Advertisement

Other Carbon-Based Membranes

  • Ahmad Fauzi Ismail
  • Dipak Rana
  • Takeshi Matsuura
  • Henry C. Foley
Chapter

Abstract

Recently Holt et al. developed carbon nanotube (CNT) membranes whose pore size s were smaller than 2 nm by using a microelectro-mechanical system (MEMS) -compatible fabrication process and showed gas and liquid permeation rates orders of magnitude higher than the calculated values based on either Knudsen or Poiseiulle flow mechanism, due most likely to extreme smoothness of the inner wall of carbon nanotubes. This proved the theoretical prediction made earlier by the molecular dynamics simulation. Several attempts have been made since the work of Holt et al. to fabricate the carbon nanotube membrane in a larger scale aiming at industrial applications. There have been other developments in carbon related membranes particularly in the field of nano-technology . One of such developments is carbonization of nanofibers for the membrane adsorption process. Carbon particles and especially carbon nanoparticles have also been incorporated in the mixed matrix membranes to enhance gas separation performance of the membranes.

Keywords

Nanofiber Membrane Grand Canonical Monte Carlo Monochloroacetic Acid Zigzag Path Mixed Matrix Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hummer G, Rasaiah JC, Noworyta JP (2001) Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414 (6860): 188-190CrossRefGoogle Scholar
  2. 2.
    Karla A, Garde S, Hummer G (2003) Osmotic water transport through carbon nanotube membranes. Proc Natl Acad Sci USA 100 (18): 10175-10180CrossRefGoogle Scholar
  3. 3.
    Holt JK, Park HG, Wang Y, Stadermann M, Artyukhin AB, Grigoropoulos CP, Noy A, Bakajin O (2006) Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312 (5776): 1034-1037CrossRefGoogle Scholar
  4. 4.
    Skoulidas AI, Ackerman DM, Johnson JK, Sholl DS (2002) Rapid transport of gases in carbon nanotubes. Phys Rev Lett 89 (18): 185901-1 – 185901-4CrossRefGoogle Scholar
  5. 5.
    Chen HB, Sholl DS (2006) Predictions of selectivity and flux for CH4/H2 separations using single walled carbon nanotubes as membranes. J Membr Sci 269 (1-2): 152-160CrossRefGoogle Scholar
  6. 6.
    Ackerman DM, Skoulidas AI, Sholl DS, Johnson JK (2003) Diffusivities of Ar and Ne in carbon nanotubes. Mol Sim 29 (10-11): 677-684CrossRefGoogle Scholar
  7. 7.
    Chen HB, Johnson JK, Sholl DS (2006) Transport diffusion of gases is rapid in flexible carbon nanotubes. J Phys Chem B 110 (5): 1971-1975CrossRefGoogle Scholar
  8. 8.
    Kim S, Jinschek JR, Chen H, Sholl DS, Marand E (2007) Scalable fabrication of carbon nanotube/polymer nanocomposite membranes for high flux gas transport. Nano Lett 7 (9): 2806-2811CrossRefGoogle Scholar
  9. 9.
    Mi W, Lin YS, Li Y (2007) Vertically aligned carbon nanotube membranes on macroporous alumina supports. J Membr Sci 304 (1-2): 1-7CrossRefGoogle Scholar
  10. 10.
    Hinds BJ, Chopra N, Rantell R, Andrews R, Gavalas V, Bachas LG (2004) Aligned multiwalled carbon nanotube membranes. Science 303 (5654): 62-65CrossRefGoogle Scholar
  11. 11.
    Furukawa S, Nitta T (2000) Non-equilibrium molecular dynamics simulation studies on gas permeation across carbon membranes with different pore shape composed of micro-graphite crystallites. J Membr Sci 178 (1-2): 107-119CrossRefGoogle Scholar
  12. 12.
    Wu Z, Liu Z, Wang W, Fan Y, Xu N (2008) Non-equilibrium molecular dynamics simulation on permeation and separation of H2/CO in nanoporous carbon membranes. Sep Purif Technol 64 (1): 71-77CrossRefGoogle Scholar
  13. 13.
    Chen H, Sholl DS (2006) Prediction of selectivity and flux for CH4/H2 separations using single walled carbon nanotubes as membranes. J Membr Sci 269 (1-2): 152-160CrossRefGoogle Scholar
  14. 14.
    Verweij H, Schillo MC, Li J (2007) Fast mass transport through carbon nanotube membranes. Small 3 (12): 1996-2004CrossRefGoogle Scholar
  15. 15.
    Majumder M, Chopra N, Andrews R, Hinds BJ (2005) Nanoscale hydrodynamics: Enhanced flow in carbon nanotubes. Nature 438 (7064): 44CrossRefGoogle Scholar
  16. 16.
    Truskett TM, Debenedetti PG, Torquato S (2001) Thermodynamic implications of confinement for a waterlike fluid. J Chem Phys 114 (5): 2401-2418CrossRefGoogle Scholar
  17. 17.
    Singh G, Rana D, Matsuura T, Ramakrishna S, Narbaitz RM, Tabe S (2010) Removal of disinfection by-products in water by using carbonized nanofiber membranes. Sep Purif Technol 74 (2): 202-212CrossRefGoogle Scholar
  18. 18.
    Tung HH, Unz RF, Xie YF (2006) HAA removal by GAC adsorption. J. AWWA 98 (6): 107-112Google Scholar
  19. 19.
    Anson M, Marchese J, Garis E, Ochoa N, Pagliero C (2004) ABS copolymer-activated carbon mixed matrix membranes for CO2/CH4 separation. J Membr Sci 243 (1-2): 19-28CrossRefGoogle Scholar
  20. 20.
    Vu DQ, Koros WJ, Miller SJ (2003) Mixed matrix membranes using carbon molecular sieves I. Preparation and experimental results. J Membr Sci 211 (2): 311-334CrossRefGoogle Scholar
  21. 21.
    Vu DQ, Koros WJ, Miller SJ (2002) High pressure CO2/CH4 separation using carbon molecular sieve hollow fiber membranes. Ind Eng Chem Res 41 (3): 367-380CrossRefGoogle Scholar
  22. 22.
    Steel K (2000) Carbon membranes for challenging gas separations. PhD Dissertation, The University of Texas at Austin, TX, USAGoogle Scholar
  23. 23.
    Vu DQ, Koros WJ, Miller SJ (2003) Mixed matrix membranes using carbon molecular sieves II. Modeling permeation behaviour. J Membr Sci 211 (2): 335-348CrossRefGoogle Scholar
  24. 24.
    Maxwell JC (1873) Treatise on Electricity and Magnetism. Oxford University Press, London, UKGoogle Scholar
  25. 25.
    Mahajan R (2000) Formation, characterization and modeling of mixed matrix membranes materials. Ph.D. Dissertation, The University of Texas at Austin, TX, USAGoogle Scholar
  26. 26.
    Chern RT, Koros WJ, Yui B, Hopfenberg HB, Stannet VT (1984) Selective permeation of CO2 and CH4 through Kapton polyimide: Effects of penetrant competition and gas-phase nonideality. J Polym Sci Polym Phys Ed. 22 (6): 1061-1084CrossRefGoogle Scholar
  27. 27.
    Mahajan R, Burns R, Schaeffer M, Koros WJ (2002) Challenges in forming successful mixed matrix membrane with rigid polymeric materials. J Appl Polym Sci 86 (4): 881-890CrossRefGoogle Scholar
  28. 28.
    Rafizah WAW, Ismail AF (2008) Effect of carbon molecular sieve sizing with poly(vinyl pyrrolidone) K-15 on carbon molecular sieve-polysulfone mixed matrix membrane. J Membr Sci 307 (1): 53-61CrossRefGoogle Scholar
  29. 29.
    Kim S, Pechar TW, Marand E (2006) Poly(imide siloxane) and carbon nanotube mixed matrix membanes for gas separation. Desalination 192 (1-3): 330-339CrossRefGoogle Scholar
  30. 30.
    Cong H, Zhang J, Radosz M, Shen Y (2007) Carbon nanotube composite membranes of brominated poly(2,6-diphenyl-1,4-phenylene oxide) for gas separation. J Membr Sci 294 (1-2): 178-185CrossRefGoogle Scholar
  31. 31.
    Merkel TC, Freeman BD, Spontak RJ, He Z, Pinnau I, Meakin P, Hill AJ (2003) Sorption, transport, and structural evidences for enhanced free volume in poly(4-methyl-2-pentyne)/fumed silica nanocomposite membranes. Chem Mater 15 (1): 109-123CrossRefGoogle Scholar
  32. 32.
    Kim S, Chen L, Johnson JK, Marand E (2007) Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: Theory and experiments. J Membr Sci 294 (1-2): 147-158CrossRefGoogle Scholar
  33. 33.
    Harris JG, Yung KH (1995) Carbon dioxide’s liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model. J Phys Chem 99 (31): 12021-12024CrossRefGoogle Scholar
  34. 34.
    Barsema JN, Van Der Vegt NFA, Koops GH, Wessling M (2005) Ag-functionalized carbon molecular-sieve membranes based on polyelectrolyte/polyimide blend precursors. Adv Funct Mater 15 (1): 69-75CrossRefGoogle Scholar
  35. 35.
    Liu Q, Wang T, Qiu J, Cao Y (2006) A Novel carbon/ZSM-5 nanocomposite membrane with high performance for oxygen/nitrogen separation. J Chem Soc Chem Commun: 1230-1232.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ahmad Fauzi Ismail
    • 1
  • Dipak Rana
    • 2
  • Takeshi Matsuura
    • 2
  • Henry C. Foley
    • 3
  1. 1.Advanced Membrane Technology Research Centre (AMTEC) Materials and Manufacturing Research AllianceUniversity Teknologi MalaysiaSkudaiMalaysia
  2. 2.Department of Chemical and Biological EngineeringUniversity of OttawaOttawaCanada
  3. 3.Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations