Current Research and Future Direction

  • Ahmad Fauzi Ismail
  • Dipak Rana
  • Takeshi Matsuura
  • Henry C. Foley


This chapter is based on an article written in 2003 by Ismail. He emphasized the importance of inorganic membrane s and, in particular, carbon membranes in the future membrane and membrane process development. Although the statistics used in the article have become somewhat old, several important statements made by Ismail seem still valid for the trend in the current membrane technology and also for the future development of inorganic and carbon membranes . Hence, they are reproduced in this chapter with some modification.


Hollow Fiber Polymeric Membrane Membrane Module Pressure Swing Adsorption Carbon Membrane 


  1. 1.
    Baker RW and Lokhandwala K (2008) Natural gas processing with membranes: An overview. Ind Eng Chem Res 47 (7): 2109-2121CrossRefGoogle Scholar
  2. 2.
    Hsieh HP (1988) Inorganic membranes. AIChE Symposium Series 84 (261): 1-18Google Scholar
  3. 3.
    Keizer K, Verweij H (1996) Progres in inorganic membranes. Chemtech, Jan: 37Google Scholar
  4. 4.
    Soria R (1995) Overview on industrial membranes. Catalysis Today 25 (3–4): 285-290CrossRefGoogle Scholar
  5. 5.
    Koros JW (1995) Membranes: Learning a lesson from nature. Chem Eng Progr Oct: 68Google Scholar
  6. 6.
    Koros WJ, Mahajan R (2000) Pushing the limits on possibilities for large-scale gas permeation: which strategies? J Membr Sci 175 (2): 181-196CrossRefGoogle Scholar
  7. 7.
    Kyotani T (2000) Control of pore structure in carbon. Carbon 38 (2): 269-286CrossRefGoogle Scholar
  8. 8.
    Ismail AF, David LIB (2001) A review on the latest development of carbon membranes for gas separation. J Membr Sci 193 (1):1-18CrossRefGoogle Scholar
  9. 9.
    Wang SS, Zeng MY, Wang ZZ (1996) Carbon membrane for gas separation. Sep Sci Technol 31 (16): 2299-2306CrossRefGoogle Scholar
  10. 10.
    Fuertes AB (2000) Adsorption-selective carbon membrane for gas separation. J Membr Sci 177 (1-2): 9-16CrossRefGoogle Scholar
  11. 11.
    Koresh JE, Soffer A (1987) The carbon molecular sieve membranes. General properties and the permeability of CH4/H2 mixture. Sep Sci Technol 22 (2-3): 973-982CrossRefGoogle Scholar
  12. 12.
    Hayashi J, Mizuta H, Yamamoto M, Kusakabe K, Morooka S (1996) Separation of ethane/ethylene and propane/propylene system with a carbonized BPDA-pp/ODA polyimide. Ind Eng Chem Res 35 (11): 4176-4181CrossRefGoogle Scholar
  13. 13.
    Geiszler VC (1997) Polyimide precursors for carbon membranes. PhD Thesis, University of Texas at Austin, TX, USAGoogle Scholar
  14. 14.
    Tanihara N, Shimazaki H, Hirayama Y, Nakanishi S, Yoshinaga T, Kusuki Y (1999) Gas permeation properties of asymmetric carbon hollow fiber membranes prepared from asymmetric hollow fiber. J Membr Sci 160 (2): 179-186CrossRefGoogle Scholar
  15. 15.
    Fain DE (1991) Technical and economic aspects and prospects for gas separation with inorganic membranes. Key Eng Materials 61/62: 327-336Google Scholar
  16. 16.
    Jones CW, Koros WJ (1994) Carbon molecular sieve gas separation membranes I-preparation and characterization based on polyimide precursors. Carbon 32 (8): 1419-1425CrossRefGoogle Scholar
  17. 17.
    Liang C, Sha G, Guo S (1999) Carbon membrane for gas separation derived from coal tar pitch. Carbon 37 (8): 1391-1397CrossRefGoogle Scholar
  18. 18.
    Bauer JM, Elyassini J, Moncorge G, Nodari T, Totino E (1991) New development and application of carbon membranes. Key Eng Materials 61/62: 207-212Google Scholar
  19. 19.
    Petersen J, Matsuda M, Haraya K (1997) Capillary carbon molecular sieve membranes derived from kapton for high temperature gas separation. J Membr Sci 131 (1-2): 85-94CrossRefGoogle Scholar
  20. 20.
    Koresh JE, Soffer A (1986) Mechanism of permeation through molecular sieve carbon membrane. Part 1. The effect of adsorption and the dependence on pressure. J Chem Soc, Farady Trans 1 82: 2057-2063CrossRefGoogle Scholar
  21. 21.
    Kusuki Y, Shimazaki H, Tanihara N, Nakanishi S, Yoshinaga T (1997) Gas permeation properties and characterization of asymmetric carbon membranes prepared by pyrolyzing asymmetric polyimide hollow fiber membrane. J Membr Sci 134 (2): 245-253CrossRefGoogle Scholar
  22. 22.
    Roman IC, Ubersax RW, Fleming GK (2001) New directions in membranes for gas separation. Chimica Industria Giug 83 (5): 1-3Google Scholar
  23. 23.
    Fuertes AB, Centeno TA (1999) Preparation of supported carbon molecular sieve membrane. Carbon 37 (4): 679-684CrossRefGoogle Scholar
  24. 24.
    Rao MB, Sircar S (1993) Nanoporous carbon membranes for separation of gas mixtures by selective surface flow. J Membr Sci 85 (3): 253-264CrossRefGoogle Scholar
  25. 25.
    Suda H, Haraya K (1997) Alkene/alkane permselectivites of a carbon molecular sieve membrane. J Chem Soc Chem Commun 1: 93-94Google Scholar
  26. 26.
    Hayashi J, Yamamoto M, Kusakabe K, Morooka S (1997) Effect of oxidation on gas permeation of carbon molecular sieve membrane based on BPDA-pp/ODA poyimide. Ind Eng Chem Res 36 (6): 2134-2140CrossRefGoogle Scholar
  27. 27.
    Soffer A, Girlon J, Cohen H (1999) Separation of linear from branched hydrocarbons using a carbon membrane.US patent 5914434Google Scholar
  28. 28.
    Okamoto K, Kawahara S, Yoshino M, Kita H, Hirayama Y, Tanihara N (1999) Olefin/paraffin separation through carbonized membranes derived from an asymmetric polyimide hollow fiber membrane. Ind Eng Chem Res 38 (11): 4424-4432CrossRefGoogle Scholar
  29. 29.
    Itoh N, Haraya K (2000) A carbon membrane reactor. Catal Today 56 (1-3): 103-111CrossRefGoogle Scholar
  30. 30.
    Lapkin A (1999) Hydration of propene using a porous carbon membrane contactor. Membr Technol 116: 5-9CrossRefGoogle Scholar
  31. 31.
    Mahajan R, Koros WJ, Thundyil M (1999) Mixed matrix membranes: Important and challenging. Membr Technol 105: 6-8Google Scholar
  32. 32.
    Ozaki J, Endo N, Ohizumi W, Igarashi K, Nakahara M, Ohya A, Yoshida S, Iizuka T (1997) Novel preparation method for the production of mesoporous carbon fibre from a polymer blend. Carbon 35 (7): 1031-1033CrossRefGoogle Scholar
  33. 33.
    Mittal J, Mathur RB, Bahl OP (1997) Post spinning modification of PAN fibers-A review. Carbon 35 (12): 1713-1722CrossRefGoogle Scholar
  34. 34.
    Chen JC, Harrison IR (2002) Modification of polyacrylonitrile (PAN) carbon fiber precursor via post-spinning plasticization and stretching in dimethylformamide (DMF). Carbon 40 (1): 25-45CrossRefGoogle Scholar
  35. 35.
    Soffer A, Koresh J, Sagee S (1987) Separation device. US patent 4919860Google Scholar
  36. 36.
    Ismail AF, Saufi SM (2003) Development and characterization of PAN-based carbon hollow fiber membrane for oxygen/nitrogen separation, “Regional Symposium and Workshop Membrane Science and Technology”, 13-17 January 2003, Songkhla, ThailandGoogle Scholar
  37. 37.
    Dalton S, Heatley F, Budd PM (1999) Thermal stabilization of polyacrylonitrile fibers. Polymer 40 (20): 5531-5543CrossRefGoogle Scholar
  38. 38.
    Jones CW, Koros WJ (1995) Characterization of ultramicroporous carbon membranes with humidified feeds. Ind Eng Chem Res 34 (1): 158-163Google Scholar
  39. 39.
    Koros WJ, Jones CW (1994) Composite carbon fluid membranes. US patent 5288304Google Scholar
  40. 40.
    Jones CW, Koros WJ (1995) Carbon composite membranes: a solution to adverse humidity effects. Ind Eng Chem Res 34 (1): 164-167CrossRefGoogle Scholar
  41. 41.
    Soffer A, Azariah A, Amar A, Cohen H, Golub D, Saguee S (1997) Method of improving the selectivity of carbon membranes by chemical vapor deposition. US patent 5695618Google Scholar
  42. 42.
    Vu DQ, Koros WJ, Miller SJ (2002) High pressure CO2/CH4 separation using carbon molecular sieve hollow fiber membranes. Ind Eng Chem Res 41 (3): 367-380CrossRefGoogle Scholar
  43. 43.
    Ogawa M, Nakano Y (1999) Gas permeation through carbonized hollow fiber membranes prepared by gel modification of polyamic acid. J Membr Sci 162 (1-2): 189-198CrossRefGoogle Scholar
  44. 44.
    Yamamoto M, Kusakabe K, Hayashi J, Morooka S (1997) Carbon molecular sieve membrane formed by oxidative carbonization of a copolyimide film coated on a porous support tube. J Membr Sci 133 (2): 195-205CrossRefGoogle Scholar
  45. 45.
    Hayashi J, Yamamoto M, Kusakabe K, Morooka S (1995) Simultaneous improvement of permeance and permselectivity of 3,3’,4,4’-biphenyltetracarboxylic dianhydride-4,4’-oxydianiline polyimide membrane by carbonization. Ind Eng Chem Res 34 (12): 4364-4370CrossRefGoogle Scholar
  46. 46.
    Hayashi J, Mizuta H, Yamamoto M, Kusakabe K, Morooka S (1997) Pore size control of carbonized BPTA-pp’ODA polyimide membrane by chemical vapor deposition of carbon. J Membr Sci 124 (2): 243-251CrossRefGoogle Scholar
  47. 47.
    Kusakabe K, Yamamoto M, Morooka S (1998) Gas permeation and micropore structure of carbon molecular sieving membranes modified by oxidation. J Membr Sci 149 (1): 59-67CrossRefGoogle Scholar
  48. 48.
    Fuertes AB, Centeno TA (1998) Preparation of supported asymmetric carbon molecular sieve membranes. J Membr Sci 144 (1-2): 105-111CrossRefGoogle Scholar
  49. 49.
    Barsema JN, van der Vegt NFA, Koops GH, Wessling M (2002) Carbon molecular sieve membranes prepared from porous fiber precursor. J Membr Sci 205 (1-2): 239-246.CrossRefGoogle Scholar
  50. 50.
    Soffer A, Rosen D, Saguee S, Koresh J (1989) Carbon membranes. GB patent 2207666Google Scholar
  51. 51.
    Kusakabe K, Gohgi S, Morooka S (1998) Carbon molecular sieving membranes derived from condensed polynuclear aromatic (COP-NA) resins for gas separation. Ind Eng Chem Res 37 (11): 4262-4266CrossRefGoogle Scholar
  52. 52.
    Hatori H, Shiraish M, Nakata H, Yoshitomi S (1992) Carbon molecular sieve films from polyimide. Carbon 30 (4): 719-720CrossRefGoogle Scholar
  53. 53.
    Suda H, Haraya K (1997) Gas permeation through micropores of carbon molecular sieve membranes derived from kapton polyimide. J Phys Chem B 101 (20): 3988-3994CrossRefGoogle Scholar
  54. 54.
    Fuertes AB, Nevskaia DM, Centeno TA (1999) Carbon composite membranes from matrimid and kapton polyimide. Microporous Mesoporous Mater 33 (1-3): 115-125CrossRefGoogle Scholar
  55. 55.
    David LIB, Ismail AF (2003) Influence of the thermostabilization process and soak time during pyrolysis process on polyacrylonitrile carbon membranes for O2/N2 separation. J Membr Sci 213 (1-3): 285-291CrossRefGoogle Scholar
  56. 56.
    Lee LL, Tsai DS (2001) Synthesis and permeation properties of silicon-carbon-based inorganic membrane for gas separation. Ind Eng Chem Res 40 (2): 612-616CrossRefGoogle Scholar
  57. 57.
    Sedigh MG, Xu L, Tsotsis TT, Sahimi M (1999) Transport and morphological characteristics of polyetherimide-based carbon molecular sieve membranes. Ind Eng Chem Res 38 (9): 3367-3380CrossRefGoogle Scholar
  58. 58.
    Fuertes AB, Centeno TA (1998) Carbon molecular sieve membranes from polyetherimide. Microporous Mesoporous Mater 26 (1-3): 23-26CrossRefGoogle Scholar
  59. 59.
    Acharya M, Foley HC. (1999) Spray-coating of nanoporous carbon membranes for air separation J Membr Sci 161 (1-2): 1-5CrossRefGoogle Scholar
  60. 60.
    Shiflett MB, Foley HC (1999) Ultrasonic deposition of high-selectivity nanoporous carbon membranes. Science 285 (5435):1902-1905CrossRefGoogle Scholar
  61. 61.
    Shiflett MB, Foley HC (2000) On the preparation of supported nanoporous carbon membranes. J Membr Sci 179 (1-2): 275-282CrossRefGoogle Scholar
  62. 62.
    Shiflett MB, Foley HC (2001) Reproducible production of nanoporous carbon membranes. Carbon 39 (9): 1421-1425CrossRefGoogle Scholar
  63. 63.
    Wang H, Zhang L, Gavalas GR (2000) Preparation of supported carbon membranes from furfuryl alcohol by vapor deposition polymerization. J Membr Sci 177 (1-2): 25-31CrossRefGoogle Scholar
  64. 64.
    Wang S, Zeng M, Wang Z (1996) Asymmetric molecular sieve carbon membranes. J Membr Sci 109 (2): 267-270CrossRefGoogle Scholar
  65. 65.
    Wei W, Hu H, You L, Chen G (2002) Preparation of carbon molecular sieve membrane from phenol-formaldehyde novolac resin. Carbon 40 (3): 465-467CrossRefGoogle Scholar
  66. 66.
    Centeno TA, Fuertes AB (2001) Carbon molecular sieve membranes derived from a phenolic resin supported on porous ceramic tubes. Sep Purif Tech 25 (1-3): 379-384CrossRefGoogle Scholar
  67. 67.
    Centeno T, Fuertes AB (1999) Supportd carbon molecular sieve membranes based on phenolic resin. J Membr Sci 160 (2): 201-211CrossRefGoogle Scholar
  68. 68.
    Fuertes AB (2001) Effect of air oxidation on gas separation properties of adsorption-selective carbon membranes. Carbon 39 (5): 697-706CrossRefGoogle Scholar
  69. 69.
    Fuertes AB, Menendez I (2002) Separation of hydrocarbon gas mixtures using phenolic resin-based carbon membranes. Sep Purif Tech 28 (1): 29-41CrossRefGoogle Scholar
  70. 70.
    Menendez I, Fuertes AB (2001) Aging of carbon membranes under different environments. Carbon 39 (9): 733-740CrossRefGoogle Scholar
  71. 71.
    Ogawa M, Nakano Y (2000) Separation of CO2/CH4 mixture through carbonized membrane prepared by gel modification. J Membr Sci 173 (2): 123-132CrossRefGoogle Scholar
  72. 72.
    Geiszler VC, Koros WJ (1996) Effect of polyimide pyrolysis conditions on carbon molecular sieve membrane properties. Ind Eng Chem Res 35 (9): 2999-3003CrossRefGoogle Scholar
  73. 73.
    Ghosal AS, Koros WJ (2000) Air separation properties of flat sheet homogeneous pyrolytic carbon membranes. J Membr Sci 174 (2): 177-188CrossRefGoogle Scholar
  74. 74.
    Yoshinaga T, Shimazaki H, Kusuki Y, Sumiyama Y (1991) Asymmetric hollow filamentary carbon membrane and process for producing the same. EU patent 0459623Google Scholar
  75. 75.
    Kita H, Yoshino M, Tanaka K, Okamoto K (1997) Gas permselectivity of carbonized polypyrrolone membrane. J Chem Sco Chem Commun 1051-1052Google Scholar
  76. 76.
    Centeno TA, Fuertes AB (2000) Carbon molecular sieve gas separation membranes based on poly(vinylidene chloride-co vinyl chloride). Carbon 38 (7): 1067-1073CrossRefGoogle Scholar
  77. 77.
    Zhou W. Yoshino M, Kita H, Okamoto K (2001) Carbon molecular sieve membranes derived from phenolic resin with a pendant sulfonic acid group. Ind Eng Chem Res 40 (22): 4801-4807CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ahmad Fauzi Ismail
    • 1
  • Dipak Rana
    • 2
  • Takeshi Matsuura
    • 2
  • Henry C. Foley
    • 3
  1. 1.Advanced Membrane Technology Research Centre (AMTEC) Materials and Manufacturing Research AllianceUniversity Teknologi MalaysiaSkudaiMalaysia
  2. 2.Department of Chemical and Biological EngineeringUniversity of OttawaOttawaCanada
  3. 3.Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations