–carbon film fabricated using metal cathodic arc and acetylene dual plasma deposition, Surf. Coat. Technol. 186, 112–117, (2004).Google Scholar
  95. 95.
    Fu, R.K.Y., Mei, Y.F., Fu, M.Y., Liu, X.Y., and Chu, P.K., Thermal stability of metal-doped diamond-like carbon fabricated by dual plasma deposition, Diam. Rel. Mat. 14, 1489–1493, (2005).Google Scholar
  96. 96.
    Vetter, J. and Nevoigt, A., a-C : HMe coatings deposited by the cathodic vacuum arc deposition: properties and application potential, Surf. Coat. Technol. 121, 709–717, (1999).Google Scholar
  97. 97.
    Chen, J.S., Lau, S.P., Chen, G.Y., Sun, Z., Li, Y.J., Tay, B.K., and Chai, J.W., Deposition of iron containing amorphous carbon films by filtered cathodic vacuum arc technique, Diam. Rel. Mat. 10, 2018–2023, (2001).Google Scholar
  98. 98.
    Sheeja, D., Tay, B.K., and Yu, L.J., A comparative study between pure and Al-containing amorphous carbon films prepared by FCVA technique together with high substrate pulse bias, Diam. Rel. Mat. 12, 2032–2036, (2003).Google Scholar
  99. 99.
    Zhang, P., Tay, B.K., Yu, G.Q., Lau, S.P., and Fu, Y.Q., Surface energy of metal containing amorphous carbon films deposited by filtered cathodic vacuum arc, Diam. Rel. Mat. 13, 459–464, (2004).Google Scholar
  100. 100.
    Ryves, L., Bilek, M.M.M., Oates, T.W.H., Tarrant, R.N., McKenzie, D.R., Burgmann, F.A., and McCulloch, D.G., Synthesis and in-situ ellipsometric monitoring of Ti/C nanostructured multilayers using a high-current, dual source pulsed cathodic arc, Thin Solid Flims 482, 133–137, (2005).ADSGoogle Scholar
  101. 101.
    Pasaja, N., Sansongsiri, S., Intarasiri, S., Vilaithong, T., and Anders, A., Mo-containing tetrahedral amorphous carbon deposited by dual filtered cathodic vacuum arc with selective pulsed bias voltage, Nucl. Instrum. Meth. Phys. Res. B 259, 867–870, (2007).ADSGoogle Scholar
  102. 102.
    Anders, A., Pasaja, N., and Sansongsiri, S., Filtered cathodic arc deposition with ion-species-selective bias, Rev. Sci. Instrum. 78, 063901-1-5, (2007).ADSGoogle Scholar
  103. 103.
    Niyomsoan, S., Grant, W., Olson, D.L., and Mishra, B., Variation of color in titanium and zirconium nitride decorative thin films, Thin Solid Films 415, 187–194, (2002).ADSGoogle Scholar
  104. 104.
    Gläser, H.J., Large Area Glass Coating. Von Ardenne Anlagentechnik GmbH, Dresden, Germany, (2000).Google Scholar
  105. 105.
    Zallen, R., International Colloquium on the Optical Properties and Electronic Structure of Metals and Alloys, Paris, France, (1965).Google Scholar
  106. 106.
    Schlegel, A., Wachter, P., Nickl, J.J., and Lingg, H., Optical properties of TiN and ZrN, J. Phys. C: Solid State Physics, 4889–4896, (1977).Google Scholar
  107. 107.
    Eerden, M., van Ijzendoorn, W., Tietema, R., and van der Kolk, G.J., “A systematic study of the properties of the Zr-C-N ternary system, deposited by reactive arc evaporation,” 46th Annual Technical Conference, Society of Vacuum Coaters, San Francisco, CA, 56–60, (2003).Google Scholar
  108. 108.
    Beck, U., Reiners, G., Kopacz, U., and Jehn, H.A., Decorative hard coatings: interdependence of optical, stoichiometric and structural properties, Surf. Coat. Technol. 60, 389–395, (1993).Google Scholar
  109. 109.
    Martin, P.J., Netterfield, R.P., and Kinder, T.J., Ion-beam-deposited films produced by filtered arc evaporation, Thin Solid Films 193, 77–83, (1990).ADSGoogle Scholar
  110. 110.
    Martin, P.J., Netterfield, R.P., Bendavid, A., and Kinder, T.J., The deposition of thin films by filtered arc evaporation, Surf. Coat. Technol. 54, 136–142, (1992).Google Scholar
  111. 111.
    Martin, P., Netterfield, R., Kinder, T., and Bendavid, A., Optical properties and stress of ion-assisted aluminum nitride thin films, Appl. Opt. 31, 6734, (1992).ADSGoogle Scholar
  112. 112.
    Bendavid, A., Martin, P.J., Netterfield, R.P., Sloggett, G.J., Kinder, T.J., and Andrikidis, C., The deposition of niobium, NbN and Nb2O5 films by filtered arc evaporation, J. Mat. Sci. Lett. 12, 322–323, (1993).Google Scholar
  113. 113.
    Bendavid, A., Martin, P.J., Jamting, A., and Takikawa, H., Structural and optical properties of titanium oxide thin films deposited by filtered arc deposition, Thin Solid Films 356, 6–11, (1999).Google Scholar
  114. 114.
    Bendavid, A., Martin, P.J., and Takikawa, H., Deposition and modification of titanium dioxide thin films by filtered arc deposition, Thin Solid Films 360, 241–249, (2000).ADSGoogle Scholar
  115. 115.
    Martin, P.J. and Bendavid, A., “Optical thin film deposition by filtered cathodic arc techniques,” 45th Annual Technical Conference, Society of Vacuum Coaters, Philadelphia, PA, 270–273, (2002).Google Scholar
  116. 116.
    Martin, P.J., Bendavid, A., Netterfield, R.P., Kinder, T.J., Jahan, F., and Smith, G., Plasma deposition of tribological and optical thin film materials with a filtered cathodic arc source, Surf. Coat. Technol. 112, 257–260, (1999).Google Scholar
  117. 117.
    Kim, J.K., Lee, E.S., Kim, D.H., and Kim, D.G., Ion beam-induced erosion and humidity effect of MgO protective layer prepared by vacuum arc deposition, Thin Solid Films 447, 95–99, (2004).ADSGoogle Scholar
  118. 118.
    Zheng, C., Zhu, D., Chen, D., He, Z., Wen, L., Cheung, W.Y., and Wong, S.P., Influence of O2 flow rate on structure and properties of MgOx films prepared by cathodic-vacuum-arc ion deposition system, IEEE Trans. Plasma Sci. 34, 1099–1104, (2006).ADSGoogle Scholar
  119. 119.
    MacGill, R.A., Anders, S., Anders, A., Castro, R.A., Dickinson, M.R., Yu, K.M., and Brown, I.G., Cathodic arc deposition of copper oxide thin films, Surf. Coat. Technol. 78, 168–172, (1996).Google Scholar
  120. 120.
    Mändl, S., Manova, D., and Rauschenbach, B., Transparent AlN layers formed by metal plasma immersion ion implantation and deposition, Surf. Coat. Technol. 186, 82–87, (2004).Google Scholar
  121. 121.
    Inkin, V.N., Kirpilenko, G.G., and Kolpakov, A.J., Properties of aluminium nitride coating obtained by vacuum arc discharge method with plasma flow separation, Diam. Rel. Mater. 10, 1314–1316, (2001).Google Scholar
  122. 122.
    Exarhos, G.J. and Zhou, X.-D., Discovery-based design of transparent conducting oxide films, Thin Solid Films 515, 7025–7052, (2007).ADSGoogle Scholar
  123. 123.
    Chen, B.J., Sun, X.W., and Tay, B.K., Fabrication of ITO thin films by filtered cathodic vacuum arc deposition, Mat. Sci. Eng. B 106, 300–304, (2004).Google Scholar
  124. 124.
    Satoh, I. and Kobayashi, T., Magnetic and optical properties of novel magnetic semiconductor Cr-doped ZnO and its application to all oxide p-i-n diode, Appl. Surf. Sci. 216, 603–606, (2003).ADSGoogle Scholar
  125. 125.
    Ben-Shalom, A., Kaplan, L., Boxman, R.L., Goldsmith, S., and Nathan, M., SnO2 transparent conductor films produced by filtered vacuum arc deposition, Thin Solid Films 236, 20–26, (1993).ADSGoogle Scholar
  126. 126.
    Boxman, R.L., Zhitomirsky, V., Goldsmith, S., David, T., and Dikhtyar, V., “Deposition of SnO2 coatings using a rectangular filtered vacuum arc source,” 46th Annual Technical Meeting of the Society of Vacuum Coaters, San Francisco, CA, 234–239, (2003).Google Scholar
  127. 127.
    David, T., Goldsmith, S., and Boxman, R.L., “p-type Sb-doped ZnO thin films prepared with filtered vacuum arc deposition,” 47th Annual Technical Conference Proceedings of the Society of Vacuum Coaters, Dallas, TX, 122–126, (2004).Google Scholar
  128. 128.
    Kaplan, L., Benshalom, A., Boxman, R.L., Goldsmith, S., Rosenberg, U., and Nathan, M., Annealing and Sb-Doping of Sn-O Films Produced By Filtered Vacuum Arc Deposition – Structure and Electro-Optical Properties, Thin Solid Films 253, 1–8, (1994).ADSGoogle Scholar
  129. 129.
    Kaplan, L., Zhitomirsky, V.N., Goldsmith, S., Boxman, R.L., and Rusman, I., Arc behaviour during filtered vacuum arc deposition of Sn-O thin films, Surf. Coat. Technol. 76, 181–189, (1995).Google Scholar
  130. 130.
    Kaplan, L., Rusman, I., Boxman, R.L., Goldsmith, S., Nathan, M., and BenJacob, E., STM and XPS study of filtered vacuum arc deposited Sn-O films, Thin Solid Films 291, 355–361, (1996).Google Scholar
  131. 131.
    Zhitomirsky, V.N., Boxman, R.L., and Goldsmith, S., Plasma distribution and SnO2 coating deposition using a rectangular filtered vacuum arc plasma source, Surf. Coat. Technol. 185, 1–11, (2004).Google Scholar
  132. 132.
    Zhitomirsky, V.N., David, T., Boxman, R.L., Goldsmith, S., Verdyan, A., Soifer, Y.M., and Rapoport, L., Properties of SnO2 coatings fabricated on polymer substrates using filtered vacuum arc deposition, Thin Solid Films 492, 187–194, (2005).ADSGoogle Scholar
  133. 133.
    Goldsmith, S., Filtered vacuum arc deposition of undoped and doped ZnO thin films: Electrical, optical, and structural properties, Surf. Coat. Technol. 201, 3993–3999, (2006).Google Scholar
  134. 134.
    Xu, X.L., Lau, S.P., Chen, J.S., Chen, G.Y., and Tay, B.K., Polycrystalline ZnO thin films on Si (100) deposited by filtered cathodic vacuum arc, J. Cryst. Growth 223, 201–205, (2001).ADSGoogle Scholar
  135. 135.
    Xu, X.L., Lau, S.P., and Tay, B.K., Structural and optical properties of ZnO thin films produced by filtered cathodic vacuum arc, Thin Solid Films 398–399, 244–249, (2001).Google Scholar
  136. 136.
    Minami, T., Ida, S., and Miyata, T., High rate deposition of transparent conducting oxide thin films by vacuum arc plasma evaporation, Thin Solid Films 416, 92–96, (2002).ADSGoogle Scholar
  137. 137.
    Tay, B.K., Zhao, Z.W., and Chua, D.H.C., Review of metal oxide films deposited by filtered cathodic vacuum arc technique, Mat. Sci. Eng. R: Reports 52, 1–48, (2006).Google Scholar
  138. 138.
    Lee, H.W., Lau, S.P., Wang, Y.G., Tay, B.K., and Hng, H.H., Internal stress and surface morphology of zinc oxide thin films deposited by filtered cathodic vacuum arc technique, Thin Solid Films 458, 15–19, (2004).ADSGoogle Scholar
  139. 139.
    Ozgur, U., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M.A., Dogan, S., Avrutin, V., Cho, S.J., and Morkoc, H., A comprehensive review of ZnO materials and devices, J. Appl. Phys. 98, 041301–103, (2005).ADSGoogle Scholar
  140. 140.
    Wang, Y.G., Lau, S.P., Lee, H.W., Yu, S.F., Tay, B.K., Zhang, X.H., Tse, K.Y., and Hng, H.H., Comprehensive study of ZnO films prepared by filtered cathodic vacuum arc at room temperature, J. Appl. Phys. 94, 1597–1604, (2003).ADSGoogle Scholar
  141. 141.
    Look, D.C., Claflin, B., Alivov, Y.I., and Park, S.J., The future of ZnO light emitters, phys. stat. sol. (a) 201, 2203–2212, (2004).ADSGoogle Scholar
  142. 142.
    Kavak, H., Senadim Tüzemen, E., Özbayraktar, L.N., and Esen, R., “Optical and photoinductivity properties of ZnO thin films grown by pulsed filtered cathodic vacuum arc deposition,” The Ninth Int. Symp. on Sputtering and Plasma Processes (ISSP 2007), Kanazawa, Japan, 275–278, (2007).Google Scholar
  143. 143.
    Shi, X., Cheah, L.K., and Tay, B.K., Thin Solid Films 312, 166, (1998).Google Scholar
  144. 144.
    Veerasamy, V.S., Amaratunga, G.A.J., Park, J.S., MacKenzie, H.S., and Milne, W.I., IEEE Trans. Electron Devices 42, 577, (1995).ADSGoogle Scholar
  145. 145.
    Cheah, L.K., Shi, X., Liu, E., and Shi, J.R., Nitrogenated tetrahedral amorphous carbon films prepared by ion-beam-assisted filtered cathodic vacuum arc technique for solar cells application, Appl. Phys. Lett. 73, 2473–2475, (1998).ADSGoogle Scholar
  146. 146.
    Cheah, L.K., Xu, S., and Tay, B.K., Deposition of nitrogen doped tetrahedral amorphous carbon (ta-C:N) films by ion beam assisted filtered cathodic vacuum arc, Electron. Lett. 33, 1339–1340, (1997).Google Scholar
  147. 147.
    Chua, D.H.C., Milne, W.I., Tay, B.K., Zhang, P., and Ding, X.Z., Microstructural and surface properties of cobalt containing amorphous carbon thin film deposited by a filtered cathodic vacuum arc, J. Vac. Sci. Technol. A 21, 353–358, (2003).ADSGoogle Scholar
  148. 148.
    Zhang, P., Tay, B.K., Zhang, Y.B., Lau, S.P., and Yung, K.P., The reversible wettability of Ti containing amorphous carbon films by UV irradiation, Surf. Coat. Technol. 198, 184–188, (2005).Google Scholar
  149. 149.
    Satyanarayana, B.S., Hart, A., Milne, W.I., and Robertson, J., Field emission from tetrahedral amorphous carbon, Diam. Rel. Mat. 7, 656–659, (1998).Google Scholar
  150. 150.
    Milne, W.I., Field emission from tetrahedrally bonded amorphous carbon, Appl. Surf. Sci. 146, 262–268, (1999).ADSGoogle Scholar
  151. 151.
    Mao, D.S., Zhao, J., Wi, L., et al., Electron field emission from filtered arc deposited diamond-like carbon films using Au and Ti layers, Diam. Rel. Mat. 8, 52–55, (1999).Google Scholar
  152. 152.
    Mao, D.S., Zhao, J., Li, W., et al., Electron field emission from nitrogen-containing diamond-like carbon films deposited by filtered arc deposition, Mater. Lett. 41, 117–121, (1999).Google Scholar
  153. 153.
    Cheah, L.K., Shi, X., Tay, B.K., Silva, S.R.P., and Sun, Z., Field emission from undoped and nitrogen-doped tetrahedral amorphous carbon film prepared by filtered cathodic vacuum arc technique, Diam. Rel. Mat. 7, 640–644, (1998).Google Scholar
  154. 154.
    Ding, X.-Z., Li, Y.J., Sun, Z., Tay, B.K., Lau, S.P., Cheung, W.Y., and Wong, S.P., Electron field emission from Ti-containing tetrahedral amorphous carbon films deposited by filtered cathodic vacuum arc, J. Appl. Phys. 88, 6842–6847, (2000).ADSGoogle Scholar
  155. 155.
    MacLeod, A.H., Thin-Film Optical Filters, 3rd ed. Institute of Physics, Bristol, UK, (2001).Google Scholar
  156. 156.
    Byon, E., Oates, T.H., and Anders, A., Coalescence of nanometer silver islands on oxides grown by filtered cathodic arc deposition, Appl. Phys. Lett. 82, 1634–1636, (2003).ADSGoogle Scholar
  157. 157.
    Avrekh, M., Monteiro, O.R., and Brown, I.G., Electrical resistivity of vacuum-arc-deposited platinum thin films, Appl. Surf. Sci. 158, 217–222, (2000).ADSGoogle Scholar
  158. 158.
    Fukuda, K., Lim, S.H.N., and Anders, A., Coalescence of magnetron-sputtered silver islands affected by transition metal seeding (Ni, Cr, Nb, Zr, Mo, W, Ta) and other parameters, Thin Solid Films 516, 4546–4552, (2008).Google Scholar
  159. 159.
    Anders, A., Byon, E., Kim, D.-H., Fukuda, K., and Lim, S.H.N., Smoothing of ultrathin silver films by transition metal seeding, Solid State Commun. 140, 225–229, (2006).ADSGoogle Scholar
  160. 160.
    Rossnagel, S.M., Mikalsen, D., Kinoshita, H., and Cuomo, J.J., Collimated magnetron sputter deposition, J. Vac. Sci. Technol. A 9, 261–265, (1991).ADSGoogle Scholar
  161. 161.
    Hopwood, J.A., (ed.) Ionized Physical Vapor Deposition, Academic Press, San Diego, CA, (2000).Google Scholar
  162. 162.
    Rossnagel, S.M. and Hopwood, J., Magnetron sputter deposition with high levels of metal ionization, Appl. Phys. Lett. 63, 3285–3287, (1993).ADSGoogle Scholar
  163. 163.
    Rossnagel, S.M., Directional and ionized physical vapor deposition for microelectronics applications, J. Vac. Sci. Technol. B 16, 2585–2608, (1998).Google Scholar
  164. 164.
    Tsai, M.H., Sun, S.C., Chiu, H.T., and Chuang, S.H., Metalorganic chemical vapor deposition of tungsten nitride for advanced metallization, Appl. Phys. Lett. 68, 1412–1414, (1996).ADSGoogle Scholar
  165. 165.
    Becker, J.S. and Gordon, R.G., Diffusion barrier properties of tungsten nitride films grown by atomic layer deposition from bis(tert-butylimido)bis(dimethylamido)tungsten and ammonia, Appl. Phys. Lett. 82, 2239–2241, (2003).ADSGoogle Scholar
  166. 166.
    Lau, S.P., Cheng, Y.H., Shi, J.R., Cao, P., Tay, B.K., and Shi, X., Filtered cathodic vacuum arc deposition of thin film copper, Thin Solid Films 398–399, 539–543, (2001).Google Scholar
  167. 167.
    Shi, J.R., Lau, S.P., Sun, Z., Shi, X., Tay, B.K., and Tan, H.S., Structural and electrical properties of copper thin films prepared by filtered cathodic vacuum arc technique, Surf. Coat. Technol. 138, 250–255, (2001).Google Scholar
  168. 168.
    Anders, A., Observation of self-sputtering in energetic condensation of metal ions, Appl. Phys. Lett. 85, 6137–6139, (2004).ADSGoogle Scholar
  169. 169.
    Chen, U.-S. and Shih, H.C., Characterization of copper metallization for interconnect by 90[deg]-bend electromagnetic filtered vacuum arc, Nucl. Instrum. Meth. Phys. Res. B 237, 477–483, (2005).ADSGoogle Scholar
  170. 170.
    Bilek, M.M.M. and McKenzie, D.R., A comprehensive model of stress generation and relief processes in thin films deposited with energetic ions, Surf. Coat. Technol. 200, 4345–4354, (2006).Google Scholar
  171. 171.
    Schülke, T. and Anders, A., Ion charge state distributions of alloy-cathode vacuum arc plasmas, IEEE Trans. Plasma Sci. 27, 911–914, (1999).ADSGoogle Scholar
  172. 172.
    Singer, P., New technique for copper trench and via filling, Semiconductor International March, 53, (1997).Google Scholar
  173. 173.
    Siemroth, P., Wenzel, C., Kliomes, W., Schultrich, B., and Schülke, T., Metallization of sub-micron trenches and vias with high aspect ratio, Thin Solid Films 308, 455–459, (1997).ADSGoogle Scholar
  174. 174.
    Siemroth, P. and Schülke, T., Copper metallization in microelectronics using filtered vacuum arc deposition – principles and technological development, Surf. Coat. Technol. 133–134, 106–113, (2000).Google Scholar
  175. 175.
    Monteiro, O.R., Novel metallization technique for filling 100-nm-wide trenches and vias with very high aspect ratio, J. Vac. Sci. Technol. B 17, 1094–1097, (1999).Google Scholar
  176. 176.
    Singer, W., Singer, X., Filimonova, E., Reschke, D., Rostovtsev, A., Tokareva, T., and Zaharov, V., Nucl. Instrum. Meth. Phys. Res. A 574, 518–520, (2007).ADSGoogle Scholar
  177. 177.
    Hartwig, K.T., Jyhwen, W., Baars, D.C., et al., Microstructural refinement of niobium for superconducting RF cavities single-cell superconducting RF cavities from ultra-high-purity niobium, IEEE Trans. Appl. Superconductivity 17, 1305–1309, (2007).ADSGoogle Scholar
  178. 178.
    Langner, J., L., C., Russo, R., Tazzari, S., Cirillo, M., Merlo, V., and Tazzioli, F., Formation of thin superconducting films by means of ultra-high vacuum arc, Czechoslovak J. Phys. 52 (Suppl. D), 829–835, (2002).Google Scholar
  179. 179.
    Langner, J., Sadowski, M.J., Czaus, K., et al., Superconducting niobium films produced by means of ultra high vacuum arc, Czechoslovak J. Phys. 54 (Suppl. A), (2004).Google Scholar
  180. 180.
    Langner, J., Mirowski, R., Sadowski, M.J., et al., Deposition of superconducting niobium films for RF cavities by means of UHV cathodic Arc, Vacuum 80, 1288–1293, (2006).Google Scholar
  181. 181.
    Godeke, A., A review of the properties of Nb3Sn and their variation with A15 composition, morphology and strain state, Superconductor Sci. Technol. 19, R68–R80, (2006).ADSGoogle Scholar
  182. 182.
    Brown, I.G., Anders, A., Anders, S., Dickinson, M.R., Ivanov, I.C., MacGill, R.A., Yao, X.Y., and Yu, K.-M., Plasma synthesis of metallic and composite thin films with atomically mixed substrate bonding, Nucl. Instrum. Meth. Phys. Res. B 80/81, 1281–1287, (1993).ADSGoogle Scholar
  183. 183.
    Piekoszewski, J., Krajewski, A., Prokert, F., Senkara, J., Stanisawski, J., Wali, L., Werner, Z., and Wosiski, W., Brazing of alumina ceramics modified by pulsed plasma beams combined with arc PVD treatment, Vacuum 70, 307–312, (2003).Google Scholar
  184. 184.
    Sasaki, J. and Brown, I.G., Ion spectra of vacuum arc plasma with compound and alloy cathodes, J. Appl. Phys. 66, 5198–5203, (1989).ADSGoogle Scholar
  185. 185.
    Sasaki, J., Sugiyama, K., Yao, X., and Brown, I., Multiple-species ion beams from titanium-hafnium alloy cathodes in vacuum arc plasmas, J. Appl. Phys. 73, 7184–7187, (1993).ADSGoogle Scholar
  186. 186.
    Hauert, R., A review of modified DLC coatings for biological applications, Diam. Rel. Mat. 12, 583–589, (2003).Google Scholar
  187. 187.
    Endrino, J.L., Galindo, R.E., Zhang, H., Allen, M., Gago, R., Espinosa, A., Andersson, J., Albella, J.M., and Anders, A., Structure and comparative properties of silver-containing a-C films deposited by two plasma immersion ion implantation techniques, Surf. Coat. Technol. 202, 3675–3682, (2008).Google Scholar
  188. 188.
    Narayan, R.J., Wang, H., and Tiwari, A., Nanostructured DLC-Ag composites for biomedical applications, Mat. Res. Soc. Symp. Proc. 750, Y5.9.1–6, (2003).Google Scholar
  189. 189.
    Kwok, S.C.H., Zhang, W., Wan, G.J., McKenzie, D.R., Bilek, M.M.M., and Chu, P.K., Hemocompatibility and anti-bacterial properties of silver doped diamond-like carbon prepared by pulsed filtered cathodic vacuum arc deposition, Diam. Rel. Mat. 16, 1353–1360, (2007).Google Scholar
  190. 190.
    Anders, A. and MacGill, R.A., Twist filter for the removal of macroparticles from cathodic arc plasmas, Surf. Coat. Technol. 133–134, 96–100, (2000).Google Scholar
  191. 191.
    Gelfandbein, V. and McLean, G.Y., “Implantable device using diamond-like carbon coating,” patent US 24220667 (2004).Google Scholar
  192. 192.
    McLean, G.Y. and Gelfandbein, V., “Implantable device using diamond-like carbon coating,” patent US 4,071,338 (2004).Google Scholar
  193. 193.
    Wu, Z., Shi, Y., Xie, H., Chen, Y., Zhang, J., Xu, J., and Chen, H., Surface modification of polymers by low temperature plasma techniques, Surf. Eng. 11, 53–56, (1995).Google Scholar
  194. 194.
    Lim, H., Lee, Y., Han, S., Cho, J., and Kim, K.-J., Surface treatment and characterization of PMMA, PHEMA, and PHPMA, J. Vac. Sci. Technol. A 19, 1490–1496, (2001).ADSGoogle Scholar
  195. 195.
    Wang, J., Huang, N., Pan, C.J., et al., Bacterial repellence from polyethylene terephthalate surface modified by acetylene plasma immersion ion implantation-deposition, Surf. Coat. Technol. 186, 299–304, (2004).Google Scholar
  196. 196.
    Dong, H. and Bell, T., State-of-the-art overview: ion beam surface modification of polymers towards improving tribological properties, Surf. Coat. Technol. 111, 29–40, (1999).Google Scholar
  197. 197.
    Han, S., Lee, Y., Kim, H., Kim, G.-H., Lee, J., Yoon, J.-H., and Kim, G., Polymer surface modification by plasma source ion implantation, Surf. Coat. Technol. 93, 261–264, (1997).Google Scholar
  198. 198.
    Kim, J.S., Hong, M.C., Nah, Y.H., Lee, Y., Han, S., and Lim, H.E., Wetting properties of polystyrene ionomers treated with plasma source ion implantation, J. Appl. Polymer Sci. 83, 2500–2504, (2002).Google Scholar
  199. 199.
    Kostov, K.G., Ueda, M., Tan, I.H., Leite, N.F., Beloto, A.F., and Gomes, G.F., Structural effect of nitrogen plasma-based ion implantation on ultra-high molecular weight polyethylene, Surf. Coat. Technol. 186, 287–290, (2004).Google Scholar
  200. 200.
    McKenzie, D.R., Newton-McGee, K., Ruch, P., Bilek, M.M., and Gan, B.K., Modification of polymers by plasma-based ion implantation for biomedical applications, Surf. Coat. Technol. 186, 239–244, (2004).Google Scholar
  201. 201.
    Clapham, L., Whitton, J.L., Ridgway, M.C., Hauser, N., and Pertravic, M., High dose, heavy ion implantation into metals: The use of a sacrificial carbon surface layer for increased dose retention, J. Appl. Phys. 72, 4014–4019, (1992).ADSGoogle Scholar
  202. 202.
    Anders, A., Anders, S., Brown, I.G., and Yu, K.M., “In-situ deposition of sacrificial layers during ion implantation: concept and simulation,” in Ion Beam Modification of Materials, Williams, J.S., Elliman, R.G., and Ridgway, M.C., (Eds.). pp.1089–1092, Elsevier, Amsterdam, (1996).Google Scholar
  203. 203.
    Oates, T.W.H., McKenzie, D.R., and Bilek, M.M.M., Plasma immersion ion implantation using polymeric substrates with a sacrificial conductive surface layer, Surf. Coat. Technol. 156, 332–337, (2002).Google Scholar
  204. 204.
    Hong, J., Andersson, J., Ekdahl, K.N., Elgue, G., Axén, N., Larsson, R., and Nilsson, B., Titanium is a highly thrombogenic biomaterial: Possible implications for osteogenesis, Thrombosis and Haemostasis 82, 58–64, (1999).Google Scholar
  205. 205.
    Thorwart, G., Mändl, S., and Rauschenbach, B., Rutile formation and oxygen diffusion in oxygen PIII-treated titanium, Surf. Coat. Technol. 136, 236–240, (2001).Google Scholar
  206. 206.
    Mändl, S., Sader, R., Thorwart, G., Krause, D., Zeilhofer, H.-F., Horch, H.H., and Rauschenbach, B., Investigation on plasma immersion ion implantation treated medical implants, Biomolecular Eng. 19, 129–132, (2002).Google Scholar
  207. 207.
    Thorwarth, G., Mändl, S., and Rauschenbach, B., Surf. Coat. Technol. 128–129, 116–120, (2000).Google Scholar
  208. 208.
    Wan, G.J., Huang, N., Leng, Y.X., Yang, P., Chen, J.Y., Wang, J., and Sun, H., TiN and Ti–O/TiN films fabricated by PIII-D for enhancement of corrosion and wear resistance of Ti–6Al–4 V, Surf. Coat. Technol. 186, 136–140, (2004).Google Scholar
  209. 209.
    Tsyganov, I., Maitz, M.F., Wieser, E., Prokert, F., Richter, E., and Rogozin, A., Structure and properties of titanium oxide layers prepared by metal plasma immersion ion implantation and deposition, Surf. Coat. Technol. 174–175, 591–596, (2003).Google Scholar
  210. 210.
    Wisbey, A., Gregson, P.J., Peter, L.M., and Tuke M., Effect of surface treatment on the dissolution of titanium-based implant materials, Biomaterials 12, 470–473, (1991).Google Scholar
  211. 211.
    Leng, Y.X., Yang, P., Chen, J.Y., Sun, H., Wang, J., Wang, G.J., Huang, N., Tian, X.B., and Chu, P.K., Fabrication of Ti-O/Ti-N duplex coatings on biomedical titanium alloys by metal plasma immersion ion implantation and reactive plasma nitriding/oxidation, Surf. Coat. Technol. 138, 296–300, (2001).Google Scholar
  212. 212.
    Leng, Y.X., Chen, J.Y., Wang, J., Wan, G.J., Sun, H., Yang, P., and Huang, N., Comparative properties of titanium oxide biomaterials grown by pulsed vacuum arc plasma deposition and by unbalanced magnetron sputtering, Surf. Coat. Technol. 201, 157–163, (2006).Google Scholar
  213. 213.
    Mändl, S., Thorwart, G., and Rauschenbach, B., Textured titanium oxide films produced by vacuum arc deposition, Surf. Coat. Technol. 133–134, 283–288, (2000).Google Scholar
  214. 214.
    Mändl, S., Attenberger, W., Stritzker, B., and Rauschenbach, B., Disorder formation in rutile during ion assisted deposition, Surf. Coat. Technol. 196, 76–80, (2005).Google Scholar
  215. 215.
    Anders, A., Oks, E.M., Yushkov, G.Y., Savkin, K.P., Brown, Y., and Nikolaev, A.G., Determination of the specific ion erosion of the vacuum arc cathode by measuring the total ion current from the discharge plasma, Technical Physics 51, 1311–1315, (2006).ADSGoogle Scholar
  216. 216.
    Brown, I.G. and Shiraishi, H., Cathode erosion rates in vacuum arc discharges, IEEE Trans. Plasma Sci. 18, 170–171, (1990).ADSGoogle Scholar
  217. 217.
    Daalder, J.E., Erosion and the origin of charged and neutral species in vacuum arcs, J. Phys. D: Appl. Phys. 8, 1647–1659, (1975).ADSGoogle Scholar
  218. 218.
    Daalder, J.E., Components of cathode erosion in vacuum arcs, J. Phys. D: Appl. Phys. 9, 2379–2395, (1976).ADSGoogle Scholar
  219. 219.
    Guile, A.E. and Jüttner, B., Basic erosion processes of oxidized and clean metal cathodes by electric arcs, IEEE Trans. Plasma Sci. 8, 259–269, (1980).ADSGoogle Scholar
  220. 220.
    Sethumraman, S.K., Chatterton, P.A., and Barrault, M.R., A study of the erosion rate of vacuum arcs in a transverse magnetic field, J. Nucl. Mat. 111/112, 510–516, (1982).ADSGoogle Scholar
  221. 221.
    Tuma, D.T., Chen, C.L., and Davis, D.K., Erosion products from the cathode spot region of a copper vacuum arc, J. Appl. Phys. 49, 3821–3831, (1978).ADSGoogle Scholar
  222. 222.
    Zhou, X. and Heberlein, J., An experimental investigation of factors affecting arc-cathode erosion, J. Phys. D-Appl. Phys. 31, 2577–2590, (1998).ADSGoogle Scholar
  223. 223.
    Zimmer, O., Vetter, J., Rackwitz, N., and Siemroth, P., Calculation and measurement of the time dependent erosion rate of electromagnetic steered rectangular arc cathodes, Surf. Coat. Technol. 146, 195–200, (2001).Google Scholar
  224. 224.
    Anders, A. and Yushkov, G.Y., Ion flux from vacuum arc cathode spots in the absence and presence of magnetic fields, J. Appl. Phys. 91, 4824–4832, (2002).ADSGoogle Scholar
  225. 225.
    Sugimoto, M. and Takeda, K., Surface variation caused by vacuum arc cleaning of organic contaminant, Thin Solid Films 506–507, 337–341, (2006).Google Scholar
  226. 226.
    Bergman, C., “Arc plasma physical vapor deposition,” 28th Annual SVC Technical Conference, Philadelphia, PA, 175–191, (1985).Google Scholar
  227. 227.
    McIntyre, D.C., Chen, G.G., Sprague, E.C., Humenik, D.B., and Kubinski, J.A., “Arc-deposited, pearl nickel finishes for interior trim applications in automobiles,” 44th Annual Technical Conference, Society of Vacuum Coaters, Philadelphia, 51–56, (2001).Google Scholar
  228. 228.
    Münz, W.-D., Schulze, D., and Hauzer, F.J.M., A new method for hard coatings – ABS (arc bond sputtering), Surf. Coat. Technol. 50, 169–178, (1992).Google Scholar
  229. 229.
    Hovsepian, P.E., Lewis, D.B., Munz, W.D., Lyon, S.B., and Tomlinson, M., Combined cathodic arc/unbalanced magnetron grown CrN/NbN superlattice coatings for corrosion resistant applications, Surf. Coat. Technol. 120–121, 535–541, (1999).Google Scholar
  230. 230.
    Münz, W.-D., Lewis, D.B., Hovsepian, P.E., Schönjahn, C., Ehiasarian, A., and Smith, I.J., Industrial scale manufactured superlattice hard PVD coatings, Surf. Eng. 17, 15–27, (2001).Google Scholar
  231. 231.
    Donohue, L.A., Munz, W.D., Lewis, D.B., Cawley, J., Hurkmans, T., Trinh, T., Petrov, I., and Greene, I.E., Large-scale fabrication of hard superlattice thin films by combined steered arc evaporation and unbalanced magnetron sputtering, Surf. Coat. Technol. 93, 69–87, (1997).Google Scholar
  232. 232.
    Hurkmans, T., Hauzer, F., Buil, B., Engel, K., and Tietema, R., A new large volume PVD coating system using advanced controlled arc and combined arc/unbalanced magnetron (ABS(TM)) deposition techniques, Surf. Coat. Technol. 92, 62–68, (1997).Google Scholar
  233. 233.
    Wang, H.W., Stack, M.M., Hovsepian, P., and Munz, W.D., Macroparticle induced corrosion for arc bond sputtering CrN/NbN superlattice coatings, J. Mat. Sci. Lett. 20, 1995–1997, (2001).Google Scholar
  234. 234.
    Lewis, D.B., Creasey, S.J., Wustefeld, C., Ehiasarian, A.P., and Hovsepian, P.E., The role of the growth defects on the corrosion resistance of CrN/NbN superlattice coatings deposited at low temperatures, Thin Solid Films 503, 143–148, (2006).ADSGoogle Scholar
  235. 235.
    Ehiasarian, A.P., Anders, A., and Petrov, I., Combined filtered cathodic arc etching pretreatment–magnetron sputter deposition of highly adherent CrN films, J. Vac. Sci. Technol. A 25, 543–550, (2007).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • André Anders
    • 1
  1. 1.BerkeleyUSA

Personalised recommendations