Adrenergic Regulation of Complement-Induced Acute Lung Injury

  • Michael A. Flierl
  • Daniel Rittirsch
  • J. Vidya Sarma
  • Markus Huber-Lang
  • Peter A. Ward
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 632)


It is well established that catecholamines regulate immune and inflammatory responses. Until recently, they have been thought to derive from the adrenal medulla and from presynaptic neurons, when studies revealed that T cells, macrophages and neutrophils can also de novo synthesize and release endogenous catecholamines, which can then regulate immune cell functions in an autocrine/paracrine manner via engagement of adrenergic receptors. Accordingly, it appears that phagocytic cells and lymphocytes may represent a major, newly recognized source of catecholamines that regulate inflammatory responses.


Acute Lung Injury Chromaffin Cell Adrenal Medulla Phagocytic Cell Endogenous Catecholamine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by NIH grants GM 29507, GM 61656 and HL-31963 (to P.A.W.) and Deutsche Forschungsgemeinschaft grants DFG HU 823/2-2 and HU 823/2-3 (to M.H.-L).


  1. Ackerman,K. D.Madden,K. S., Livnat, S.,Felten, S. Y., and Felten, D. L. (1991) Neonatal sympathetic denervation alters the development of in vitro spleen cell proliferation and differentiation. Brain Behav Immun 5, 235–261PubMedCrossRefGoogle Scholar
  2. Axelsson,J.(1971) Catecholamine functions. Annu Rev Physiol 33, 1–30PubMedCrossRefGoogle Scholar
  3. BaerwaldC. G.Laufenberg, M., Specht, T., von Wichert, P., Burmester, G. R., and Krause, A. (1997) Impaired sympathetic influence on the immune response in patients with rheumatoid arthritis due to lymphocyte subset-specific modulation of beta 2-adrenergic receptors. Br J Rheumatol 36, 1262–1269PubMedCrossRefGoogle Scholar
  4. BaerwaldC. G.Burmester, G. R., and Krause, A. (2000) Interactions of autonomic nervous, neuroendocrine, and immune systems in rheumatoid arthritis. Rheum Dis Clin North Am 26, 841–857PubMedCrossRefGoogle Scholar
  5. BalsaM. D.Gomez, N., and Unzeta, M. (1989) Characterization of monoamine oxidase activity present in human granulocytes and lymphocytes. Biochim Biophys Acta 992, 140–144PubMedCrossRefGoogle Scholar
  6. BergquistJ.Tarkowski, A., Ekman, R., and Ewing, A. (1994) Discovery of endogenous catecholamines in lymphocytes and evidence for catecholamine regulation of lymphocyte function via an autocrine loop. Proc Natl Acad Sci U S A 91, 12912–12916PubMedCrossRefGoogle Scholar
  7. BijlsmaJ. W.Cutolo, M., Masi, A. T., and Chikanza, I. C. (1999) The neuroendocrine immune basis of rheumatic diseases. Immunol Today 20, 298–301PubMedCrossRefGoogle Scholar
  8. Borovikova,L. V.Ivanova, S., Zhang, M., Yang, H., Botchkina, G. I., Watkins, L. R., Wang, H., Abumrad, N., Eaton, J. W., and Tracey, K. J. (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405, 458–462PubMedCrossRefGoogle Scholar
  9. BrownS. W.Meyers, R. T., Brennan, K. M., Rumble, J. M., Narasimhachari, N., Perozzi, E. F., Ryan, J. J., Stewart, J. K., and Fischer-Stenger, K. (2003) Catecholamines in a macrophage cell line. J Neuroimmunol 135, 47–55PubMedCrossRefGoogle Scholar
  10. Cosentino,M.Marino, F., Bombelli, R., Ferrari, M., Lecchini, S., and Frigo, G. (1999) Endogenous catecholamine synthesis, metabolism, storage and uptake in human neutrophils. Life Sci 64, 975–981PubMedCrossRefGoogle Scholar
  11. Cosentino, M.Bombelli, R., Ferrari, M., Marino, F., Rasini, E., Maestroni, G. J., Conti, A., Boveri, M., Lecchini, S., and Frigo, G. (2000) HPLC-ED measurement of endogenous catecholamines in human immune cells and hematopoietic cell lines. Life Sci 68, 283–295PubMedCrossRefGoogle Scholar
  12. Czermak,B. J.Lentsch, A. B., Bless, N. M., Schmal, H., Friedl, H. P., and Ward, P. A. (1999a) Synergistic enhancement of chemokine generation and lung injury by C5a or the membrane attack complex of complement. Am J Pathol 154, 1513–1524CrossRefGoogle Scholar
  13. Czermak,B. J.Sarma, V., Bless, N. M., Schmal, H., Friedl, H. P., and Ward, P. A. (1999b) In vitro and in vivo dependency of chemokine generation on C5a and TNF-alpha. J Immunol 162, 2321–2325Google Scholar
  14. Elenkov,I. J.Wilder, R. L., Chrousos,G. P., and Vizi, E. S.(2000) The sympathetic nerve – an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev 52, 595–638PubMedGoogle Scholar
  15. EnglerK. L.Rudd,M. L.Ryan,J.J.,Stewart,J.K.,Stewart,andJ.K., Fischer-Stenger,K.(2005) Autocrine actions of macrophage-derived catecholamines on interleukin-1 beta. J Neuroimmunol 160, 87–91PubMedCrossRefGoogle Scholar
  16. Flierl, M. A.Rittirsch, D., Nadeau, B. A., Chen, A. J., Sarma, J. V., Zetoune, F. S., McGuire, S. R., List, R. P., Day, D. E., Hoesel, L. M., Gao, H., Van Rooijen, N., Huber-Lang, M. S., Neubig, R. R., and Ward, P. A. (2007) Phagocyte-derived catecholamines enhance acute inflammatory injury. Nature 449, 721–725PubMedCrossRefGoogle Scholar
  17. Gallowitsch-Puerta, andM.Tracey, K. J. (2005) Immunologic role of the cholinergic anti-inflammatory pathway and the nicotinic acetylcholine alpha 7 receptor. Ann N Y Acad Sci 1062, 209–219PubMedCrossRefGoogle Scholar
  18. Hetland,G.Johnson, E.,andAasebo,U.(1986)Human alveolar macrophages synthesize the functional alternative pathway of complement and active C5 and C9 in vitro. Scand J Immunol 24, 603–608CrossRefGoogle Scholar
  19. Imrich, R.(2002) The role of neuroendocrine system in the pathogenesis of rheumatic diseases (minireview). Endocr Regul 36, 95–106PubMedGoogle Scholar
  20. Kradin,R.Rodberg, G., Zhao, L. H., and Leary, C. (2001) Epinephrine yields translocation of lymphocytes to the lung. Exp Mol Pathol 70, 1–6PubMedCrossRefGoogle Scholar
  21. Loeper, andM.Crouzon,O.(1904) L’action de l’adrenaline sur le sang. Arch Med Exp Anat Pathol 16, 83–108Google Scholar
  22. Lorton,D.Lubahn, C., and Bellinger, D. L. (2003) Potential use of drugs that target neural-immune pathways in the treatment of rheumatoid arthritis and other autoimmune diseases. Curr Drug Targets Inflamm Allergy 2, 1–30PubMedCrossRefGoogle Scholar
  23. Madden,K. S., Sanders, V. M., and Felten, D. L. (1995) Catecholamine influences and sympathetic neural modulation of immune responsiveness. Annu Rev Pharmacol Toxicol 35, 417–448PubMedCrossRefGoogle Scholar
  24. Marino, F., Cosentino, M., Bombelli, R., Ferrari, M., Lecchini, S., and Frigo, G. (1999) Endogenous catecholamine synthesis, metabolism storage, and uptake in human peripheral blood mononuclear cells. Exp Hematol 27, 489–495PubMedCrossRefGoogle Scholar
  25. Miller, L. E., Justen, H. P., Scholmerich, J., and Straub, R. H. (2000) The loss of sympathetic nerve fibers in the synovial tissue of patients with rheumatoid arthritis is accompanied by increased norepinephrine release from synovial macrophages. FASEB J 14, 2097–2107PubMedCrossRefGoogle Scholar
  26. Molinoff, P. B. and Axelrod, J. (1971) Biochemistry of catecholamines. Annu Rev Biochem 40, 465–500PubMedCrossRefGoogle Scholar
  27. Morken, J. J., Warren, K. U., Xie, Y., Rodriguez, J. L., and Lyte, M. (2002) Epinephrine as a mediator of pulmonary neutrophil sequestration. Shock 18, 46–50PubMedCrossRefGoogle Scholar
  28. Mulligan, M. S., Schmid, E., Beck-Schimmer, B., Till, G. O., Friedl,., H. PBrauer,., R. BHugli, T. E., Miyasaka, MWarner, R.L., Johnson, K. J., and Ward, P. A. (1996) Requirement and role of C5a in acute lung inflammatory injury in rats. J Clin Invest, 98503–512PubMedCrossRefGoogle Scholar
  29. Ottaway, C. A. and Husband, A. J. (1994) The influence of neuroendocrine pathways on lymphocyte migration. Immunol Today 15, 511–517PubMedCrossRefGoogle Scholar
  30. Pierce, K. L., Premont, R. T., and Lefkowitz, R. J. (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3, 639–650PubMedCrossRefGoogle Scholar
  31. Rothman, B. L., Merrow, M., Despins, A., Kennedy, T., and Kreutzer, D. L. (1989) Effect of lipopolysaccharide on C3 and C5 production by human lung cells. J Immunol 143, 196–202PubMedGoogle Scholar
  32. Sanders, V. M. and Kohm, A. P. (2002) Sympathetic nervous system interaction with the immune system. Int Rev Neurobiol 52, 17–41PubMedCrossRefGoogle Scholar
  33. Sanders, V. M. and Straub, R. H. (2002) Norepinephrine, the beta-adrenergic receptor, and immunity. Brain Behav Immun 16, 290–332PubMedCrossRefGoogle Scholar
  34. Shore,P. A.(1972) Transport and storage of biogenic amines. Annu Rev Pharmacol 12, 209–226PubMedCrossRefGoogle Scholar
  35. Spengler, R. N., Allen, R. M., Remick, D. G., Strieter, R. M., and Kunkel, S. L. (1990) Stimulation of alpha-adrenergic receptor augments the production of macrophage-derived tumor necrosis factor. J Immunol 145, 1430–1434PubMedGoogle Scholar
  36. Spengler,R. N., Chensue,S. WGiacherio,D. ABlenk, andNKunkel,S. L.(1994)Endogenous norepinephrine regulates tumor necrosis factor-alpha production from macrophages in vitro. J Immunol152, 3024–3031PubMedGoogle Scholar
  37. Starkie,R. L., Rolland, J., andFebbraio,M. A.(2001)Effect of adrenergic blockade on lymphocyte cytokine production at rest and during exercise. Am J Physiol Cell Physiol 281, C1233–C1240PubMedGoogle Scholar
  38. Sternberg, E. M. (2006) Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nat Rev Immunol 6, 318–328PubMedCrossRefGoogle Scholar
  39. Straub, R. H., Schaible, H. G., Wahle, M., Schedlowski, M., Neeck, G., and Buttgereit, F. (2002) [Neuroendocrine-immunologic mechanisms in rheumatic diseases – a congress report]. Z Rheumatol 61, 195–200PubMedCrossRefGoogle Scholar
  40. Strunk, R. C., Eidlen, D. M., and Mason, R. J. (1988) Pulmonary alveolar type II epithelial cells synthesize and secrete proteins of the classical and alternative complement pathways. J Clin Invest 81, 1419–1426PubMedCrossRefGoogle Scholar
  41. Tracey,K. J.(2002) The inflammatory reflex. Nature 420, 853–859PubMedCrossRefGoogle Scholar
  42. Wahle, M., Krause, A., Pierer, M., Hantzschel, H., and Baerwald, C. G. (2002) Immunopathogenesis of rheumatic diseases in the context of neuroendocrine interactions. Ann N Y Acad Sci 966, 355–364PubMedCrossRefGoogle Scholar
  43. Wang, H., Yu, M., Ochani, M., Amella, C. A., Tanovic, M., Susarla, S., Li, J. H., Wang, H., Yang, H., Ulloa, L., Al-Abed, Y., Czura, C.J., and Tracey, K. J. (2003) Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421, 384–388PubMedCrossRefGoogle Scholar
  44. Ward, P. A. (1996) Rous-Whipple Award Lecture. Role of complement in lung inflammatory injury. Am J Pathol 149, 1081–1086PubMedGoogle Scholar
  45. Wilder, R.L. (2002) Neuroimmunoendocrinology of the rheumatic diseases: past, present, and future. Ann N Y Acad Sci 966, 13–19PubMedCrossRefGoogle Scholar
  46. Zhu, B. T. (2002) Catechol-O.-Methyltransferase (COMT)-mediated methylation metabolism of endogenous bioactive catechols and modulation by endobiotics and xenobiotics importance in pathophysiology and pathogenesis Curr Drug Metab 3, 321–349PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Michael A. Flierl
    • 1
  • Daniel Rittirsch
    • 1
  • J. Vidya Sarma
    • 1
  • Markus Huber-Lang
    • 1
  • Peter A. Ward
    • 2
  1. 1.Department of PathologyUniversity of Michigan Medical SchoolAnn ArborUSA
  2. 2.Department of Traumatology Hand-, Plastic-, and Reconstructive SurgeryUniversity Hospital of UlmUlmGermany

Personalised recommendations