Advertisement

Preparation of Carbon Membranes

  • Ahmad Fauzi Ismail
  • Dipak Rana
  • Takeshi Matsuura
  • Henry C. Foley
Chapter

Abstract

One of the important factors that govern the performance CMSMs are precursor selection. Typical polymeric precursors are polyacrylonitrile, polyimide, phenolic resin, and polyfurfuryl alcohol. Detailed descriptions are made to prepare CMSMs from these precursors. Other factors are pre-treatment of precursor, pyrolysis process and post-treatment. Among those, pretreatent includes oxidation pretreatment, chemical treatment, stretching and others. Post-treatment includes post oxidation, chemical vapour deposition, post pyrolysis, fouling reduction and coating. In this chapter, detailed discussions are made to optimize each factor for obtaining CMSMs of the highest quality.

Keywords

Hollow Fiber Polymeric Precursor Temperature Temperature Carbonization Carbonization Phenol Formaldehyde Resin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Morthon-Jones, DH (1989) Polymer Processing. Chapman and Hall, London, UKCrossRefGoogle Scholar
  2. 2.
    Soffer A, Rosen D, Saguee S, Koresh J (1989) Carbon membrane. GB Patent 2,207,666.Google Scholar
  3. 3.
    László K, Bóta A, Nagy LG (2000) Comparative adsorption study on carbons from polymer precursors. Carbon 38 (14): 1965-1976Google Scholar
  4. 4.
    Lua AC, Su J (2006) Effects of carbonisation on pore evolution and gas permeation properties of carbon membranes from Kapton® polyimide. Carbon 44 (14): 2964-2972CrossRefGoogle Scholar
  5. 5.
    Kim S, Pechar TW, Marand E (2006) Poly(imide siloxane) and carbon nanotube mixed matrix membranes for gas separation. Desalination 192 (1-3): 330-339CrossRefGoogle Scholar
  6. 6.
    Steel KM, Koros WJ (2005) An investigation of the effects of pyrolysis parameters on gas separation properties of carbon materials. Carbon 43 (9): 1843-1856CrossRefGoogle Scholar
  7. 7.
    Park HB, Lee SY, Lee YM (2005) Pyrolytic carbon membranes containing silica: Morphological approach on gas transport behavior. J Mol Struct 739 (1-3): 179-190CrossRefGoogle Scholar
  8. 8.
    Shao L, Chung T-S, Wensley G, Goh SH, Pramoda KP (2004) Casting solvent effects on morphologies, gas transport properties of a novel 6FDA/PMDA–TMMDA copolyimide membrane and its derived carbon membranes. J Membr Sci 244 (1-2): 77-87CrossRefGoogle Scholar
  9. 9.
    Park HB, Jung CH, Kim YK, Nam SY, Lee SY, Lee YM (2004) Pyrolytic carbon membranes containing silica derived from poly(imide siloxane): The effect of siloxane chain length on gas transport behavior and a study on the separation of mixed gases. J Membr Sci 235 (1-2): 87-98CrossRefGoogle Scholar
  10. 10.
    Kim YK, Park HB, Lee YM (2005) Gas separation properties of carbon molecular sieve membranes derived from polyimide/polyvinylpyrrolidone blends: Effect of the molecular weight of polyvinylpyrrolidone. J Membr Sci 251 (1-2): 159-167CrossRefGoogle Scholar
  11. 11.
    Kim YK, Park HB, Lee YM (2005) Preparation and characterization of carbon molecular sieve membranes derived from BTDA–ODA polyimide and their gas separation properties. J Membr Sci 255 (1-2): 265-273CrossRefGoogle Scholar
  12. 12.
    Centeno TA, Fuertes AB (1999) Supported carbon molecular sieve membranes based on phenolic resin. J Membr Sci 160 (2): 201-211CrossRefGoogle Scholar
  13. 13.
    Centeno TA, Fuertes AB (2001) Carbon molecular sieve membranes derived from a phenolic resin supported on porous ceramic tubes. Sep Purif Technol 25 (1-3): 379-384CrossRefGoogle Scholar
  14. 14.
    Fuertes AB, Menendez I (2002) Separation of hydrocarbon gas mixtures using phenolic resin-based carbon membranes. Sep Purif Technol 28 (1): 29-41CrossRefGoogle Scholar
  15. 15.
    Wu J, Chung DDL (2002) Increasing the electromagnetic interference shielding effectiveness of carbon fiber polymer–matrix composite by using activated carbon fibers. Carbon 40 (3): 445-467CrossRefGoogle Scholar
  16. 16.
    Song C, Wang T, Wang X, Qiu J, Cao Y (2008) Preparation and gas separation properties of poly(furfuryl alcohol)-based C/CMS composite membranes. Sep Purif Technol 58 (3): 412-418CrossRefGoogle Scholar
  17. 17.
    Zhang X, Hu H, Zhu Y, Zhu S (2007) Carbon molecular sieve membranes derived from phenol formaldehyde novolac resin blended with poly(ethylene glycol). J Membr Sci 289 (1-2): 86-91CrossRefGoogle Scholar
  18. 18.
    Wei W, Qin G, Hu H, You L, Chen G (2007) Preparation of supported carbon molecular sieve membrane from novolac phenol–formaldehyde resin. J Membr Sci 303 (1-2): 80-85CrossRefGoogle Scholar
  19. 19.
    Lie JA, Hägg MB (2005) Carbon membranes from cellulose and metal loaded cellulose. Carbon 43 (12): 2600-2607CrossRefGoogle Scholar
  20. 20.
    Chen JC (1998) Modification of polyacrylonitrile (PAN) precursor fiber via post-spinning plasticization and stretching. PhD Thesis, The Pennsylvania State University, University Park, PA, USAGoogle Scholar
  21. 21.
    Gupta A, Harrison IR (1996) New aspects in the oxidative stabilization of PAN-based carbon fibers. Carbon 34 (11): 1427-1445CrossRefGoogle Scholar
  22. 22.
    Donnet JB, Bansal RC (1984) Carbon Fiber. Marcel Dekker, New York, NY, USAGoogle Scholar
  23. 23.
    Saufi SM, Ismail AF (2002) Development and characterization of polyacrylonitrile (PAN) based carbon hollow fiber membrane. Songklanakarin J Sci Technol 24 (Suppl): 843-854Google Scholar
  24. 24.
    Schindler E, Maier F (1990) Manufacture of porous carbon membranes. US Patent 4,919,860Google Scholar
  25. 25.
    Yoneyama H, Nishihara Y (1990) Porous hollow carbon fiber film and method of manufacturing the same. EP Patent 0,394,449Google Scholar
  26. 26.
    Linkov VM, Sanderson RD, Jacobs EP (1994) Highly asymmetrical carbon membranes. J Membr Sci 95 (1): 93-99Google Scholar
  27. 27.
    Linkov VM, Sanderson RD, Jacobs EP (1994) Carbon membranes from precursors containing low-carbon residual polymers. Polym Inter 35 (3): 239-242CrossRefGoogle Scholar
  28. 28.
    Smith SPJ, Linkov VM, Sanderson RD, Petrik LF, O’Connor CT, Keiser K (1995) Preparation of hollow-fiber composite carbon-zeolite membranes. Microporous Mater 4 (5): 385-390CrossRefGoogle Scholar
  29. 29.
    Linkov VM, Sanderson RD, Rychkov BA (1994) Composite carbon-polyimide membranes. Mater Lett 20 (1-2): 43-46CrossRefGoogle Scholar
  30. 30.
    Linkov VM, Bobrova LP, Timofeev SV, Sanderson RD (1995) Composites membranes from perfluoro-sulfonated ionomer on carbon and ceramic supports. Mater Lett 24 (1-3): 147-151CrossRefGoogle Scholar
  31. 31.
    David LIB, Ismail AF (2003) Influence of the thermostabilization process and soak time during pyrolysis process on the polyacrylonitrile carbon membranes for O2/N2 separation. J Membr Sci 213 (1-2): 285-291; Geiszler VC (1997) Polyimide precursors for carbon membranes. PhD Thesis, University of Texas at Austin, TX, USAGoogle Scholar
  32. 32.
    Jones CW, Koros WJ (1994) Carbon molecular sieve gas separation membranes -I. Preparation and characterization based on polyimide precursors. Carbon 32 (8): 1419-1425CrossRefGoogle Scholar
  33. 33.
    Hatori H, Kobayashi T, Hanzawa Y, Yamada Y, Iimura Y, Kimura T, Shiraishi M (2001) Mesoporous carbon membranes from polyimide blended with poly(ethylene glycol). J Appl Polym Sci 79 (5): 836-841CrossRefGoogle Scholar
  34. 34.
    Vu DQ, Koros WJ, Miller SJ (2002) High pressure CO2/CH4 separation using carbon molecular sieve hollow fiber membranes. Ind Eng Chem Res 41 (3): 367-380CrossRefGoogle Scholar
  35. 35.
    Yamamoto M, Kusakabe K, Hayashi J, Morooka S (1997) Carbon molecular sieve membrane formed by oxidative carbonization of a copolyimide film coated on a porous support tube. J Membr Sci 133 (2): 195-205CrossRefGoogle Scholar
  36. 36.
    Shiflett MB (2002) Synthesis, characterization and application of nanoporous carbon membranes. PhD Thesis, University of Delaware, Newark, DE, USAGoogle Scholar
  37. 37.
    Fuertes AB, Centeno TA (1998) Preparation of supported asymmetric carbon molecular sieve membranes. J Membr Sci 144 (1-2): 105-111CrossRefGoogle Scholar
  38. 38.
    Ogawa M, Nakano Y (1999) Gas permeation through carbonized hollow fiber membranes prepared by gel modification of polyamic acid. J Membr Sci 162 (1-2): 189-198CrossRefGoogle Scholar
  39. 39.
    Hayashi J, Yamamoto M, Kusakabe K, Morooka S (1995) Simultaneous improvement of permeance and permselectivity of 3,3’,4,4’-biphenyltetracarboxylic dianhydride-4,4’-oxydianiline polyimide membrane by carbonization. Ind Eng Chem Res 34 (12): 4364-4370CrossRefGoogle Scholar
  40. 40.
    Hattori H, Yamada Y, Shiraishi M, Nakata H, Yoshitomi S (1992) Carbon molecular sieve films from polyimide. Carbon 30 (4): 719-720CrossRefGoogle Scholar
  41. 41.
    Petersen J, Matsuda M, Haraya K (1997) Capillary carbon molecular sieve membranes derived from kapton for high temperature gas separation. J Membr Sci 131 (1-2): 85-94CrossRefGoogle Scholar
  42. 42.
    Fuertes AB, Nevskaia DM, Centeno TA (1999) Carbon composite membranes from matrimid and kapton polyimide. Microporous Mesoporous Mater 33 (1-3): 115-125CrossRefGoogle Scholar
  43. 43.
    Fuertes AB, Centeno TA (1998) Carbon molecular sieve membranes from polyetherimide. Microporous Mesoporous Mater 26 (1-3): 23-26CrossRefGoogle Scholar
  44. 44.
    Sedigh MG, Xu L, Tsotsis TT, Sahimi M (1999) Transport and morphological characteristics of polyetherimide-based carbon molecular sieve membranes. Ind Eng Chem Res 38 (9): 3367-3380CrossRefGoogle Scholar
  45. 45.
    Barbosa-Coutinho E, Salim VMM, Borges CP (2003) Preparation of carbon hollow fiber membranes by pyrolysis of polyetherimide. Carbon 41 (9): 1707-1714CrossRefGoogle Scholar
  46. 46.
    Menendez I, Fuertes AB (2001) Aging of carbon membranes under different environments. Carbon 39 (5):733-740CrossRefGoogle Scholar
  47. 47.
    Fuertes AB (2001) Effect of air oxidation on gas separation properties of adsorption-selective carbon membranes. Carbon 39 (5): 697-706CrossRefGoogle Scholar
  48. 48.
    Fuertes AB (2000) Adsorption-selective carbon membrane for gas separation. J Membr Sci 177 (1-2): 9-16CrossRefGoogle Scholar
  49. 49.
    Zhou W, Yoshino M, Kita H, Okamoto K (2001) Carbon molecular sieve membranes derived from phenolic resin with a pendant sulfonic acid group. Ind Eng Chem Res 40 (22): 4801-4807CrossRefGoogle Scholar
  50. 50.
    Sedigh MG, Onstot WJ, Xu L, Peng WL, Tsotsis TT, Sahimi M (1998) Experiments and simulation of transport and separation of gas mixtures in carbon molecular sieves membranes. J Phys Chem A 102 (44): 8580-8589CrossRefGoogle Scholar
  51. 51.
    Acharya M (1999) Engineering design and theoretical analysis of nanoporous carbon membranes for gas separation. PhD Thesis, University of Delaware, Newark, DE, USAGoogle Scholar
  52. 52.
    Shiflett MB, Foley HC (2000) On the preparation of supported nanoporous carbon membranes. J Membr Sci 179 (1-2): 275-282CrossRefGoogle Scholar
  53. 53.
    Shiflett MB, Foley HC (1999) Ultrasonic deposition of high-selectivity nanoporous carbon membranes. Science 285 (5435): 1902-1905CrossRefGoogle Scholar
  54. 54.
    Acharya M, Foley HC (1999) Spray-coating of nanoporous carbon membranes for air separation. J Membr Sci 161 (1-2): 1-5CrossRefGoogle Scholar
  55. 55.
    Corbin DR, Foley HC, Shiflett MB (2004) Mixed matrix nanoporous carbon membranes. US Patent 6,740,143Google Scholar
  56. 56.
    Shiflett MB, Foley HC (2001) Reproducible production on nanoporous carbon membranes. Carbon 39 (9): 1421-1446CrossRefGoogle Scholar
  57. 57.
    Strano MS, Foley HC (2001) Synthesis and characterization of catalytic nanoporous carbon membranes. AIChE J 47 (1): 66-78CrossRefGoogle Scholar
  58. 58.
    Strano MS, Foley HC (2002) Temperature- and pressure-dependent transient analysis of single component permeation through nanoporous carbon membranes. Carbon 40 (7): 1029-1041CrossRefGoogle Scholar
  59. 59.
    Chen YD, Yang RT (1994) Preparation of carbon molecular sieve membrane and diffusion of binary mixtures in the membrane. Ind Eng Chem Res 33 (12): 3146-3153CrossRefGoogle Scholar
  60. 60.
    Wang H, Zhang L, Gavalas GR (2000) Preparation of supported carbon membranes from furfuryl alcohol by vapour deposition polymerization. J Membr Sci 177 (1-2): 25-31CrossRefGoogle Scholar
  61. 61.
    Xiao Y, Chung T-S, Guan HM, Guiver MD (2000) Synthesis, cross-linking and carbonization of co-polyamides containing internal acetylene units for gas separation. J Membr Sci 302 (1-2): 254-264CrossRefGoogle Scholar
  62. 62.
    Kim YK, Park HB, Lee YM (2004) Carbon molecular sieve membranes derived from thermally labile polymer containing blend polymers and their gas separation properties. J Membr Sci 243 (1-2): 9-17CrossRefGoogle Scholar
  63. 63.
    Centeno TA, Fuertes AB (2000) Carbon molecular sieve gas separation membranes based on poly(vinylidene chloride-co-vinyl chloride). Carbon 38 (7): 1067-1073CrossRefGoogle Scholar
  64. 64.
    Kusakabe K, Gohgi S, Morooka S (1998) Carbon molecular sieving membranes derived from condensed polynuclear aromatic (COPNA) resins for gas separations. Ind Eng Chem Res 37 (11): 4262-4266CrossRefGoogle Scholar
  65. 65.
    Yoshimune M, Fujiwara I, Haraya K (2007) Carbon molecular sieve membranes derived from trimethylsilyl substituted poly(phenylene oxide) for gas separation. Carbon 45 (3): 553-560CrossRefGoogle Scholar
  66. 66.
    Lie JA, Hägg M-B (2006) Cellulose membrane from cellulose: Synthesis, performance and regeneration. J Membr Sci 284 (1-2): 79-86CrossRefGoogle Scholar
  67. 67.
    Ismail AF, David LIB (2001) A review on the latest development of carbon membranes for gas separation. J Membr Sci 193 (1):1-18CrossRefGoogle Scholar
  68. 68.
    Hayashi J, Mizuta H, Yamamoto M, Kusakabe K, Morooka S (1997) Pore size control of carbonized BPTA-pp’ODA polyimide membrane by chemical vapor deposition of carbon. J Membr Sci 124 (2): 243-251CrossRefGoogle Scholar
  69. 69.
    Linkov VM, Sanderson RD, Lapidus AL, Krylova AJ (1994) Carbon membrane-based catalysts for hydrogenation of CO. Catal Lett 27 (1-2): 97-101CrossRefGoogle Scholar
  70. 70.
    Fuertes AB, Centeno TA (1999) Preparation of supported carbon molecular sieve membrane. Carbon 37 (4): 679-684CrossRefGoogle Scholar
  71. 71.
    Clausi DT, Koros WJ (2000) Formation of defect-free polyimide hollow fiber membranes for gas separation. J Membr Sci 167 (1): 79-89CrossRefGoogle Scholar
  72. 72.
    Puri PS (1990) Fabrication of hollow fiber gas separation membranes. Gas Sep Purif 4 (1): 29-36CrossRefGoogle Scholar
  73. 73.
    Baker RW (2002) Future directions of membrane gas separation technology. Ind Eng Chem Res 41 (6): 1393-1411CrossRefGoogle Scholar
  74. 74.
    Kusuki Y, Shimazaki H, Tanihara N, Nakanishi S, Yoshinaga T (1997) Gas permeation properties and characterization of asymmetric carbon membranes prepared by pyrolyzing asymmetric polyimide hollow fiber membrane. J Membr Sci 134 (2): 245-253CrossRefGoogle Scholar
  75. 75.
    Tanihara N, Kusuki Y (2000) Partially carbonized polyimide membrane, preparation thereof, and separation of halogen compound gases therewith. EP Patent Appl 1,034,836Google Scholar
  76. 76.
    Okamoto K, Kawahara S, Yoshino M, Kita H, Hirayama Y, Tanihara N, Kusuki Y (1999) Olefin/paraffin separation through carbonized membranes derived from an asymmetric polyimide hollow fiber membrane. Ind Eng Chem Res 38 (11): 4424-4432CrossRefGoogle Scholar
  77. 77.
    Itoh N, Haraya K (2000) A carbon membrane reactor. Catal Today 56 (1-3): 103-111CrossRefGoogle Scholar
  78. 78.
    Centeno TA, Fuertes AB (2001) Carbon molecular sieve membranes from a phenolic resin supported on porous ceramic tubes. Sep Purif Technol 25 (1-3): 379-384CrossRefGoogle Scholar
  79. 79.
    Centeno TA, Fuertes AB (2000) Carbon molecular sieve gas separation membranes based on poly(vinylidene chloride-co-vinyl chloride). Carbon 38 (7): 1067-1073CrossRefGoogle Scholar
  80. 80.
    Liang C, Sha G, Guo S (1999) Carbon membrane for gas separation derived from coal tar pitch. Carbon 37 (9): 1391-1397CrossRefGoogle Scholar
  81. 81.
    Soffer A, Gilron J, Saguee S, Hed-Ofek R, Cohen H (1995) Process for the production of hollow carbon fiber membranes. EP Patent 0,671,202Google Scholar
  82. 82.
    Tin PS, Chung T-S, Hill AJ (2004) Advanced fabrication of carbon molecular sieve membranes by nonsolvent pretreatment of precursor polymers. Ind Eng Chem Res 43 (20): 6476-6483CrossRefGoogle Scholar
  83. 83.
    Lagorsse S Magalhaes FD, Mendes A (2007) Xenon recycling in an anaesthetic closed-system using carbon molecular sieve membranes. J Membr Sci 301 (1-2): 29-38CrossRefGoogle Scholar
  84. 84.
    Ismail AF, Li K (2008) From polymeric precursors to hollow fiber carbon and ceramic membranes. In: Inorganic Membranes: Synthesis, Characterization and Applications, Mallada R, Menéndez M (Eds.) Membrane Science Technology Ser, Elsevier, Amsterdam, The Netherlands, Vol 13, Ch 3, 81-119Google Scholar
  85. 85.
    Geiszler VC, Koros WJ (1996) Effect of polyimide pyrolysis conditions on carbon molecular sieve membrane properties. Ind Eng Chem Res 35 (9): 2999-3003CrossRefGoogle Scholar
  86. 86.
    Koresh JE, Soffer A (1980) Study of molecular sieve carbons. Part 1. Pore structure, gradual pore opening, and mechanism of molecular sieving. J Chem Soc Faraday Trans I 76 (12): 2457-2471Google Scholar
  87. 87.
    Steel KM, Koros WJ (2003) Investigation of porosity of carbon materials and related effects on gas separation properties. Carbon 41 (2): 235-266CrossRefGoogle Scholar
  88. 88.
    Jones CW, Koros WJ (1995) Characterization of ultramicroporous carbon membranes with humidified feeds. Ind Eng Chem Res 34 (1): 158-163CrossRefGoogle Scholar
  89. 89.
    Suda H, Haraya K (1997) Gas permeation through micropores of carbon molecular sieve membranes derived from kapton polyimide. J Phys Chem B 101 (20): 3988-3994CrossRefGoogle Scholar
  90. 90.
    Tanihara N, Shimazaki H, Hirayama Y, Nakanishi S, Yoshinaga T, Kusuki Y (1999) Gas permeation properties of asymmetric carbon hollow fiber membranes prepared from asymmetric hollow fiber. J Membr Sci 160 (2): 179-186CrossRefGoogle Scholar
  91. 91.
    David LIB (2001) Development of asymmetric polyacrylonitrile carbon hollow fiber membrane for oxygen/nitrogen gas separation. MSc Thesis, Universiti Teknologi Malaysia, Skudai, Johor, MalaysiaGoogle Scholar
  92. 92.
    Singh-Ghosal A, Koros WJ (2000) Air separation properties of flat sheet homogeneous pyrolytic carbon membranes. J Membr Sci 174 (2): 177-188CrossRefGoogle Scholar
  93. 93.
    Barsema JN, Van Der Vegt NFA, Koops GH, Wessling M (2002) Carbon molecular sieve membranes prepared from porous fiber precursor. J Membr Sci 205 (1-2): 239-246CrossRefGoogle Scholar
  94. 94.
    Soffer A, Azariah A, Amar A, Cohen H, Golub D, Saguee S, Tobias H (1997) Method of improving the selectivity of carbon membranes by chemical vapor deposition. US Patent 5,695,818Google Scholar
  95. 95.
    Soffer A, Koresh J, Saggy S (1987) Separation device. US Patent 4,685,940Google Scholar
  96. 96.
    Cabrera AL, Zehner JE, Coe CG, Gaffney TR, Farris TS (1993) Preparation of carbon molecular sieves, I. Two-step hydrocarbon deposition with a single hydrocarbon. Carbon 31 (6): 969-976CrossRefGoogle Scholar
  97. 97.
    Verma SK, Walker Jr PL (1992) Preparation of carbon molecular sieves by propylene pyrolysis over microporous carbons. Carbon 30 (6): 829-836CrossRefGoogle Scholar
  98. 98.
    Chihara K, Suzuki M (1979) Control of micropore diffusivities of molecular sieving carbon by deposition of hydrocarbons. Carbon 17 (4): 339-343CrossRefGoogle Scholar
  99. 99.
    Kusakabe K, Yamamoto M, Morooka S (1998) Gas permeation and micropore structure of carbon molecular sieving membranes modified by oxidation. J Membr Sci 149 (1): 59-67CrossRefGoogle Scholar
  100. 100.
    Suda H, Haraya K (1997) Alkene/alkane permselectivityies of a carbon molecular sieve membrane. J Chem Soc Chem Commun: 93-94Google Scholar
  101. 101.
    Jones CW, Koros WJ (1994) Carbon molecular sieve gas separation membranes.II. Regeneration following organic exposure. Carbon 32 (8): 1427-1432Google Scholar
  102. 102.
    Koros WJ, Jones CW (1994) Composite carbon fluid separation membranes. US Patent 5,288,304Google Scholar
  103. 103.
    Jones CW, Koros WJ (1995) Carbon composite membranes: A solution to adverse humidity effects. Ind Eng Chem Res 34 (1): 164-167Google Scholar
  104. 104.
    Yoneyama H, Nishihara Y (1992) Carbon based porous hollow fiber membrane and method for producing same. US Patent 5,089,135Google Scholar
  105. 105.
    Gilron J, Soffer A (2002) Knudsen diffusion in microporous carbon membranes with molecular sieving character. J Membr Sci 209 (2): 339-352CrossRefGoogle Scholar
  106. 106.
    Hatori H, Yamada Y, Shiraishi M (1992) Preparation of macroporous carbon films from polyimide by phase inversion method. Carbon 30 (2): 303-304CrossRefGoogle Scholar
  107. 107.
    Suda H, Haraya K (1995) Molecular sieving effect of carbonized Kapton polyimide membrane. J Chem Soc Chem Commun: 1179-1180Google Scholar
  108. 108.
    Wang S, Zeng M, Wang Z (1996) Asymmetric molecular sieve carbon membranes. J Membr Sci 109 (2): 267-270CrossRefGoogle Scholar
  109. 109.
    Steriotis TA, Beltsios K, Mitropoulos ACh, Kanellopoulos N, Tennison S, Wiedenman A, Keiderling U (1997) On the structure of an asymmetric carbon membrane with a novolac resin precursor. J Appl Polym Sci 64 (12): 2323-2345CrossRefGoogle Scholar
  110. 110.
    Katsaros FK, Steriotis TA, Stefanopoulos KL, Kanellopoulos NK, Mitropoulos AC, Meissner M, Hoser A (2000) Neutron diffraction study of adsorbed CO2 on a carbon membrane. Physica B 267-278: 901-902Google Scholar
  111. 111.
    Sakata Y, Muto A, Uddin MA, Suga H (1999) Preparation of porous carbon membrane plates for pervaporation separation applications. Sep Purif Technol 17 (2): 97-100CrossRefGoogle Scholar
  112. 112.
    Clint JH, Lear AM, Oliver LF, Tennison SR (1992) Membranes. EP Patent 0,474,424Google Scholar
  113. 113.
    Katsaros FK, Steriotis TA, Stubos AK, Mitropoulos A, Kanellopoulos NK, Tennison S (1997) High pressure gas permeability of microporous carbon membranes. Microporous Mater 8 (3): 171-176Google Scholar
  114. 114.
    Lee L-L, Tsai D-S (2001) Synthesis and permeation properties of silicon-carbon-based inorganic membrane for gas separation. Ind Eng Chem Res 40 (2): 612-616CrossRefGoogle Scholar
  115. 115.
    Rao MB, Sircar S (1993) Nanoporous carbon membranes for separation of gas mixtures by selective surface flow. J Membr Sci 85 (3): 253-264CrossRefGoogle Scholar
  116. 116.
    Rao MB, Sircar S, Golden TC (1992) Gas separation by adsorbent membranes. US Patent 5,104,425Google Scholar
  117. 117.
    Rao MB, Sircar S (1996) Performance and pore characterization of nanoporous carbon membrane for gas separation. J Membr Sci 110 (1): 109-118Google Scholar
  118. 118.
    Thaeron C, Parrillo DJ, Sircar S, Clarke PF, Paranjape M, Pruden BB (1999) Separation of hydrogen sulfide-methane mixtures by selective surface flow membrane. Sep Purif Technol 15 (2): 121-129CrossRefGoogle Scholar
  119. 119.
    Sedigh MG, Jahangiri M, Liu PKT, Sahimi M, Tsotsis TT (2000) Structural characterization of polyetherimide-based carbon molecular sieve membranes. AIChE J 46 (11): 2245-2255CrossRefGoogle Scholar
  120. 120.
    Hayashi J, Yamamoto M, Kusakabe K, Morooka S (1997) Effect of oxidation on gas permeation of carbon molecular sieve membranes based on BPDA-pp’/ODA polyimide. Ind Eng Chem Res 36 (6): 2134-2140CrossRefGoogle Scholar
  121. 121.
    Hayashi J, Mizuta H, Yamamoto M, Kusakabe K, Morooka S (1996) Separation of ethane/ethylene and propane/propylene system with a carbonized BPDA-pp’ODA polyimide. Ind Eng Chem Res 35 (11): 4176-4181CrossRefGoogle Scholar
  122. 122.
    Koros WJ, Vu DQ (2003) High carbon content filamentary membrane and method of making the same. US Patent 6,565,631Google Scholar
  123. 123.
    Yoshinaga T, Shimazaki H, Kusuki Y, Sumiyama Y (1991) Asymmetric hollow filamentary carbon membrane and process for producing the same. EP Patent 0,459,623Google Scholar
  124. 124.
    Ogawa M, Nakano Y (2000) Separation of CO2/CH4 mixture through carbonized membrane prepared by gel modification. J Membr Sci 173 (1): 123-132CrossRefGoogle Scholar
  125. 125.
    Kita H, Yoshino M, Tanaka K, Okamoto K (1997) Gas permselectivity of carbonized polypyrrolone membrane. J Chem Soc Chem Commun: 1051-1052Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ahmad Fauzi Ismail
    • 1
  • Dipak Rana
    • 2
  • Takeshi Matsuura
    • 2
  • Henry C. Foley
    • 3
  1. 1.Advanced Membrane Technology Research Centre (AMTEC) Materials and Manufacturing Research AllianceUniversity Teknologi MalaysiaSkudaiMalaysia
  2. 2.Department of Chemical and Biological EngineeringUniversity of OttawaOttawaCanada
  3. 3.Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations