Advertisement

Configurations of Carbon Membranes

  • Ahmad Fauzi Ismail
  • Dipak Rana
  • Takeshi Matsuura
  • Henry C. Foley
Chapter

Abstract

Carbon membranes can be divided into two categories: unsupported and supported carbon membranes. Unsupported membranes have three different configurations: flat (film), hollow fibre and capillary, while supported membranes consist of two configurations: flat and tube. Membranes have been prepared from different polymeric materials under different heating protocols and their performance investigated by various researchers. This chapter summarizes the preparation method of CMSMs in each category and the performance of the CMSMs so prepared in different gas separation applications.

Keywords

Hollow Fiber Carbonization Carbonization Carbon Membrane Carbon Molecular Sieve Pyromellitic Dianhydride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Fuertes AB, Centeno TA (1998) Preparation of supported asymmetric carbon molecular sieve membranes. J Membr Sci 144 (1-2): 105-111CrossRefGoogle Scholar
  2. 2.
    Hatori H, Yamada Y, Shiraishi M (1992) Preparation of macroporous carbon films from polyimide by phase inversion method. Carbon 30 (2): 303-306CrossRefGoogle Scholar
  3. 3.
    Hatori H, Yamada Y, Shiraishi M, Nakata H, Yoshitomi S (1992) Carbon molecular sieve films from polyimide. Carbon 30 (2): 305-306CrossRefGoogle Scholar
  4. 4.
    Hatori H, Yamada Y, Shiraishi H, Nakata H, Yoshitomi S (1992) Carbon molecular sieve films from polyimide. Carbon 30 (4): 719-720CrossRefGoogle Scholar
  5. 5.
    Rao MB, Sircar S (1993) Nanoporous carbon membranes for separation of gas mixtures by selective surface flow. J Membr Sci 85 (3): 253-264CrossRefGoogle Scholar
  6. 6.
    Rao MB, Sircar S (1996) Performance and pore characterization of nanoporous carbon membrane for gas separation. J Membr Sci 110 (1): 109-118CrossRefGoogle Scholar
  7. 7.
    Rao MB, Sircar S (1993) Nanoporous carbon membrane for gas separation. Gas Sep Purif 7 (4): 279-284CrossRefGoogle Scholar
  8. 8.
    Acharya M, Foley HC (1999) Spray-coating of nanoporous carbon membranes for air separation. J Membr Sci 161 (1-2): 1-5CrossRefGoogle Scholar
  9. 9.
    Chen YD, Yang RT (1994) Preparation of carbon molecular sieve membrane and diffusion of binary mixtures in the membrane. Ind Eng Chem Res 33 (12): 3146-3153CrossRefGoogle Scholar
  10. 10.
    Suda H, Haraya K (1995) Molecular sieving effect of carbonized kapton polyimide membrane. J Chem Soc Chem Commun: 1179-1180Google Scholar
  11. 11.
    Suda H, Haraya K (1997) Gas permeation through micropores of carbon molecular sieve membranes derived from kapton polyimide. J Phys Chem B 101 (20): 3988-3994CrossRefGoogle Scholar
  12. 12.
    Shusen W, Meiyun Z, Zhizong W (1996) Asymmetric molecular sieve carbon membranes. J Membr Sci 109 (2): 267-270CrossRefGoogle Scholar
  13. 13.
    Shusen W, Meiyun Z, Zhizong W (1996) Carbon membrane for gas separation. Sep Sci Technol 31 (16): 2299-2306CrossRefGoogle Scholar
  14. 14.
    Kita H, Yoshino M, Tanaka K, Okamato K (1997) Gas permselectivity of carbonized polypyrrolone membrane. J Chem Soc Chem Commun: 1051-1052Google Scholar
  15. 15.
    Liang CH, Sha GY, Guo SC (1999) Carbon membrane for gas separation derived from coal tar pitch. Carbon 37 (9): 1391-1397CrossRefGoogle Scholar
  16. 16.
    Fuertes AB, Centeno TA (1999) Preparation of supported carbon molecular sieve membrane. Carbon 37 (4): 679-684CrossRefGoogle Scholar
  17. 17.
    Centeno TA, Fuertes AB (1999) Supported carbon molecular sieve membranes based on phenolic resin. J Membr Sci 160 (2): 201-211CrossRefGoogle Scholar
  18. 18.
    Fuertes AB, Centeno TA (1998) Carbon molecular sieve membranes from polyetherimide. Microporous Mesoporous Mater 26 (1-3): 23-26CrossRefGoogle Scholar
  19. 19.
    Hayashi J, Yamamoto M, Kusakabe K, Morooka S (1995) Simultaneous improvement of permeance and permselectivity of 3,3’4,4’-biphenyltetracarboxylic dianhydride-4,4’-oxydianiline polyimide membrane by carbonization. Ind Eng Chem Res 34 (12): 4364-4370CrossRefGoogle Scholar
  20. 20.
    Fuertes AB, Nevskaia DM, Centeno TA (1999) Carbon composite membranes from matrimid and kapton polyimide. Microporous Mesoporous Mater 33 (1-3): 115-125CrossRefGoogle Scholar
  21. 21.
    Centeno TA, Fuertes AB (2000) Carbon molecular sieve gas separation membranes based on poly(vinylidene chloride-co-vinyl chloride). Carbon 38 (7): 1067-1073CrossRefGoogle Scholar
  22. 22.
    Singh-Ghosal A, Koros WJ (2000) Air separation properties of flat sheet homogeneous pyrolytic carbon membranes. J Membr Sci 174 (2): 177-188CrossRefGoogle Scholar
  23. 23.
    Hayashi J, Mizuta H, Yamamoto M, Kusakabe K, Morooka S (1997) Pore size control of carbonized BPTA-pp’ODA polyimide membrane by chemical vapor deposition of carbon. J Membr Sci 124 (2): 243-251CrossRefGoogle Scholar
  24. 24.
    Hayashi J, Mizuta H, Yamamoto M, Kusakabe K, Morooka S (1996) Separation of ethane/ethylene and propane/propylene systems with a carbonized BPDA-pp’ODA polyimide membrane. Ind Eng Chem Res 35 (11): 4176-4181CrossRefGoogle Scholar
  25. 25.
    Hayashi J, Yamamoto M, Kusakabe K, Morooka S (1997) Effect of oxidation on gas permeation of carbon molecular sieve membranes based on BPDA-pp’ODA polyimide. Ind Eng Chem Res 36 (6): 2134-2140CrossRefGoogle Scholar
  26. 26.
    Katsaros FK, Steriotis TA, Stubos AK, Mitropoulos A, Kanellopoulos NK, Tennison S (1997) High pressure gas permeability of microporous carbon membranes. Microporous Mater 8 (3): 171-176CrossRefGoogle Scholar
  27. 27.
    Yamamoto M, Kusakabe K, Hayashi J, Morooka S (1997) Carbon molecular sieve membrane formed by oxidative carbonization of a copolyimide film coated on a porous support tube. J Membr Sci 133 (2): 195-205CrossRefGoogle Scholar
  28. 28.
    Kusakabe K, Yamamoto M, Morooka S (1998) Gas permeation and micropore structure of carbon molecular sieving membranes modified by oxidation. J Membr Sci 149 (1): 59-67CrossRefGoogle Scholar
  29. 29.
    Kusakabe K, Gohgi S, Morooka S (1998) Carbon molecular sieving membranes derived from condensed polynuclear aromatic (COPNA) resins for gas separation. Ind Eng Chem Res 37 (11): 4262-4266CrossRefGoogle Scholar
  30. 30.
    Fuertes AB (2000) Adsorption-selective carbon membrane for gas separation. J Membr Sci 177 (1-2): 9-16CrossRefGoogle Scholar
  31. 31.
    Shiflett MB, Foley HC (2000) On the preparation of supported nanoporous carbon membranes. J Membr Sci 179 (1-2): 275-282CrossRefGoogle Scholar
  32. 32.
    Wang H, Zhang L, Gavalas GR (2000) Preparation of supported carbon membranes from furfuryl alcohol by vapor deposition polymerization. J Membr Sci 177 (1-2): 25-31CrossRefGoogle Scholar
  33. 33.
    Haraya K, Suda H, Yanagishita H, Matsuda S (1995) Asymmetric capillary membrane of a carbon molecular sieve. J Chem Soc Chem Commun: 1781-1782Google Scholar
  34. 34.
    Petersen J, Matsuda M, Haraya K (1997) Capillary carbon molecular sieve membranes derived from kapton for high temperature gas separation. J Membr Sci 131 (1-2): 85-94CrossRefGoogle Scholar
  35. 35.
    Linkov VM, Sanderson RD, Jacobs EP (1994) Highly asymmetrical carbon membranes. J Membr Sci 95 (1): 93-99CrossRefGoogle Scholar
  36. 36.
    Linkov VM, Sanderson RD, Rychkov BA (1994) Composite carbon-polyimide membranes. Mater Lett 20 (1-2): 43-46CrossRefGoogle Scholar
  37. 37.
    Jones CW, Koros WJ (1994) Carbon molecular sieve gas separation membranes- I. Preparation and characterization based on polyimide precursors. Carbon 32 (8): 1419-1425CrossRefGoogle Scholar
  38. 38.
    Jones CW, Koros WJ (1995) Characterization of ultramicroporous carbon membranes with humidified feeds. Ind Eng Chem Res 34 (1): 158-163CrossRefGoogle Scholar
  39. 39.
    Jones CW, Koros WJ (1994) Carbon molecular sieve gas separation membranes – II. Regeneration following organic exposure. Carbon 32 (8): 1427-1432CrossRefGoogle Scholar
  40. 40.
    Geiszler VC, Koros WJ (1996) Effect of polyimide pyrolysis conditions on carbon molecular sieve membrane properties. Ind Eng Chem Res 35 (9): 2999-3003CrossRefGoogle Scholar
  41. 41.
    Jones CW, Koros WJ (1995) Carbon composite membranes: A solution to adverse humidity effects. Ind Eng Chem Res 34 (1): 164-167CrossRefGoogle Scholar
  42. 42.
    Kusuki Y, Shimazaki H, Tanihara N, Nakanishi S, Yoshinaga T (1997) Gas permeation properties and characterization of asymmetric carbon membranes prepared by pyrolyzing asymmetric polyimide hollow fiber membrane. J Membr Sci 134 (2): 245-253CrossRefGoogle Scholar
  43. 43.
    Tanihara N, Shimazaki H, Hirayama Y, Nakanishi S, Yoshinaga T, Kusuki Y (1999) Gas permeation properties of asymmetric carbon hollow fiber membranes prepared from asymmetric hollow fiber. J Membr Sci 160 (2): 179-186CrossRefGoogle Scholar
  44. 44.
    Ogawa M, Nakano Y (1999) Gas permeation through carbonized hollow fiber membranes prepared by gel modification of polyamic acid. J Membr Sci 162 (1-2): 189-198CrossRefGoogle Scholar
  45. 45.
    Ogawa M, Nakano Y (2000) Separation of CO2/CH4 mixture through carbonized membrane prepared by gel modification. J Membr Sci 173 (1): 123-132CrossRefGoogle Scholar
  46. 46.
    Ash R, Barrer RM, Lowson RT (1973) Transport of single gases and of binary gas mixtures in a microporous carbon membrane. J Chem Soc Faraday Trans I 69 (12): 2166-2178CrossRefGoogle Scholar
  47. 47.
    Bird AJ, Trimm DL (1983) Carbon molecular sieves used in gas separation membranes. Carbon 21 (3): 177-180CrossRefGoogle Scholar
  48. 48.
    Koresh JE, Soffer A (1987) The carbon molecular sieve membranes. General properties and the permeability of CH4/H2 mixture. Sep Sci Technol 22 (2-3): 973-982Google Scholar
  49. 49.
    Koresh JE, Soffer A (1986) Mechanism of permeation through molecular - sieve carbon membrane. Part 1. The effect of adsorption and the dependence on pressure. J Chem Soc Faraday Trans I 82 (7): 2057-2063CrossRefGoogle Scholar
  50. 50.
    Koresh JE, Soffer A (1980) Study of molecular sieve carbons. Part 1. Pore structure, gradual pore opening and mechanism of molecular sieving. J Chem Soc Faraday Trans I 76 (12): 2457-2471Google Scholar
  51. 51.
    Koresh JE, Soffer A (1983) Molecular sieve carbon permselectivities membrane Part I. Presentation of a new device for gas mixture separation. Sep Sci Technol 18 (8): 723-734CrossRefGoogle Scholar
  52. 52.
    Bauer JM, Elyassini J, Moncorge G, Nodari T, Totino E (1991) New developments and application of carbon membranes. Key Eng Mater 61-62: 207-212CrossRefGoogle Scholar
  53. 53.
    Suda H, Haraya K (1997) Alkene/alkane permselectivities of a carbon molecular sieve membrane. J Chem Soc Chem Commun: 93-94Google Scholar
  54. 54.
    Okamoto K, Kawamura S, Yoshino M, Kita H, Hirayama Y, Tanihara N, Kusuki Y (1999) Olefin/paraffin separation through carbonized membranes derived from an asymmetric polyimide hollow fiber membrane. Ind Eng Chem Res 38 (11): 4424-4432CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ahmad Fauzi Ismail
    • 1
  • Dipak Rana
    • 2
  • Takeshi Matsuura
    • 2
  • Henry C. Foley
    • 3
  1. 1.Advanced Membrane Technology Research Centre (AMTEC) Materials and Manufacturing Research AllianceUniversity Teknologi MalaysiaSkudaiMalaysia
  2. 2.Department of Chemical and Biological EngineeringUniversity of OttawaOttawaCanada
  3. 3.Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations