Applications of Carbon-Based Membranes for Separation Purposes

  • Ahmad Fauzi IsmailEmail author
  • Dipak Rana
  • Takeshi Matsuura
  • Henry C. Foley


Most of applications of CMSMs are in the area of gas separation and RO/NF/UF/MF. In particular, interest is growing in the area of light alkenes/alkanes separation. In this chapter, however, emphasis is on CMSMs applications in other processes than gas separation and RO/NF/UF/MF. Those processes include vapor separation, pervaporation, fuel cell applications, water treatment, membrane reactor etc. The preparation, characterization and performance of carbon-based materials in the above applications are described in detail with some examples.


Chemical Oxygen Demand Composite Membrane Chemical Oxygen Demand Removal Membrane Reactor Direct Methanol Fuel Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Strano MS, Zydney AL, Barth H, Wooler G, Agarwal H, Foley HC (2002) Ultrafiltration membrane synthesis by nanoscale templating of porous carbon. J Membr Sci 198 (2): 173-186CrossRefGoogle Scholar
  2. 2.
    Strano MS, Agarwal H, Pedrick J, Redman D, Foley HC (2003) Templated pyrolytic carbon: The effect of poly(ethylene glycol) molecular weight on the pore size distribution of poly(fufuryl alcohol)-derived carbon. Carbon 41 (13): 2501-2508CrossRefGoogle Scholar
  3. 3.
    Fuertes AB, Centeno TA (1999) Preparation of supported carbon molecular sieve membranes. Carbon 37 (4): 679-706CrossRefGoogle Scholar
  4. 4.
    Rao MB, Sircar S (1993) Nanoporous carbon membranes for separation of gas mixtures by selective surface flow. J Membr Sci 85 (3): 253-264CrossRefGoogle Scholar
  5. 5.
    Okamoto K, Kawamura S, Yoshino M, Kita H, Hirayama Y, Tanihara N, Kusuki Y (1999) Olefin/paraffin separation through carbonized membranes derived from an asymmetric polyimide hollow fiber membrane. Ind Eng Chem Res 38 (11): 4424-4432CrossRefGoogle Scholar
  6. 6.
    Suda H, Haraya K (1997) Alkene/alkane permselectivities of a carbon molecular sieve membrane. J Chem Soc Chem Commun: 93-94Google Scholar
  7. 7.
    Dagan G, Agam G, Krakov V, Kaplan L (2000) Carbon membrane separator for elimination of SF6 emissions from gas-insulated electrical utilities. In Proc. of the EPA Conference on SF6 and Environment Emission Reduction Strategies, San Diego, CA, USA ( highgwp1/sf6/agenda.html).Google Scholar
  8. 8.
    Li L, Xiao Z, Zhang Z, Tan S (2004) Pervaporation of acetic acid/water mixtures through carbon molecular sieve-filled PDMS membranes. Chem Eng J 97 (1): 83-86CrossRefGoogle Scholar
  9. 9.
    Sakata Y, Muto A, Uddin MA, Suga H (1999) Preparation of porous carbon membrane plates for pervaporation separation applications. Sep Purif Technol 17 (2): 97-100CrossRefGoogle Scholar
  10. 10.
    Peng F, Pan F, Sun H, Lu L, Jiang Z (2007) Novel nanocomposite pervaporation membranes composed of poly(vinyl alcohol) and chitosan-wrapped carbon nanotube. J Membr Sci 300 (1-2): 13-19CrossRefGoogle Scholar
  11. 11.
    Kannan R, Kakade BA, Pillai VK (2008) Polymer electrolyte fuel cells using Nafion-based composite membranes with functionalized carbon nanotubes. Angew Chem Int Ed 47 (14): 2653-2656CrossRefGoogle Scholar
  12. 12.
    Girishkumar G, Retter M, Underhile R, Binz D, Vinodgopal K, McGinn P, Kamat P (2005) Single-wall carbon nanotube-based proton exchange membrane assembly for hydrogen fuel cells. Langmuir 21 (18): 8487-8494CrossRefGoogle Scholar
  13. 13.
    Fang B, Kim JH, Lee C, Yu J-S (2008) Hollow macroporous core/mesoporous shell carbon with a tailored structure as a cathode electrocatalyst support for proton exchange membrane fuel cells. J Phys Chem C 112 (2): 639-645CrossRefGoogle Scholar
  14. 14.
    Lio S-H, Yen C-Y, Hung C-H, Weng C-C, Tsai M-C, Lin Y-F, Ma C-CM, Pan C, A Su (2008) One-step operation of carbon nanotubes by free radical modification for the preparation of nanocomposite bipolar plates in polymer electrolyte membrane fuel cells. J Mater Chem 18 (33): 3993-4002CrossRefGoogle Scholar
  15. 15.
    Sakoda A, Nomura T, Suzuki M (1996) Activated carbon membrane for water treatments: Application to decolorization of coke furnace wastewater. Adsorption 3 (1): 93-98CrossRefGoogle Scholar
  16. 16.
    Hu S, Yang F, Sun C, Zhang J, Wang T (2008) Simultaneous removal of COD and nitrogen using a novel carbon-membrane aerated biofilm reactor. J Environ Sci 20 (2): 142-148CrossRefGoogle Scholar
  17. 17.
    Keizer K, Verweij H (1996) Progress in inorganic membranes. Chemtech 26 (1): 37-41Google Scholar
  18. 18.
    Zhang X, Hu H, Zhu Y, Zhu S (2006) Methanol steam reforming to hydrogen in a carbon membrane reactor system. Ind Eng Chem Res 45 (24): 7997-8001CrossRefGoogle Scholar
  19. 19.
    Nednoor P, Gavalas VG, Chopra N, Hinds BJ, Bachas LG (2007) Carbon nanotube based biomimetic membranes: Mimicking protein channels regulated by phosphorylation. J Mater Chem 17 (18): 1755-1757CrossRefGoogle Scholar
  20. 20.
    Sánchez S, Pumera M, Cabruja E, Fàbregas E (2007) Carbon nano-tube/polysulfone composite screen-printed electrochemical enzyme biosensor. Analyst 132 (2): 142-147CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ahmad Fauzi Ismail
    • 1
    Email author
  • Dipak Rana
    • 2
  • Takeshi Matsuura
    • 2
  • Henry C. Foley
    • 3
  1. 1.Advanced Membrane Technology Research Centre (AMTEC) Materials and Manufacturing Research AllianceUniversity Teknologi MalaysiaSkudaiMalaysia
  2. 2.Department of Chemical and Biological EngineeringUniversity of OttawaOttawaCanada
  3. 3.Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations