Skip to main content

Some Applications of Cathodic Arc Coatings

  • Chapter
  • First Online:
Cathodic Arcs

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 50))

Abstract

The choice of words “some applications” indicates that it is impossible to give a truly comprehensive account about all the films, coatings, multilayers, and nanostructures made by energetic condensation. Some important examples are selected, this time sorted and driven by the application rather than by the material or process. The range of applications includes hard coatings on tools, which are typically nitrides or carbides, corrosion-resistant and protective coatings such as ta-C (tetrahedral amorphous carbon), decorative coatings (nitrides, oxynitrides, carbides), optical coatings (oxides), metallization for the semiconductor industry, some wide band gap semiconductors (e.g., transparent conducting oxides), and bio-compatible coatings, and here we reconsider ta-C, among others.

The arc in vacuum has no great commercial value … Clement D. Child, in: Electric Arcs, 1913

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term stiction refers to sticking or “static friction” (a force is applied but no motion occurs), whereas friction usually involves a force to keep the object moving. Here, low stiction means a low force threshold to the onset of motion, which is related to the hydrophobic properties of diamond-like carbon.

  2. 2.

    Also spelled hemocompatibility.

  3. 3.

    Caution: In this section, physicians and physicists use the term plasma – and they may mean the same thing!

References

  1. Bergman, C., Ion flux characteristics in arc vapor deposition of TiN, Surf. Coat. Technol.36, 243–255, (1988).

    Article  Google Scholar 

  2. Vetter, J., Burgmer, W., and Perry, A.J., Arc-enhanced glow discharge in vacuum arc machines, Surf. Coat. Technol.59, 152–155, (1993).

    Article  Google Scholar 

  3. Martin, P.J., Netterfield, R.P., Kinder, T.J., and Descotes, L., Deposition of TiN, TiC, and TiO2 films by filtered arc evaporation, Surf. Coat. Technol.49, 239–243, (1991).

    Article  Google Scholar 

  4. Ryabchikov, A.I., Stepanov, I.B., Shulepov, I.A., Sharkeyev, Y.P., and Fortuna, S.V., “Application of a shutter-type filter for removing microparticle fraction from arc discharge plasma in technology of TiN coating formation,” 5th Conf. on Modification of Materials with Particle Beams and Plasma Flows, Tomsk, Russia, 319–322, (2000).

    Google Scholar 

  5. Tang, B., Wang, Y., Wang, L., Wang, X., Liu, H., Yu, Y., and Sun, T., Adhesion strength of TiN films synthesized on GCr15-bearing steel using plasma immersion ion implantation and deposition, Surf. Coat. Technol.186, 153–156, (2004).

    Article  Google Scholar 

  6. Vetter, J., Knaup, R., Dwuletzki, H., Schneider, E., and Vogler, S., Hard coatings for lubrication reduction in metal forming, Surf. Coat. Technol.86–87, 739–746, (1996).

    Article  Google Scholar 

  7. Johansen, O.A., Dontje, J.H., and Zenner, R.L.D., Reactive arc vapor ion deposition of TiN, ZrN and HfN, Thin Solid Films153, 75–82, (1987).

    Article  ADS  Google Scholar 

  8. Boelens, S. and Veltrop, H., Hard coatings of TiN, (TiHf)N and (TiNb)N deposited by random and steered arc evaporation, Surf. Coat. Technol.33, 63–71, (1987).

    Article  Google Scholar 

  9. Johnson, P.C. and Randhawa, H., Zirconium nitride films prepared by cathodic arc plasma deposition process, Surf. Coat. Technol.33, 53–62, (1987).

    Article  Google Scholar 

  10. Conrad, J.R., Radtke, J.L., Dodd, R.A., Worzala, F.J., and Tran, N.C., Plasma source ion-implantation technique for surface modification, J. Appl. Phys.62, 4591–4596, (1987).

    Article  ADS  Google Scholar 

  11. Blawert, C., Mordike, B.L., Collins, G.A., Hutchings, R., Short, K.T., and Tendys, J., Plasma immersion ion implantation of 100Cr6 ball bearing steel, Surf. Coat. Technol.83, 228–234, (1996).

    Article  Google Scholar 

  12. Johns, S.M., Bell, T., Samandi, M., and Collins, G.A., Wear resistance of plasma immersion ion implanted Ti6Al4V, Surf. Coat. Technol.85, 7–14, (1996).

    Article  Google Scholar 

  13. Mändl, S., Günzel, R., Richter, E., and Möller, W., Nitriding of austenitic stainless steels using plasma immersion ion implantation, Surf. Coat. Technol.100–101, 372–376, (1998).

    Article  Google Scholar 

  14. Vetter, J. and Perry, A.J., Advances in cathodic arc technology using electrons extracted from the vacuum arc, Surf. Coat. Technol.61, 305–309, (1993).

    Article  Google Scholar 

  15. Vetter, J., (Alx : Tiy)N coatings deposited by cathodic vacuum arc evaporation, J. Advanced Materials31, 41–47, (1999).

    Google Scholar 

  16. Freller, H. and Haessler, H., TixAl1-xN films deposited by ion plating with an arc evaporator, Thin Solid Films153, 67–74, (1987).

    Article  ADS  Google Scholar 

  17. Hörling, A., Hultman, L., Odén, M., Sjölén, J., and Karlsson, L., Mechanical properties and machining performance of Ti1-xAlxN-coated cutting tools, Surf. Coat. Technol.191, 384–392, (2005).

    Article  Google Scholar 

  18. Hörling, A., Hultman, L., Odén, M., Sjolén, J., and Karlsson, L., Thermal stability of arc evaporated high aluminum-content Ti1-xAlxN thin films, J. Vac. Sci. Technol. A20, 1815–1823, (2002).

    Article  ADS  Google Scholar 

  19. Mayrhofer, P.H., Hörling, A., Karlsson, L., Sjolen, J., Larsson, T., Mitterer, C., and Hultman, L., Self-organized nanostructures in the Ti-Al-N system, Appl. Phys. Lett.83, 2049–2051, (2003).

    Article  ADS  Google Scholar 

  20. Gersten, J.I. and Smith, F.W., The Physics and Chemistry of Materials. John Wiley & Sons, New York, (2001).

    Google Scholar 

  21. PalDey, S. and Deevi, S.C., Properties of single layer and gradient (Ti,Al)N coatings, Mater. Sci. Eng. A361, 1–8, (2003).

    Article  Google Scholar 

  22. Knotek, O., Loffler, F., Scholl, H.J., and Barimani, C., The multisource arc process for depositing ternary Cr- and Ti-based coatings, Surf. Coat. Technol.68–69, 309–313, (1994).

    Article  Google Scholar 

  23. Vetter, J., Scholl, H.J., and Knotek, O., (TiCr)N coatings deposited by cathodic vacuum arc evaporation, Surf. Coat. Technol.74–75, 286–291, (1995).

    Article  Google Scholar 

  24. Chang, Y.-Y., Yang, S.-J., and Wang, D.-Y., Characterization of TiCr(C,N)/amorphous carbon coatings synthesized by a cathodic arc deposition process, Thin Solid Films515, 4722–4726, (2007).

    Article  ADS  Google Scholar 

  25. Karlsson, L., Hultman, L., Johansson, M.P., Sundgren, J.E., and Ljungcrantz, H., Growth, microstructure, and mechanical properties of arc evaporated TiCxN1–x (0 <= x <= 1) films, Surf. Coat. Technol.126, 1–14, (2000).

    Article  Google Scholar 

  26. Karlsson, L., Hultman, L., and Sundgren, J.E., Influence of residual stresses on the mechanical properties of TiCxN1–x (x=0, 0.15, 0.45) thin films deposited by arc evaporation, Thin Solid Films371, 167–177, (2000).

    Article  ADS  Google Scholar 

  27. Yamamoto, K., Sato, T., Takahara, K., and Hanaguri, K., Properties of (Ti,Cr,AI)N coatings with high Al content deposited by new plasma enhanced arc-cathode, Surf. Coat. Technol.174–175, 620–626, (2003).

    Article  Google Scholar 

  28. Lee, H.Y., Han, J.G., Baeg, S.H., and Yang, S.H., Characterization of WC–CrAlN heterostructures obtained using a cathodic arc ion plating process, Surf. Coat. Technol.174–175, 303–309, (2003).

    Article  Google Scholar 

  29. Gorokhovsky, V.I., Bhat, D.G., Shivpuri, R., Kulkarni, K., Bhattacharya, R., and Rai, A.K., Characterization of large area filtered arc deposition technology: part II – coating properties and application, Surf. Coat. Technol.140, 215–224, (2001).

    Article  Google Scholar 

  30. Gorokhovsky, V., Heckerman, B., Watson, P., and Bekesch, N., The effect of multilayer filtered arc coatings on mechanical properties, corrosion resistance and performance of periodontal dental instruments, Surf. Coat. Technol.200, 5614–5630, (2006).

    Article  Google Scholar 

  31. Music, D., Sun, Z., Voevodin, A.A., and Schneider, J.M., Electronic structure and shearing in nanolaminated ternary carbides, Solid State Communications139, 139–143, (2006).

    Article  ADS  Google Scholar 

  32. Barsoum, M.W. and El-Raghy, T., Synthesis and Characterization of a Remarkable Ceramic: Ti3SiC2, J. American Ceramic Society79, 1953–1956, (1996).

    Article  Google Scholar 

  33. Barsoum, M.W. and El-Raghy, T., The MAX phases: Unique new carbide and nitride materials, Am. Sci.89, 334, (2001).

    Article  ADS  Google Scholar 

  34. Rosén, J., Ryves, L., Persson, P.O.Å., and Bilek, M.M.M., Deposition of epitaxial Ti2AlC thin films by pulsed cathodic arc, J. Appl. Phys.101, 056101–2, (2007).

    Article  ADS  Google Scholar 

  35. Brondum, K. and Larson, G., “Low-temperature arc vapor deposition as a hexavalent chrome electroplating alternative,” Vapor Technologies Inc., Longmont, CO May 13, 2005 (2005).

    Google Scholar 

  36. Esteve, J., Romero, J., Gomez, M., and Lousa, A., Cathodic chromium carbide coatings for molding die applications, Surf. Coat. Technol.188–189, 506–510, (2004).

    Article  Google Scholar 

  37. Lide, D.R., (ed.) Handbook of Chemistry and Physics, 81st Edition, CRC Press, Boca Raton, New York, (2000).

    Google Scholar 

  38. Kubaschewski, O. and Evans, E.L., Metallurgical Thermochemistry, Reprint of 3rd edition, Pergamon Press, Oxford, (1965).

    Google Scholar 

  39. Kubaschewski, O., Alcock, C.B., and Spencer, P.J., Materials Thermochemistry, 6th ed. Pergamon Press, Oxford, (1993).

    Google Scholar 

  40. Cardarelli, F., Materials Handbook. Springer, London, (2000).

    Book  Google Scholar 

  41. Pierson, H.O., Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications. Noyes, Park Ridge, NJ, (1996).

    Google Scholar 

  42. Braic, V., Balaceanu, M., Braic, M., and Vladescu, A., Synthesis and characterization of hard layers obtained by vacuum arc technology, Romanian Reports in Physics56, 481–486, (2004).

    Google Scholar 

  43. Knotek, O., Lugscheider, E., Löffler, F., Beele, W., and Barimani, C., Arc evaporation of multicomponent MCrAlY cathodes, Surf. Coat. Technol.74/75, 118–122, (1995).

    Article  Google Scholar 

  44. Shinno, H., Tanabe, T., Fujitsuka, M., and Sakai, Y., Characterization of carbon-boron coatings prepared on molybdenum by a vacuum arc deposition method, Thin Solid Films189, 149–159, (1990).

    Article  ADS  Google Scholar 

  45. Morrow, M.S., Schechter, D.E., Tsai, C.-C., Klepper, C.C., Niemel, J., and Hazelton, R.C., “Microwave processing of pressure boron powders for use as cathodes in vacuum arc sources,” patent US 6,562,418 (2003).

    Google Scholar 

  46. Richter, F., Krannich, G., Hahn, J., Pintaske, R., Friedrich, M., Schmidbauer, S., and Zahn, D.R.T., Utilization of cathodic arc evaporation for the deposition of boron nitride thin films, Surf. Coat. Technol.90, 178–183, (1997).

    Article  Google Scholar 

  47. Richter, F., Flemming, G., Kühn, M., Peter, S., and Wagner, H., Characterization of the arc evaporation of a hot boron cathode, Surf. Coat. Technol.112, 43–47, (1999).

    Article  Google Scholar 

  48. Klepper, C.C., Hazelton, R.C., Yadlowsky, E.J., Carlson, E.P., Keitz, M.D., Williams, J.M., Zuhr, R.A., and Poker, D.B., Amorphous boron coatings produced with vacuum arc deposition technology, J. Vac. Sci. Technol. A20, 725–732, (2002).

    Article  ADS  Google Scholar 

  49. Werner, Z., Stanisawski, J., Piekoszewski, J., Levashov, E.A., and Szymczyk, W., New types of multi-component hard coatings deposited by arc PVD on steel pre-treated by pulsed plasma beam, Vacuum70, 263–267, (2003).

    Article  ADS  Google Scholar 

  50. Klepper, C.C., Niemel, J., Hazelton, R.C., Yadlowsky, E.J., and Monteiro, O.R., Vacuum arc deposited boron carbide films for fusion plasma facing components, Fusion Technol.39, 910–915, (2001).

    Article  Google Scholar 

  51. Klepper, C.C., Niemel, J., Hazelton, R.C., and Keitz, M.D., “Method and apparatus for depositing ceramic films by vacuum arc deposition,” patent US 6,495,002 (2002).

    Google Scholar 

  52. Monteiro, O.R., Delplancke-Ogletree, M.P., and Klepper, C.C., Boron carbide coatings prepared by cathodic arc deposition, J. Materials Sci.38, 3117–3120, (2003).

    Article  ADS  Google Scholar 

  53. Mackiewicz Ludtka, G., Sikka, V.K., Williams, J.M., Klepper, C.C., Hazelton, R.C., and E.J. Yadlowsky, “Aluminum soldering performance testing of H13 steel as boron coated by the cathodic arc technique,” 47th Annual Technical Conference Proceedings of the Society of Vacuum Coaters, Dallas, TX, 168–173, (2004).

    Google Scholar 

  54. Cuomo, J.J., Pappas, D.L., Bruley, J., Doyle, J.P., and Saenger, K.K., Vapor deposition process for amorphous carbon films with sp3 fractions approaching diamond, J. Appl. Phys.70, 1706–1711, (1991).

    Article  ADS  Google Scholar 

  55. Ager III, J.W., Anders, S., Anders, A., and Brown, I.G., Effect of intrinsic growth stress on the Raman spectra of vacuum-arc-deposited amorphous carbon films, Appl. Phys. Lett.66, 3444–3446, (1995).

    Article  ADS  Google Scholar 

  56. Pharr, G.M., Callahan, D.L., McAdams, D., et al., Hardness, elastic modulus, and structure of very hard carbon films produced by cathodic-arc deposition with substrate bias, Appl. Phys. Lett.68, 779–781, (1996).

    Article  ADS  Google Scholar 

  57. Lossy, R., Pappas, D.L., Roy, R.A., Cuomo, J.J., and Sura, V.H., Filtered arc deposition of amorphous diamond, Appl. Phys. Lett.61, 171–173, (1992).

    Article  ADS  Google Scholar 

  58. Falabella, S., Boercker, D.B., and Sanders, D.M., Fabrication of amorphous diamond films, Thin Solid Films236, 82–86, (1993).

    Article  ADS  Google Scholar 

  59. Hakovirta, M., Salo, J., Lappalainen, R., and Anttila, A., Correlation of carbon ion energy with sp(2)/sp(3) ratio in amorphous diamond films produced with a mass-separated ion beam, Phys. Lett. A205, 287–289, (1995).

    Article  ADS  Google Scholar 

  60. Wang, X., Zhao, J.P., Chen, Z.Y., Yang, S.Q., Shi, T.S., and Liu, X.H., Field emission from amorphous diamond films prepared by filtered arc deposition, Thin Solid Films317, 356–358, (1998).

    Article  ADS  Google Scholar 

  61. Andersson, J., Erck, R.A., and Erdemir, A., Friction of diamond-like carbon films in different atmospheres, Wear254, 1070–1075, (2003).

    Article  Google Scholar 

  62. Erdemir, A. and Donnet, C., Tribology of diamondlike carbon films: recent progress and future prospects, J. Phys. D: Appl. Phys.39, R1–R17, (2006).

    Article  Google Scholar 

  63. Anders, S., Brown, I.G., Bhatia, C.S., and Bogy, D.B., Wanted: hard, thin coatings for near-contact recording, Data Storage4, 31–38, (1997).

    Google Scholar 

  64. Robertson, J., Requirements of ultrathin carbon coatings for magnetic storage technology, Tribology International36, 405–415, (2003).

    Article  Google Scholar 

  65. Jacoby, B., Wienss, A., Ohr, R., von Gradowski, M., and Hilgers, H., Nanotribological properties of ultra-thin carbon coatings for magnetic storage devices, Surf. Coat. Technol.174–175, 1126–1130, (2003).

    Article  Google Scholar 

  66. Casiraghi, C., Ferrari, A.C., Ohr, R., Chu, D., and Robertson, J., Surface properties of ultra-thin tetrahedral amorphous carbon films for magnetic storage technology, Diam. Rel. Mat.13, 1416–1421, (2004).

    Article  Google Scholar 

  67. Robertson, J., Diamond-like amorphous carbon, Mat. Sci. Eng.R 37, 129–281, (2002).

    Article  Google Scholar 

  68. Anders, A., Fong, W., Kulkarni, A., Ryan, F.R., and Bhatia, C.S., Ultrathin diamondlike carbon films deposited by filtered carbon vacuum arcs, IEEE Trans. Plasma Sci.29, 768–775, (2001).

    Article  ADS  Google Scholar 

  69. Druz, B., Yevtukhov, Y., and Zaritskiy, I., Diamond-like carbon overcoat for TFMH using filtered cathodic arc system with Ar-assisted arc discharge, Diam. Rel. Mat.14, 1508–1516, (2005).

    Article  Google Scholar 

  70. Anders, S., Anders, A., Dickinson, M.R., MacGill, R.A., and Brown, I.G., S-shaped magnetic macroparticle filter for cathodic arc deposition, IEEE Trans. Plasma Sci.25, 670–674, (1997).

    Article  ADS  Google Scholar 

  71. Shi, X., Tay, B.G., and Lau, S.P., The double bend filtered cathodic arc technology and its applications, Int. J. Mod. Phys. B14, 136–153, (2000).

    Article  ADS  Google Scholar 

  72. You, G.F., Tay, B.K., Lau, S.P., Chua, D.H.C., and Milne, W.I., Carbon arc plasma transport through different off-plane double bend filters, Surf. Coat. Technol.150, 50–56, (2002).

    Article  Google Scholar 

  73. Tay, B.K. and Zhang, P., On the properties of nanocomposite amorphous carbon films prepared by off-plane double bend filtered cathodic vacuum arc, Thin Solid Films420–421, 177–184, (2002).

    Article  ADS  Google Scholar 

  74. Anders, S., Stammler, T., Fong, W., Chen, C.-Y., Bogy, D.B., Bhatia, C.S., and Stöhr, J., Study of tribochemical processes on hard disks using photoemission electron microscopy, J. Tribology121, 961–967, (1999).

    Article  Google Scholar 

  75. Anders, S., Stammler, T., Fong, W., Bogy, D.B., Bhatia, C.S., and Stöhr, J., Investigation of slider surfaces after wear using photoemission electron microscopy, J. Vac. Sci. Technol. A17, 2731–2736, (1999).

    Article  ADS  Google Scholar 

  76. Bhatia, C.S., Fong, W., Chen, C.-Y., Wei, J., Bogy, D.B., Anders, S., Stammler, T., and Stöhr, J., Tribochemistry at the head/disk interface, IEEE Trans. Magnetics35, 910–915, (1999).

    Article  ADS  Google Scholar 

  77. Tsui, T.Y., Pharr, G.M., Oliver, W.C., Bhatia, C.S., White, R.L., Anders, S., Anders, A., and Brown, I.G., Nanoindentation and nanoscratching of hard carbon coatings for magnetic disks, Mat. Res. Soc. Symp. Proc.383, 447–452, (1995).

    Article  Google Scholar 

  78. Decker, T.G., Lundie, G.P., Pappas, D.L., Welty, R.P., and Parent, C.R., “Amorphous diamond coating of blades,” patent WO 9529044 (1995).

    Google Scholar 

  79. Decker, T.G., Lundie, G.P., Pappas, D.L., Welty, R.P., and Parent, C.R., “Amorphous diamond coating of blades,” patent US 5799549 (1998).

    Google Scholar 

  80. Sheeja, D., Tay, B.K., Yu, L., and Lau, S.P., Low stress thick diamond-like carbon films prepared by filtered arc deposition for tribological applications, Surf. Coat. Technol.154, 289–293, (2002).

    Article  Google Scholar 

  81. Liujiang, Y., Tay, B.K., Sheeja, D., Fu, Y.Q., and Miao, J.M., Micromachining of large area amorphous carbon membranes prepared by filtered cathodic vacuum arc technique, Appl. Surf. Sci.223, 286–293, (2004).

    Article  ADS  Google Scholar 

  82. Sheeja, D., Tay, B.K., Lau, S.P., Yu, L.J., Miao, J.M., Chua, H.C., and Milne, W.I., Fabrication of smooth amorphous carbon micro-cantilevers by lift-off, Sens. Actuators B: Chem.98, 275–281, (2004).

    Article  Google Scholar 

  83. Yu, L.J., Sheeja, D., Tay, B.K., Chua, D.H.C., Milne, W.I., Miao, J., and Fu, Y.Q., Etching behaviour of pure and metal containing amorphous carbon films prepared using filtered cathodic vacuum arc technique, Appl. Surf. Sci.195, 107–116, (2002).

    Article  ADS  Google Scholar 

  84. Lemoine, P., Quinn, J.P., Maguire, P., and McLaughlin, J.A., Comparing hardness and wear data for tetrahedral amorphous carbon and hydrogenated amorphous carbon thin films, Wear257, 509–522, (2004).

    Article  Google Scholar 

  85. Oliver, W.C. and Pharr, G.M., An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res.7, 1564–1583, (1992).

    Article  ADS  Google Scholar 

  86. Zou, Y.S., Wang, W., Song, G.H., Du, H., Gong, J., Huang, R.F., and Wen, L.S., Influence of the gas atmosphere on the microstructure and mechanical properties of diamond-like carbon films by arc ion plating, Mater. Lett.58, 3271–3275, (2004).

    Article  Google Scholar 

  87. Miyakawa, N., Minamisawa, S., Takikawa, H., and Sakakibar, T., Physical–chemical hybrid deposition of DLC film on rubber by T-shape filtered-arc-deposition, Vacuum73, 611–617, (2004).

    Article  ADS  Google Scholar 

  88. Druz, B., Yevtukhov, Y., Novotny, V., Zaritsky, I., Kanarov, V., Polyakov, V., and Rukavishnikov, A., Nitrogenated carbon films deposited using filtered cathodic arc, Diam. Rel. Mat.9, 668–674, (2000).

    Article  Google Scholar 

  89. Liu, E., Shi, X., Tan, H.S., Cheah, L.K., Sun, Z., Tay, B.K., and Shi, J.R., The effect of nitrogen on the mechanical properties of tetrahedral amorphous carbon films deposited with a filtered cathodic vacuum arc, Surf. Coat. Technol.120–121, 601–606, (1999).

    Article  Google Scholar 

  90. Silva, S.R.P., Robertson, J., Amaratunga, G.A.J., Rafferty, B., Brown, L.M., Schwan, J., Franceschini, D.F., and Mariotto, G., Nitrogen modification of hydrogenated amorphous carbon films, J. Appl. Phys.81, 2626–2634, (1997).

    Article  ADS  Google Scholar 

  91. Kühn, M., Spaeth, C., Pintaske, R., Peter, S., Richter, F., and Anders, A., The effect of additional ion/plasma assistance in CNx-film deposition based on a filtered cathodic arc, Thin Solid Films311, 151–156, (1997).

    Article  ADS  Google Scholar 

  92. Tan, A.H. and Cheng, Y.C., Optimization of wear-corrosion properties of a-C:N films using filtered cathodic arc deposition, Diam. Rel. Mat.17, 36–42, (2008).

    Article  Google Scholar 

  93. Chang, Y.-Y. and Wang, D.-Y., Structural and electrical properties of nitrogen-doped Cr-C:H films synthesized by a cathodic-arc activated deposition process, Thin Solid Films485, 1–7, (2005).

    Article  ADS  Google Scholar 

  94. Fu, R.K.Y., Mei, Y.F., Shen, L.R., Siu, G.G., Chu, P.K., Cheung, W.Y., and Wong, S.P., Molybdenum–carbon film fabricated using metal cathodic arc and acetylene dual plasma deposition, Surf. Coat. Technol.186, 112–117, (2004).

    Article  Google Scholar 

  95. Fu, R.K.Y., Mei, Y.F., Fu, M.Y., Liu, X.Y., and Chu, P.K., Thermal stability of metal-doped diamond-like carbon fabricated by dual plasma deposition, Diam. Rel. Mat.14, 1489–1493, (2005).

    Article  Google Scholar 

  96. Vetter, J. and Nevoigt, A., a-C : HMe coatings deposited by the cathodic vacuum arc deposition: properties and application potential, Surf. Coat. Technol.121, 709–717, (1999).

    Article  Google Scholar 

  97. Chen, J.S., Lau, S.P., Chen, G.Y., Sun, Z., Li, Y.J., Tay, B.K., and Chai, J.W., Deposition of iron containing amorphous carbon films by filtered cathodic vacuum arc technique, Diam. Rel. Mat.10, 2018–2023, (2001).

    Article  Google Scholar 

  98. Sheeja, D., Tay, B.K., and Yu, L.J., A comparative study between pure and Al-containing amorphous carbon films prepared by FCVA technique together with high substrate pulse bias, Diam. Rel. Mat.12, 2032–2036, (2003).

    Article  Google Scholar 

  99. Zhang, P., Tay, B.K., Yu, G.Q., Lau, S.P., and Fu, Y.Q., Surface energy of metal containing amorphous carbon films deposited by filtered cathodic vacuum arc, Diam. Rel. Mat.13, 459–464, (2004).

    Article  Google Scholar 

  100. Ryves, L., Bilek, M.M.M., Oates, T.W.H., Tarrant, R.N., McKenzie, D.R., Burgmann, F.A., and McCulloch, D.G., Synthesis and in-situ ellipsometric monitoring of Ti/C nanostructured multilayers using a high-current, dual source pulsed cathodic arc, Thin Solid Flims482, 133–137, (2005).

    Article  ADS  Google Scholar 

  101. Pasaja, N., Sansongsiri, S., Intarasiri, S., Vilaithong, T., and Anders, A., Mo-containing tetrahedral amorphous carbon deposited by dual filtered cathodic vacuum arc with selective pulsed bias voltage, Nucl. Instrum. Meth. Phys. Res. B259, 867–870, (2007).

    Article  ADS  Google Scholar 

  102. Anders, A., Pasaja, N., and Sansongsiri, S., Filtered cathodic arc deposition with ion-species-selective bias, Rev. Sci. Instrum.78, 063901-1-5, (2007).

    Article  ADS  Google Scholar 

  103. Niyomsoan, S., Grant, W., Olson, D.L., and Mishra, B., Variation of color in titanium and zirconium nitride decorative thin films, Thin Solid Films415, 187–194, (2002).

    Article  ADS  Google Scholar 

  104. Gläser, H.J., Large Area Glass Coating. Von Ardenne Anlagentechnik GmbH, Dresden, Germany, (2000).

    Google Scholar 

  105. Zallen, R., International Colloquium on the Optical Properties and Electronic Structure of Metals and Alloys, Paris, France, (1965).

    Google Scholar 

  106. Schlegel, A., Wachter, P., Nickl, J.J., and Lingg, H., Optical properties of TiN and ZrN, J. Phys. C: Solid State Physics, 4889–4896, (1977).

    Google Scholar 

  107. Eerden, M., van Ijzendoorn, W., Tietema, R., and van der Kolk, G.J., “A systematic study of the properties of the Zr-C-N ternary system, deposited by reactive arc evaporation,” 46th Annual Technical Conference, Society of Vacuum Coaters, San Francisco, CA, 56–60, (2003).

    Google Scholar 

  108. Beck, U., Reiners, G., Kopacz, U., and Jehn, H.A., Decorative hard coatings: interdependence of optical, stoichiometric and structural properties, Surf. Coat. Technol.60, 389–395, (1993).

    Article  Google Scholar 

  109. Martin, P.J., Netterfield, R.P., and Kinder, T.J., Ion-beam-deposited films produced by filtered arc evaporation, Thin Solid Films193, 77–83, (1990).

    Article  ADS  Google Scholar 

  110. Martin, P.J., Netterfield, R.P., Bendavid, A., and Kinder, T.J., The deposition of thin films by filtered arc evaporation, Surf. Coat. Technol.54, 136–142, (1992).

    Article  Google Scholar 

  111. Martin, P., Netterfield, R., Kinder, T., and Bendavid, A., Optical properties and stress of ion-assisted aluminum nitride thin films, Appl. Opt.31, 6734, (1992).

    Article  ADS  Google Scholar 

  112. Bendavid, A., Martin, P.J., Netterfield, R.P., Sloggett, G.J., Kinder, T.J., and Andrikidis, C., The deposition of niobium, NbN and Nb2O5 films by filtered arc evaporation, J. Mat. Sci. Lett.12, 322–323, (1993).

    Article  Google Scholar 

  113. Bendavid, A., Martin, P.J., Jamting, A., and Takikawa, H., Structural and optical properties of titanium oxide thin films deposited by filtered arc deposition, Thin Solid Films356, 6–11, (1999).

    Article  Google Scholar 

  114. Bendavid, A., Martin, P.J., and Takikawa, H., Deposition and modification of titanium dioxide thin films by filtered arc deposition, Thin Solid Films360, 241–249, (2000).

    Article  ADS  Google Scholar 

  115. Martin, P.J. and Bendavid, A., “Optical thin film deposition by filtered cathodic arc techniques,” 45th Annual Technical Conference, Society of Vacuum Coaters, Philadelphia, PA, 270–273, (2002).

    Google Scholar 

  116. Martin, P.J., Bendavid, A., Netterfield, R.P., Kinder, T.J., Jahan, F., and Smith, G., Plasma deposition of tribological and optical thin film materials with a filtered cathodic arc source, Surf. Coat. Technol.112, 257–260, (1999).

    Article  Google Scholar 

  117. Kim, J.K., Lee, E.S., Kim, D.H., and Kim, D.G., Ion beam-induced erosion and humidity effect of MgO protective layer prepared by vacuum arc deposition, Thin Solid Films447, 95–99, (2004).

    Article  ADS  Google Scholar 

  118. Zheng, C., Zhu, D., Chen, D., He, Z., Wen, L., Cheung, W.Y., and Wong, S.P., Influence of O2 flow rate on structure and properties of MgOx films prepared by cathodic-vacuum-arc ion deposition system, IEEE Trans. Plasma Sci.34, 1099–1104, (2006).

    Article  ADS  Google Scholar 

  119. MacGill, R.A., Anders, S., Anders, A., Castro, R.A., Dickinson, M.R., Yu, K.M., and Brown, I.G., Cathodic arc deposition of copper oxide thin films, Surf. Coat. Technol.78, 168–172, (1996).

    Article  Google Scholar 

  120. Mändl, S., Manova, D., and Rauschenbach, B., Transparent AlN layers formed by metal plasma immersion ion implantation and deposition, Surf. Coat. Technol.186, 82–87, (2004).

    Article  Google Scholar 

  121. Inkin, V.N., Kirpilenko, G.G., and Kolpakov, A.J., Properties of aluminium nitride coating obtained by vacuum arc discharge method with plasma flow separation, Diam. Rel. Mater.10, 1314–1316, (2001).

    Article  Google Scholar 

  122. Exarhos, G.J. and Zhou, X.-D., Discovery-based design of transparent conducting oxide films, Thin Solid Films515, 7025–7052, (2007).

    Article  ADS  Google Scholar 

  123. Chen, B.J., Sun, X.W., and Tay, B.K., Fabrication of ITO thin films by filtered cathodic vacuum arc deposition, Mat. Sci. Eng. B106, 300–304, (2004).

    Article  Google Scholar 

  124. Satoh, I. and Kobayashi, T., Magnetic and optical properties of novel magnetic semiconductor Cr-doped ZnO and its application to all oxide p-i-n diode, Appl. Surf. Sci.216, 603–606, (2003).

    Article  ADS  Google Scholar 

  125. Ben-Shalom, A., Kaplan, L., Boxman, R.L., Goldsmith, S., and Nathan, M., SnO2 transparent conductor films produced by filtered vacuum arc deposition, Thin Solid Films236, 20–26, (1993).

    Article  ADS  Google Scholar 

  126. Boxman, R.L., Zhitomirsky, V., Goldsmith, S., David, T., and Dikhtyar, V., “Deposition of SnO2 coatings using a rectangular filtered vacuum arc source,” 46th Annual Technical Meeting of the Society of Vacuum Coaters, San Francisco, CA, 234–239, (2003).

    Google Scholar 

  127. David, T., Goldsmith, S., and Boxman, R.L., “p-type Sb-doped ZnO thin films prepared with filtered vacuum arc deposition,” 47th Annual Technical Conference Proceedings of the Society of Vacuum Coaters, Dallas, TX, 122–126, (2004).

    Google Scholar 

  128. Kaplan, L., Benshalom, A., Boxman, R.L., Goldsmith, S., Rosenberg, U., and Nathan, M., Annealing and Sb-Doping of Sn-O Films Produced By Filtered Vacuum Arc Deposition – Structure and Electro-Optical Properties, Thin Solid Films253, 1–8, (1994).

    Article  ADS  Google Scholar 

  129. Kaplan, L., Zhitomirsky, V.N., Goldsmith, S., Boxman, R.L., and Rusman, I., Arc behaviour during filtered vacuum arc deposition of Sn-O thin films, Surf. Coat. Technol.76, 181–189, (1995).

    Article  Google Scholar 

  130. Kaplan, L., Rusman, I., Boxman, R.L., Goldsmith, S., Nathan, M., and BenJacob, E., STM and XPS study of filtered vacuum arc deposited Sn-O films, Thin Solid Films291, 355–361, (1996).

    Article  Google Scholar 

  131. Zhitomirsky, V.N., Boxman, R.L., and Goldsmith, S., Plasma distribution and SnO2 coating deposition using a rectangular filtered vacuum arc plasma source, Surf. Coat. Technol.185, 1–11, (2004).

    Article  Google Scholar 

  132. Zhitomirsky, V.N., David, T., Boxman, R.L., Goldsmith, S., Verdyan, A., Soifer, Y.M., and Rapoport, L., Properties of SnO2 coatings fabricated on polymer substrates using filtered vacuum arc deposition, Thin Solid Films492, 187–194, (2005).

    Article  ADS  Google Scholar 

  133. Goldsmith, S., Filtered vacuum arc deposition of undoped and doped ZnO thin films: Electrical, optical, and structural properties, Surf. Coat. Technol.201, 3993–3999, (2006).

    Article  Google Scholar 

  134. Xu, X.L., Lau, S.P., Chen, J.S., Chen, G.Y., and Tay, B.K., Polycrystalline ZnO thin films on Si (100) deposited by filtered cathodic vacuum arc, J. Cryst. Growth223, 201–205, (2001).

    Article  ADS  Google Scholar 

  135. Xu, X.L., Lau, S.P., and Tay, B.K., Structural and optical properties of ZnO thin films produced by filtered cathodic vacuum arc, Thin Solid Films398–399, 244–249, (2001).

    Article  Google Scholar 

  136. Minami, T., Ida, S., and Miyata, T., High rate deposition of transparent conducting oxide thin films by vacuum arc plasma evaporation, Thin Solid Films416, 92–96, (2002).

    Article  ADS  Google Scholar 

  137. Tay, B.K., Zhao, Z.W., and Chua, D.H.C., Review of metal oxide films deposited by filtered cathodic vacuum arc technique, Mat. Sci. Eng. R: Reports52, 1–48, (2006).

    Article  Google Scholar 

  138. Lee, H.W., Lau, S.P., Wang, Y.G., Tay, B.K., and Hng, H.H., Internal stress and surface morphology of zinc oxide thin films deposited by filtered cathodic vacuum arc technique, Thin Solid Films458, 15–19, (2004).

    Article  ADS  Google Scholar 

  139. Ozgur, U., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M.A., Dogan, S., Avrutin, V., Cho, S.J., and Morkoc, H., A comprehensive review of ZnO materials and devices, J. Appl. Phys.98, 041301–103, (2005).

    Article  ADS  Google Scholar 

  140. Wang, Y.G., Lau, S.P., Lee, H.W., Yu, S.F., Tay, B.K., Zhang, X.H., Tse, K.Y., and Hng, H.H., Comprehensive study of ZnO films prepared by filtered cathodic vacuum arc at room temperature, J. Appl. Phys.94, 1597–1604, (2003).

    Article  ADS  Google Scholar 

  141. Look, D.C., Claflin, B., Alivov, Y.I., and Park, S.J., The future of ZnO light emitters, phys. stat. sol. (a)201, 2203–2212, (2004).

    Article  ADS  Google Scholar 

  142. Kavak, H., Senadim Tüzemen, E., Özbayraktar, L.N., and Esen, R., “Optical and photoinductivity properties of ZnO thin films grown by pulsed filtered cathodic vacuum arc deposition,” The Ninth Int. Symp. on Sputtering and Plasma Processes (ISSP 2007), Kanazawa, Japan, 275–278, (2007).

    Google Scholar 

  143. Shi, X., Cheah, L.K., and Tay, B.K., Thin Solid Films312, 166, (1998).

    Google Scholar 

  144. Veerasamy, V.S., Amaratunga, G.A.J., Park, J.S., MacKenzie, H.S., and Milne, W.I., IEEE Trans. Electron Devices42, 577, (1995).

    Article  ADS  Google Scholar 

  145. Cheah, L.K., Shi, X., Liu, E., and Shi, J.R., Nitrogenated tetrahedral amorphous carbon films prepared by ion-beam-assisted filtered cathodic vacuum arc technique for solar cells application, Appl. Phys. Lett.73, 2473–2475, (1998).

    Article  ADS  Google Scholar 

  146. Cheah, L.K., Xu, S., and Tay, B.K., Deposition of nitrogen doped tetrahedral amorphous carbon (ta-C:N) films by ion beam assisted filtered cathodic vacuum arc, Electron. Lett.33, 1339–1340, (1997).

    Article  Google Scholar 

  147. Chua, D.H.C., Milne, W.I., Tay, B.K., Zhang, P., and Ding, X.Z., Microstructural and surface properties of cobalt containing amorphous carbon thin film deposited by a filtered cathodic vacuum arc, J. Vac. Sci. Technol. A21, 353–358, (2003).

    Article  ADS  Google Scholar 

  148. Zhang, P., Tay, B.K., Zhang, Y.B., Lau, S.P., and Yung, K.P., The reversible wettability of Ti containing amorphous carbon films by UV irradiation, Surf. Coat. Technol.198, 184–188, (2005).

    Article  Google Scholar 

  149. Satyanarayana, B.S., Hart, A., Milne, W.I., and Robertson, J., Field emission from tetrahedral amorphous carbon, Diam. Rel. Mat.7, 656–659, (1998).

    Article  Google Scholar 

  150. Milne, W.I., Field emission from tetrahedrally bonded amorphous carbon, Appl. Surf. Sci.146, 262–268, (1999).

    Article  ADS  Google Scholar 

  151. Mao, D.S., Zhao, J., Wi, L., et al., Electron field emission from filtered arc deposited diamond-like carbon films using Au and Ti layers, Diam. Rel. Mat.8, 52–55, (1999).

    Article  Google Scholar 

  152. Mao, D.S., Zhao, J., Li, W., et al., Electron field emission from nitrogen-containing diamond-like carbon films deposited by filtered arc deposition, Mater. Lett.41, 117–121, (1999).

    Article  Google Scholar 

  153. Cheah, L.K., Shi, X., Tay, B.K., Silva, S.R.P., and Sun, Z., Field emission from undoped and nitrogen-doped tetrahedral amorphous carbon film prepared by filtered cathodic vacuum arc technique, Diam. Rel. Mat.7, 640–644, (1998).

    Article  Google Scholar 

  154. Ding, X.-Z., Li, Y.J., Sun, Z., Tay, B.K., Lau, S.P., Cheung, W.Y., and Wong, S.P., Electron field emission from Ti-containing tetrahedral amorphous carbon films deposited by filtered cathodic vacuum arc, J. Appl. Phys.88, 6842–6847, (2000).

    Article  ADS  Google Scholar 

  155. MacLeod, A.H., Thin-Film Optical Filters, 3rd ed. Institute of Physics, Bristol, UK, (2001).

    Book  Google Scholar 

  156. Byon, E., Oates, T.H., and Anders, A., Coalescence of nanometer silver islands on oxides grown by filtered cathodic arc deposition, Appl. Phys. Lett.82, 1634–1636, (2003).

    Article  ADS  Google Scholar 

  157. Avrekh, M., Monteiro, O.R., and Brown, I.G., Electrical resistivity of vacuum-arc-deposited platinum thin films, Appl. Surf. Sci.158, 217–222, (2000).

    Article  ADS  Google Scholar 

  158. Fukuda, K., Lim, S.H.N., and Anders, A., Coalescence of magnetron-sputtered silver islands affected by transition metal seeding (Ni, Cr, Nb, Zr, Mo, W, Ta) and other parameters, Thin Solid Films516, 4546–4552, (2008).

    Google Scholar 

  159. Anders, A., Byon, E., Kim, D.-H., Fukuda, K., and Lim, S.H.N., Smoothing of ultrathin silver films by transition metal seeding, Solid State Commun.140, 225–229, (2006).

    Article  ADS  Google Scholar 

  160. Rossnagel, S.M., Mikalsen, D., Kinoshita, H., and Cuomo, J.J., Collimated magnetron sputter deposition, J. Vac. Sci. Technol. A9, 261–265, (1991).

    Article  ADS  Google Scholar 

  161. Hopwood, J.A., (ed.) Ionized Physical Vapor Deposition, Academic Press, San Diego, CA, (2000).

    Google Scholar 

  162. Rossnagel, S.M. and Hopwood, J., Magnetron sputter deposition with high levels of metal ionization, Appl. Phys. Lett.63, 3285–3287, (1993).

    Article  ADS  Google Scholar 

  163. Rossnagel, S.M., Directional and ionized physical vapor deposition for microelectronics applications, J. Vac. Sci. Technol. B16, 2585–2608, (1998).

    Article  Google Scholar 

  164. Tsai, M.H., Sun, S.C., Chiu, H.T., and Chuang, S.H., Metalorganic chemical vapor deposition of tungsten nitride for advanced metallization, Appl. Phys. Lett.68, 1412–1414, (1996).

    Article  ADS  Google Scholar 

  165. Becker, J.S. and Gordon, R.G., Diffusion barrier properties of tungsten nitride films grown by atomic layer deposition from bis(tert-butylimido)bis(dimethylamido)tungsten and ammonia, Appl. Phys. Lett.82, 2239–2241, (2003).

    Article  ADS  Google Scholar 

  166. Lau, S.P., Cheng, Y.H., Shi, J.R., Cao, P., Tay, B.K., and Shi, X., Filtered cathodic vacuum arc deposition of thin film copper, Thin Solid Films398–399, 539–543, (2001).

    Article  Google Scholar 

  167. Shi, J.R., Lau, S.P., Sun, Z., Shi, X., Tay, B.K., and Tan, H.S., Structural and electrical properties of copper thin films prepared by filtered cathodic vacuum arc technique, Surf. Coat. Technol.138, 250–255, (2001).

    Article  Google Scholar 

  168. Anders, A., Observation of self-sputtering in energetic condensation of metal ions, Appl. Phys. Lett.85, 6137–6139, (2004).

    Article  ADS  Google Scholar 

  169. Chen, U.-S. and Shih, H.C., Characterization of copper metallization for interconnect by 90[deg]-bend electromagnetic filtered vacuum arc, Nucl. Instrum. Meth. Phys. Res. B237, 477–483, (2005).

    Article  ADS  Google Scholar 

  170. Bilek, M.M.M. and McKenzie, D.R., A comprehensive model of stress generation and relief processes in thin films deposited with energetic ions, Surf. Coat. Technol.200, 4345–4354, (2006).

    Article  Google Scholar 

  171. Schülke, T. and Anders, A., Ion charge state distributions of alloy-cathode vacuum arc plasmas, IEEE Trans. Plasma Sci.27, 911–914, (1999).

    Article  ADS  Google Scholar 

  172. Singer, P., New technique for copper trench and via filling, Semiconductor InternationalMarch, 53, (1997).

    Google Scholar 

  173. Siemroth, P., Wenzel, C., Kliomes, W., Schultrich, B., and Schülke, T., Metallization of sub-micron trenches and vias with high aspect ratio, Thin Solid Films308, 455–459, (1997).

    Article  ADS  Google Scholar 

  174. Siemroth, P. and Schülke, T., Copper metallization in microelectronics using filtered vacuum arc deposition – principles and technological development, Surf. Coat. Technol.133–134, 106–113, (2000).

    Article  Google Scholar 

  175. Monteiro, O.R., Novel metallization technique for filling 100-nm-wide trenches and vias with very high aspect ratio, J. Vac. Sci. Technol. B17, 1094–1097, (1999).

    Article  Google Scholar 

  176. Singer, W., Singer, X., Filimonova, E., Reschke, D., Rostovtsev, A., Tokareva, T., and Zaharov, V., Nucl. Instrum. Meth. Phys. Res. A574, 518–520, (2007).

    Article  ADS  Google Scholar 

  177. Hartwig, K.T., Jyhwen, W., Baars, D.C., et al., Microstructural refinement of niobium for superconducting RF cavities single-cell superconducting RF cavities from ultra-high-purity niobium, IEEE Trans. Appl. Superconductivity17, 1305–1309, (2007).

    Article  ADS  Google Scholar 

  178. Langner, J., L., C., Russo, R., Tazzari, S., Cirillo, M., Merlo, V., and Tazzioli, F., Formation of thin superconducting films by means of ultra-high vacuum arc, Czechoslovak J. Phys.52 (Suppl. D), 829–835, (2002).

    Google Scholar 

  179. Langner, J., Sadowski, M.J., Czaus, K., et al., Superconducting niobium films produced by means of ultra high vacuum arc, Czechoslovak J. Phys.54 (Suppl. A), (2004).

    Google Scholar 

  180. Langner, J., Mirowski, R., Sadowski, M.J., et al., Deposition of superconducting niobium films for RF cavities by means of UHV cathodic Arc, Vacuum80, 1288–1293, (2006).

    Article  ADS  Google Scholar 

  181. Godeke, A., A review of the properties of Nb3Sn and their variation with A15 composition, morphology and strain state, Superconductor Sci. Technol.19, R68–R80, (2006).

    Article  ADS  Google Scholar 

  182. Brown, I.G., Anders, A., Anders, S., Dickinson, M.R., Ivanov, I.C., MacGill, R.A., Yao, X.Y., and Yu, K.-M., Plasma synthesis of metallic and composite thin films with atomically mixed substrate bonding, Nucl. Instrum. Meth. Phys. Res. B80/81, 1281–1287, (1993).

    Article  ADS  Google Scholar 

  183. Piekoszewski, J., Krajewski, A., Prokert, F., Senkara, J., Stanisawski, J., Wali, L., Werner, Z., and Wosiski, W., Brazing of alumina ceramics modified by pulsed plasma beams combined with arc PVD treatment, Vacuum70, 307–312, (2003).

    Article  ADS  Google Scholar 

  184. Sasaki, J. and Brown, I.G., Ion spectra of vacuum arc plasma with compound and alloy cathodes, J. Appl. Phys.66, 5198–5203, (1989).

    Article  ADS  Google Scholar 

  185. Sasaki, J., Sugiyama, K., Yao, X., and Brown, I., Multiple-species ion beams from titanium-hafnium alloy cathodes in vacuum arc plasmas, J. Appl. Phys.73, 7184–7187, (1993).

    Article  ADS  Google Scholar 

  186. Hauert, R., A review of modified DLC coatings for biological applications, Diam. Rel. Mat.12, 583–589, (2003).

    Article  Google Scholar 

  187. Endrino, J.L., Galindo, R.E., Zhang, H., Allen, M., Gago, R., Espinosa, A., Andersson, J., Albella, J.M., and Anders, A., Structure and comparative properties of silver-containing a-C films deposited by two plasma immersion ion implantation techniques, Surf. Coat. Technol.202, 3675–3682, (2008).

    Article  Google Scholar 

  188. Narayan, R.J., Wang, H., and Tiwari, A., Nanostructured DLC-Ag composites for biomedical applications, Mat. Res. Soc. Symp. Proc.750, Y5.9.1–6, (2003).

    Google Scholar 

  189. Kwok, S.C.H., Zhang, W., Wan, G.J., McKenzie, D.R., Bilek, M.M.M., and Chu, P.K., Hemocompatibility and anti-bacterial properties of silver doped diamond-like carbon prepared by pulsed filtered cathodic vacuum arc deposition, Diam. Rel. Mat.16, 1353–1360, (2007).

    Article  Google Scholar 

  190. Anders, A. and MacGill, R.A., Twist filter for the removal of macroparticles from cathodic arc plasmas, Surf. Coat. Technol.133–134, 96–100, (2000).

    Article  Google Scholar 

  191. Gelfandbein, V. and McLean, G.Y., “Implantable device using diamond-like carbon coating,” patent US 24220667 (2004).

    Google Scholar 

  192. McLean, G.Y. and Gelfandbein, V., “Implantable device using diamond-like carbon coating,” patent US 4,071,338 (2004).

    Google Scholar 

  193. Wu, Z., Shi, Y., Xie, H., Chen, Y., Zhang, J., Xu, J., and Chen, H., Surface modification of polymers by low temperature plasma techniques, Surf. Eng.11, 53–56, (1995).

    Article  Google Scholar 

  194. Lim, H., Lee, Y., Han, S., Cho, J., and Kim, K.-J., Surface treatment and characterization of PMMA, PHEMA, and PHPMA, J. Vac. Sci. Technol. A19, 1490–1496, (2001).

    Article  ADS  Google Scholar 

  195. Wang, J., Huang, N., Pan, C.J., et al., Bacterial repellence from polyethylene terephthalate surface modified by acetylene plasma immersion ion implantation-deposition, Surf. Coat. Technol.186, 299–304, (2004).

    Article  Google Scholar 

  196. Dong, H. and Bell, T., State-of-the-art overview: ion beam surface modification of polymers towards improving tribological properties, Surf. Coat. Technol.111, 29–40, (1999).

    Article  Google Scholar 

  197. Han, S., Lee, Y., Kim, H., Kim, G.-H., Lee, J., Yoon, J.-H., and Kim, G., Polymer surface modification by plasma source ion implantation, Surf. Coat. Technol.93, 261–264, (1997).

    Article  Google Scholar 

  198. Kim, J.S., Hong, M.C., Nah, Y.H., Lee, Y., Han, S., and Lim, H.E., Wetting properties of polystyrene ionomers treated with plasma source ion implantation, J. Appl. Polymer Sci.83, 2500–2504, (2002).

    Article  Google Scholar 

  199. Kostov, K.G., Ueda, M., Tan, I.H., Leite, N.F., Beloto, A.F., and Gomes, G.F., Structural effect of nitrogen plasma-based ion implantation on ultra-high molecular weight polyethylene, Surf. Coat. Technol.186, 287–290, (2004).

    Article  Google Scholar 

  200. McKenzie, D.R., Newton-McGee, K., Ruch, P., Bilek, M.M., and Gan, B.K., Modification of polymers by plasma-based ion implantation for biomedical applications, Surf. Coat. Technol.186, 239–244, (2004).

    Article  Google Scholar 

  201. Clapham, L., Whitton, J.L., Ridgway, M.C., Hauser, N., and Pertravic, M., High dose, heavy ion implantation into metals: The use of a sacrificial carbon surface layer for increased dose retention, J. Appl. Phys.72, 4014–4019, (1992).

    Article  ADS  Google Scholar 

  202. Anders, A., Anders, S., Brown, I.G., and Yu, K.M., “In-situ deposition of sacrificial layers during ion implantation: concept and simulation,” in Ion Beam Modification of Materials, Williams, J.S., Elliman, R.G., and Ridgway, M.C., (Eds.). pp.1089–1092, Elsevier, Amsterdam, (1996).

    Google Scholar 

  203. Oates, T.W.H., McKenzie, D.R., and Bilek, M.M.M., Plasma immersion ion implantation using polymeric substrates with a sacrificial conductive surface layer, Surf. Coat. Technol.156, 332–337, (2002).

    Article  Google Scholar 

  204. Hong, J., Andersson, J., Ekdahl, K.N., Elgue, G., Axén, N., Larsson, R., and Nilsson, B., Titanium is a highly thrombogenic biomaterial: Possible implications for osteogenesis, Thrombosis and Haemostasis82, 58–64, (1999).

    Article  Google Scholar 

  205. Thorwart, G., Mändl, S., and Rauschenbach, B., Rutile formation and oxygen diffusion in oxygen PIII-treated titanium, Surf. Coat. Technol.136, 236–240, (2001).

    Article  Google Scholar 

  206. Mändl, S., Sader, R., Thorwart, G., Krause, D., Zeilhofer, H.-F., Horch, H.H., and Rauschenbach, B., Investigation on plasma immersion ion implantation treated medical implants, Biomolecular Eng.19, 129–132, (2002).

    Article  Google Scholar 

  207. Thorwarth, G., Mändl, S., and Rauschenbach, B., Surf. Coat. Technol.128–129, 116–120, (2000).

    Article  Google Scholar 

  208. Wan, G.J., Huang, N., Leng, Y.X., Yang, P., Chen, J.Y., Wang, J., and Sun, H., TiN and Ti–O/TiN films fabricated by PIII-D for enhancement of corrosion and wear resistance of Ti–6Al–4 V, Surf. Coat. Technol.186, 136–140, (2004).

    Article  Google Scholar 

  209. Tsyganov, I., Maitz, M.F., Wieser, E., Prokert, F., Richter, E., and Rogozin, A., Structure and properties of titanium oxide layers prepared by metal plasma immersion ion implantation and deposition, Surf. Coat. Technol.174–175, 591–596, (2003).

    Article  Google Scholar 

  210. Wisbey, A., Gregson, P.J., Peter, L.M., and Tuke M., Effect of surface treatment on the dissolution of titanium-based implant materials, Biomaterials12, 470–473, (1991).

    Article  Google Scholar 

  211. Leng, Y.X., Yang, P., Chen, J.Y., Sun, H., Wang, J., Wang, G.J., Huang, N., Tian, X.B., and Chu, P.K., Fabrication of Ti-O/Ti-N duplex coatings on biomedical titanium alloys by metal plasma immersion ion implantation and reactive plasma nitriding/oxidation, Surf. Coat. Technol.138, 296–300, (2001).

    Article  Google Scholar 

  212. Leng, Y.X., Chen, J.Y., Wang, J., Wan, G.J., Sun, H., Yang, P., and Huang, N., Comparative properties of titanium oxide biomaterials grown by pulsed vacuum arc plasma deposition and by unbalanced magnetron sputtering, Surf. Coat. Technol.201, 157–163, (2006).

    Article  Google Scholar 

  213. Mändl, S., Thorwart, G., and Rauschenbach, B., Textured titanium oxide films produced by vacuum arc deposition, Surf. Coat. Technol.133–134, 283–288, (2000).

    Article  Google Scholar 

  214. Mändl, S., Attenberger, W., Stritzker, B., and Rauschenbach, B., Disorder formation in rutile during ion assisted deposition, Surf. Coat. Technol.196, 76–80, (2005).

    Article  Google Scholar 

  215. Anders, A., Oks, E.M., Yushkov, G.Y., Savkin, K.P., Brown, Y., and Nikolaev, A.G., Determination of the specific ion erosion of the vacuum arc cathode by measuring the total ion current from the discharge plasma, Technical Physics51, 1311–1315, (2006).

    Article  ADS  Google Scholar 

  216. Brown, I.G. and Shiraishi, H., Cathode erosion rates in vacuum arc discharges, IEEE Trans. Plasma Sci.18, 170–171, (1990).

    Article  ADS  Google Scholar 

  217. Daalder, J.E., Erosion and the origin of charged and neutral species in vacuum arcs, J. Phys. D: Appl. Phys.8, 1647–1659, (1975).

    Article  ADS  Google Scholar 

  218. Daalder, J.E., Components of cathode erosion in vacuum arcs, J. Phys. D: Appl. Phys.9, 2379–2395, (1976).

    Article  ADS  Google Scholar 

  219. Guile, A.E. and Jüttner, B., Basic erosion processes of oxidized and clean metal cathodes by electric arcs, IEEE Trans. Plasma Sci.8, 259–269, (1980).

    Article  ADS  Google Scholar 

  220. Sethumraman, S.K., Chatterton, P.A., and Barrault, M.R., A study of the erosion rate of vacuum arcs in a transverse magnetic field, J. Nucl. Mat.111/112, 510–516, (1982).

    Article  ADS  Google Scholar 

  221. Tuma, D.T., Chen, C.L., and Davis, D.K., Erosion products from the cathode spot region of a copper vacuum arc, J. Appl. Phys.49, 3821–3831, (1978).

    Article  ADS  Google Scholar 

  222. Zhou, X. and Heberlein, J., An experimental investigation of factors affecting arc-cathode erosion, J. Phys. D-Appl. Phys.31, 2577–2590, (1998).

    Article  ADS  Google Scholar 

  223. Zimmer, O., Vetter, J., Rackwitz, N., and Siemroth, P., Calculation and measurement of the time dependent erosion rate of electromagnetic steered rectangular arc cathodes, Surf. Coat. Technol.146, 195–200, (2001).

    Article  Google Scholar 

  224. Anders, A. and Yushkov, G.Y., Ion flux from vacuum arc cathode spots in the absence and presence of magnetic fields, J. Appl. Phys.91, 4824–4832, (2002).

    Article  ADS  Google Scholar 

  225. Sugimoto, M. and Takeda, K., Surface variation caused by vacuum arc cleaning of organic contaminant, Thin Solid Films506–507, 337–341, (2006).

    Article  ADS  Google Scholar 

  226. Bergman, C., “Arc plasma physical vapor deposition,” 28th Annual SVC Technical Conference, Philadelphia, PA, 175–191, (1985).

    Google Scholar 

  227. McIntyre, D.C., Chen, G.G., Sprague, E.C., Humenik, D.B., and Kubinski, J.A., “Arc-deposited, pearl nickel finishes for interior trim applications in automobiles,” 44th Annual Technical Conference, Society of Vacuum Coaters, Philadelphia, 51–56, (2001).

    Google Scholar 

  228. Münz, W.-D., Schulze, D., and Hauzer, F.J.M., A new method for hard coatings – ABS (arc bond sputtering), Surf. Coat. Technol.50, 169–178, (1992).

    Article  Google Scholar 

  229. Hovsepian, P.E., Lewis, D.B., Munz, W.D., Lyon, S.B., and Tomlinson, M., Combined cathodic arc/unbalanced magnetron grown CrN/NbN superlattice coatings for corrosion resistant applications, Surf. Coat. Technol.120–121, 535–541, (1999).

    Article  Google Scholar 

  230. Münz, W.-D., Lewis, D.B., Hovsepian, P.E., Schönjahn, C., Ehiasarian, A., and Smith, I.J., Industrial scale manufactured superlattice hard PVD coatings, Surf. Eng.17, 15–27, (2001).

    Article  Google Scholar 

  231. Donohue, L.A., Munz, W.D., Lewis, D.B., Cawley, J., Hurkmans, T., Trinh, T., Petrov, I., and Greene, I.E., Large-scale fabrication of hard superlattice thin films by combined steered arc evaporation and unbalanced magnetron sputtering, Surf. Coat. Technol.93, 69–87, (1997).

    Article  Google Scholar 

  232. Hurkmans, T., Hauzer, F., Buil, B., Engel, K., and Tietema, R., A new large volume PVD coating system using advanced controlled arc and combined arc/unbalanced magnetron (ABS(TM)) deposition techniques, Surf. Coat. Technol.92, 62–68, (1997).

    Article  Google Scholar 

  233. Wang, H.W., Stack, M.M., Hovsepian, P., and Munz, W.D., Macroparticle induced corrosion for arc bond sputtering CrN/NbN superlattice coatings, J. Mat. Sci. Lett.20, 1995–1997, (2001).

    Article  Google Scholar 

  234. Lewis, D.B., Creasey, S.J., Wustefeld, C., Ehiasarian, A.P., and Hovsepian, P.E., The role of the growth defects on the corrosion resistance of CrN/NbN superlattice coatings deposited at low temperatures, Thin Solid Films503, 143–148, (2006).

    Article  ADS  Google Scholar 

  235. Ehiasarian, A.P., Anders, A., and Petrov, I., Combined filtered cathodic arc etching pretreatment–magnetron sputter deposition of highly adherent CrN films, J. Vac. Sci. Technol. A25, 543–550, (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Anders, A. (2008). Some Applications of Cathodic Arc Coatings. In: Cathodic Arcs. Springer Series on Atomic, Optical, and Plasma Physics, vol 50. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79108-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-79108-1_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-79107-4

  • Online ISBN: 978-0-387-79108-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics