A Pivotal Role of Activation of Complement Cascade (CC) in Mobilization of Hematopoietic Stem/Progenitor Cells (HSPC)

  • Mariusz Z. Ratajczak
  • Marcin Wysoczynski
  • Ryan Reca
  • Wu Wan
  • Ewa K. Zuba-Surma
  • Magda Kucia
  • Janina Ratajczak
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 632)


Complement cascade (CC) and innate immunity emerge as important and underappreciated modulators of trafficking of hematopoietic stem/progenitor cells (HSPC). Accordingly, we reported that (i) C becomes activated in bone marrow (BM) during G-CSF-induced mobilization by the classical immunoglobulin (Ig)-dependent pathway, and that (ii) C3 cleavage fragments increase the responsiveness of HSPC to an stromal derived factor-1 (SDF-1) gradient. Furthermore, our recent data in immunodeficient mice support the concept that the CC is a major factor modulating egress of HSPC from bone marrow (BM) into peripheral blood (PB). Thus, in light of these findings, mobilization of HSPC could be envisioned as part of an immune response that requires CC activation by the classical Ig-dependent and/or Ig-independent pathways. Hence modulation of CC activation could allow for the development of more efficient mobilization strategies in patients who are poor mobilizers of HSPC.


SCID Mouse Complement Cascade Bone Marrow Microenvironment Cleavage Fragment Poor Mobilizer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by an NIH grant R01 DK074720-01 to MZR.


  1. Allendorf, D. J., Baran, J. T., Dyke, C. W., Ratajczak, M. Z. and Ross, G. D. (2003). Unified Science & Technology for Reducing Biological Threats & Countering Terrorism. University of New Mexico: Albuquerque, NM, USAGoogle Scholar
  2. Broxmeyer, H. E., Orschell, C. M., Clapp, D. W., Hangoc, G., Cooper, S., Plett, P. A., Liles, W. C., Li, X., Graham-Evans, B., Campbell, T. B., Calandra, G., Bridger, G., Dale, D. C. and Srour, E. F. (2005). Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 201, 1307–1318PubMedCrossRefGoogle Scholar
  3. Canales, M. A., Arrieta, R., Gomez-Rioja, R., Diez, J., Jimenez-Yuste, V. and Hernandez-Navarro, F. (2002). Induction of a hypercoagulability state and endothelial cell activation by granulocyte colony-stimulating factor in peripheral blood stem cell donors. J Hematother Stem Cell Res 11, 675–681PubMedCrossRefGoogle Scholar
  4. Fukuda, S., Bian, H., King, A. G. and Pelus, L. M. (2007). The chemokine GRObeta mobilizes early hematopoietic stem cells characterized by enhanced homing and engraftment. Blood 110, 860–869PubMedCrossRefGoogle Scholar
  5. Huber-Lang, M., Sarma, J. V., Zetoune, F. S., Rittirsch, D., Neff, T. A., McGuire, S. R., Lambris, J. D., Warner, R. L., Flierl, M. A., Hoesel, L. M., Gebhard, F., Younger, J. G., Drouin, S. M., Wetsel, R. A. and Ward, P. A. (2006). Generation of C5a in the absence of C3: a new complement activation pathway. Nat Med 12, 682–687PubMedCrossRefGoogle Scholar
  6. Kucia, M., Reca, R., Miekus, K., Wanzeck, J., Wojakowski, W., Janowska-Wieczorek, A., Ratajczak, J. and Ratajczak, M. Z. (2005). Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1-CXCR4 axis. Stem Cells 23, 879–894PubMedCrossRefGoogle Scholar
  7. Lapidot, T., Dar, A. and Kollet, O. (2005). How do stem cells find their way home? Blood 106, 1901–1910PubMedCrossRefGoogle Scholar
  8. Levesque, J. P., Hendy, J., Takamatsu, Y., Williams, B., Winkler, I. G. and Simmons, P. J. (2002). Mobilization by either cyclophosphamide or granulocyte colony-stimulating factor transforms the bone marrow into a highly proteolytic environment. Exp Hematol 30, 440–449PubMedCrossRefGoogle Scholar
  9. Levesque, J. P., Hendy, J., Takamatsu, Y., Simmons, P. J. and Bendall, L. J. (2003). Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest 111, 187–196PubMedGoogle Scholar
  10. Papayannopoulou, T. (2004). Current mechanistic scenarios in hematopoietic stem/progenitor cell mobilization. Blood 103, 1580–1585PubMedCrossRefGoogle Scholar
  11. Quesenberry, P. J. and Becker, P. S. (1998). Stem cell homing: rolling, crawling, and nesting. Proc Natl Acad Sci U S A95, 15155–15157PubMedCrossRefGoogle Scholar
  12. Ratajczak, J., Reca, R., Kucia, M., Majka, M., Allendorf, D. J., Baran, J. T., Janowska-Wieczorek, A., Wetsel, R. A., Ross, G. D. and Ratajczak, M. Z. (2004a). Mobilization studies in mice deficient in either C3 or C3a receptor (C3aR) reveal a novel role for complement in retention of hematopoietic stem/progenitor cells in bone marrow. Blood 103, 2071–2078CrossRefGoogle Scholar
  13. Ratajczak, M. Z., Kucia, M., Reca, R., Majka, M., Janowska-Wieczorek, A. and Ratajczak, J. (2004b). Stem cell plasticity revisited: CXCR4-positive cells expressing mRNA for early muscle, liver and neural cells ‘hide out’ in the bone marrow. Leukemia 18, 29–40CrossRefGoogle Scholar
  14. Ratajczak, M. Z., Reca, R., Wysoczynski, M., Kucia, M., Baran, J. T., Allendorf, D. J., Ratajczak, J. and Ross, G. D. (2004c). Transplantation studies in C3-deficient animals reveal a novel role of the third complement component (C3) in engraftment of bone marrow cells. Leukemia 18, 1482–1490CrossRefGoogle Scholar
  15. Ratajczak, M. Z., Reca, R., Wysoczynski, M., Yan, J. and Ratajczak, J. (2006). Modulation of the SDF-1-CXCR4 axis by the third complement component (C3) – implications for trafficking of CXCR4+ stem cells. Exp Hematol 34, 986–995PubMedCrossRefGoogle Scholar
  16. Ratajczak, M. Z., Machalinski, B., Wojakowski, W., Ratajczak, J. and Kucia M. (2007). A hypothesis for an embryonic origin of pluripotent Oct-4(+) stem cells in adult bone marrow and other tissues. Leukemia 21, 860–867PubMedGoogle Scholar
  17. Reca, R., Mastellos, D., Majka, M., Marquez, L., Ratajczak, J., Franchini, S., Glodek, A., Honczarenko, M., Spruce, L. A., Janowska-Wieczorek, A., Lambris, J. D. and Ratajczak, M. Z. (2003). Functional receptor for C3a anaphylatoxin is expressed by normal hematopoietic stem/progenitor cells, and C3a enhances their homing-related responses to SDF-1. Blood 101, 3784–3793PubMedCrossRefGoogle Scholar
  18. Reca, R., Wysoczynski, M., Yan, J., Lambris, J. D. and Ratajczak, M. Z. (2006). The role of third complement component (C3) in homing of hematopoietic stem/progenitor cells into bone marrow. Adv Exp Med Biol 586, 35–51PubMedCrossRefGoogle Scholar
  19. Reca , R., Cramer, D., Yan, J., Laughlin, M. J., Janowska-Wieczorek, A., Ratajczak, J. and Ratajczak, M. Z. (2007). A novel role of complement in mobilization; Immunodeficient mice are poor G-Csf mobilizers because they lack complement-activating immunoglobulins. Stem Cells Aug 23 [Epub ahead of print]Google Scholar
  20. Semerad, C. L., Christopher, M. J., Liu, F., Short, B., Simmons, P. J., Winkler, I.,Levesque, J. P., Chappel, J., Ross, F. P. and Link, D. C. (2005). G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood 106, 3020–3027PubMedCrossRefGoogle Scholar
  21. Sekhsaria, S., Fleisher, T. A., Vowells, S., Brown, M., Miller, J., Gordon, I., Blaese, R. M., Dunbar, C. E., Leitman, S. and Malech, H. L. (1996). Granulocyte colony-stimulating factor recruitment of CD34+ progenitors to peripheral blood: impaired mobilization in chronic granulomatous disease and adenosine deaminase – deficient severe combined immunodeficiency disease patients. Blood 88, 1104–1112PubMedGoogle Scholar
  22. Velders, G. A., van Os, R., Hagoort, H., Verzaal, P., Guiot, H. F., Lindley, I. J., Willemze, R., Opdenakker, G. and Fibbe, W. E. (2004). Reduced stem cell mobilization in mice receiving antibiotic modulation of the intestinal flora: involvement of endotoxins as cofactors in mobilization. Blood 103, 340–346PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Mariusz Z. Ratajczak
    • 1
  • Marcin Wysoczynski
  • Ryan Reca
  • Wu Wan
  • Ewa K. Zuba-Surma
  • Magda Kucia
  • Janina Ratajczak
  1. 1.James Graham Brown Cancer CenterStem Cell Institute, University of LouisvilleLouisvilleUSA

Personalised recommendations