Advertisement

Food Intake Regulation by Central Complement System

  • Kousaku Ohinata
  • Masaaki Yoshikawa
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 632)

Abstract

Abstract. Complement C3a and C5a are released from C3 and C5, respectively, on activation of the complement system and play an important role in immune response. C3a, C5a and their receptors have been revealed to be present in the central nervous system (CNS) as well as the peripheral immune system. We found that centrally administered C3a suppresses food intake, while C5a stimulates food intake, and their food intake regulation may be associated with the prostaglandin system. We propose that complement C3a and C5a are regulators not only of the immune system but also of the CNS.

Keywords

Decrease Food Intake Food Intake Regulation Food Intake Suppression Stimulate Food Intake Suppress Food Intake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

This work was supported in part by Grants-in-Aid for Scientific Research from the Japanese Society for the Promotion of Science to MY and KO, and a PROBRAIN grant from the Bio-oriented Technology Research Advancement Institution to MY.

References

  1. Ames RS, Li Y, Sarau HM, Nuthulaganti P, Foley JJ, Ellis C, Zeng Z, Su K, Jurewicz AJ, Hertzberg RP, Bergsma DJ, Kumar C. (1996) Molecular cloning and characterization of the human anaphylatoxin C3a receptor. J Biol Chem. 271:(34)20231–20234PubMedCrossRefGoogle Scholar
  2. Asakawa A, Inui A, Kaga T, Yuzuriha H, Nagata T, Ueno N, Makino S, Fujimiya M, Niijima A, Fujino, MAKasuga. M(2001) Ghrelin is an appetite-stimulatory signal from stomach with structural resemblance to motilin. Gastroenterology. 120:(2)337–345PubMedCrossRefGoogle Scholar
  3. Beuckmann CT, Lazarus M, Gerashchenko D, Mizoguchi A, Nomura S, Mohri I, Uesugi A, Kaneko T, Mizuno N, Hayaishi O, Urade Y. (2000) Cellular localization of lipocalin-type prostaglandin D synthase (beta-trace) in the central nervous system of the adult rat. J Comp Neurol. 428:(1)62–78PubMedCrossRefGoogle Scholar
  4. Blomqvist AG, Herzog H. (1997) Y-receptor subtypes-how many more? Trends Neurosci. 20:294–298PubMedCrossRefGoogle Scholar
  5. Boulay F, Mery L, Tardif M, Brouchon L, Vignais P. (1991) Expression cloning of a receptor for C5a anaphylatoxin on differentiated HL-60 cells. Biochemistry. 30:(12)2993–2999PubMedCrossRefGoogle Scholar
  6. Chiba H, Tani F, Yoshikawa M. (1989) Opioid antagonist peptides derived from kappa-casein. J Dairy Res. 56:(3)363–366PubMedCrossRefGoogle Scholar
  7. Cianflone K, Xia Z, Chen LY. (2003) Critical review of acylation-stimulating protein physiology in humans and rodents. Biochim Biophys Acta. 1609:(2)127–143PubMedCrossRefGoogle Scholar
  8. Davoust N, Jones J, Stahel PF, Ames RS, Barnum SR. (1999) Receptor for the C3a anaphylatoxin is expressed by neurons and glial cells. Glia.26:(3)201–211PubMedCrossRefGoogle Scholar
  9. Eguchi N, Minami T, Shirafuji N, Kanaoka Y, Tanaka T, Nagata A, Yoshida N, Urade Y, Ito S, Hayaishi O. (1999) Lack of tactile pain (allodynia) in lipocalin-type prostaglandin D synthase-deficient mice. Proc Natl Acad Sci U S A. 96:(2)726–730PubMedCrossRefGoogle Scholar
  10. Gasque P, Singhrao SK, Neal JW, Gotze O, Morgan BP. (1997) Expression of the receptor for complement C5a (CD88) is up-regulated on reactive astrocytes, microglia, and endothelial cells in the inflamed human central nervous system. Am J Pathol. 150:(1)31–41PubMedGoogle Scholar
  11. Gasque P, Singhrao SK, Neal JW, Wang P, Sayah S, Fontaine M, Morgan BP. (1998) The receptor for complement anaphylatoxin C3a is expressed by myeloid cells and nonmyeloid cells in inflamed human central nervous system: analysis in multiple sclerosis and bacterial meningitis. J Immunol. 160:(7)3543–3554PubMedGoogle Scholar
  12. Gasque P, Dean YD, McGreal EP, VanBeek J, Morgan BP. (2000) Complement components of the innate immune system in health and disease in the CNS. Immunopharmacology. 49:(1–2)171–186PubMedCrossRefGoogle Scholar
  13. Gavrilyuk V,Kalinin S, Hilbush BS, Middlecamp A, McGuire S, Pelligrino D, Weinberg G, Feinstein DL. (2005) Identification of complement 5a-like receptor (C5L2) from astrocytes: characterization of anti-inflammatory properties. J Neurochem. 92:(5)1140–1149PubMedCrossRefGoogle Scholar
  14. Gerard NP,Gerard C. (1991) The chemotactic receptor for human C5a anaphylatoxin. Nature. 349:(6310)614–617PubMedCrossRefGoogle Scholar
  15. Hayaishi O. (1991) Molecular mechanisms of sleep-wake regulation: roles of prostaglandins D2 and E2. FASEB J. 5:(11)2575–2581PubMedGoogle Scholar
  16. Hayaishi O. (2002) Molecular genetic studies on sleep-wake regulation, with special emphasis on the prostaglandin D2 system. J Appl Physiol. 92:(2)863–868PubMedGoogle Scholar
  17. Hirata M, Kakizuka A, Aizawa M, Ushikubi F, Narumiya S. (1994) Molecular characterization of a mouse prostaglandin D receptor and functional expression of the cloned gene. Proc Natl Acad Sci U S A.91:(23)11192–11196PubMedCrossRefGoogle Scholar
  18. Hopkins SJ, Rothwell NJ. (1995). Cytokines and the nervous system. I: expression and recognition Trends Neurosci. 18:(2)83–88PubMedCrossRefGoogle Scholar
  19. Horton EW. (1964). Actions of prostaglandins E1, E2 and E3 on the central nervous system Br J Pharmacol. 22:189–192Google Scholar
  20. Huang ZL, Sato Y, Mochizuki T, Okada T, Qu WM, Yamatodani A, Urade Y, Hayaishi O. (2003) Prostaglandin E2. activates the histaminergic system via the EP4 receptor to induce wakefulness in rats J Neurosci. 23:(14)5975–5983PubMedGoogle Scholar
  21. Inui A. (1999a) Cancer anorexia-cachexia syndrome: are neuropeptides the key? Cancer Res. 59:(18)4493–4501Google Scholar
  22. Inui A. (1999b) Feeding and body-weight regulation by hypothalamic neuropeptides – mediation of the actions of leptin. Trends Neurosci. 22:(2)62–67CrossRefGoogle Scholar
  23. Inui A. (1999c) Neuropeptide Y feeding receptors-are multiple subtypes involved? Trends Pharmacol Sci. 20:43–46CrossRefGoogle Scholar
  24. Inui A. (2001) Cytokines and sickness behavior: implications from knockout animal models. Trends Immunol. 22:(9)469–473PubMedCrossRefGoogle Scholar
  25. Jinsmaa Y, Takenaka Y, Yoshikawa M. (2001) Designing of an orally active complement C3a agonist peptide with anti-analgesic and anti-amnesic activity. Peptides. 22:(1)25–32PubMedCrossRefGoogle Scholar
  26. Kildsgaard J, Hollmann TJ, Matthews KW, Bian K, Murad F, Wetsel RA. (2000) Cutting edge: targeted disruption of the C3a receptor gene demonstrates a novel protective anti-inflammatory role for C3a in endotoxin-shock. J Immunol. 165:(10)5406–5409PubMedGoogle Scholar
  27. Langhans W. (2007) Signals generating anorexia during acute illness. Proc Nutr Soc. 66:(3)321–330PubMedCrossRefGoogle Scholar
  28. Law SK, Reid KB. (1995) In: Male, D Richwood (Eds.), D Complement, Oxford University Press, New YorkGoogle Scholar
  29. Levine AS, Morley JE. (1981) The effect of prostaglandins (PGE2 and PGF2 α) on food intake in rats. Pharmacol Biochem Behav. 15:(5)735–738PubMedCrossRefGoogle Scholar
  30. Marczak ED, Ohinata K, Lipkowski AW, Yoshikawa M. (2006) Arg-Ile-Tyr (RIY) derived from rapeseed protein decreases food intake and gastric emptying after oral administration in mice. Peptides. 27:(9)2065–2068PubMedCrossRefGoogle Scholar
  31. Matsuoka Y,Furuyashiki T, Bito H, Ushikubi F, Tanaka Y, Kobayashi T, Muro S, Satoh N, Kayahara T, Higashi M, Mizoguchi A, Shichi H, Fukuda Y, Nakao K, Narumiya S. (2003) Impaired adrenocorticotropic hormone response to bacterial endotoxin in mice deficient in prostaglandin E receptor EP1 and EP3 subtypes. Proc Natl Acad Sci U S A. 100:(7)4132–4137PubMedCrossRefGoogle Scholar
  32. Mizoguchi A,Eguchi N, Kimura K, Kiyohara Y, Qu WM, Huang ZL, Mochizuki T, Lazarus M, Kobayashi T, Kaneko T, Narumiya S, Urade Y, Hayaishi O. (2001) Dominant localization of prostaglandin D receptors on arachnoid trabecular cells in mouse basal forebrain and their involvement in the regulation of non-rapid eye movement sleep. Proc Natl Acad Sci U S A. 98:(20)11674–11679PubMedCrossRefGoogle Scholar
  33. Monk PN, Scola AM, Madala P, Fairlie DP. (2007) Function, structure and therapeutic potential of complement C5a receptors. Br J Pharmacol. 152:(4)429–448PubMedCrossRefGoogle Scholar
  34. Moran TH, Kinzig KP. (2004) Gastrointestinal satiety signals II. Cholecystokinin. Am J Physiol Gastrointest Liver Physiol. 286:(2)G183–G188PubMedCrossRefGoogle Scholar
  35. Nadeau S, Rivest S. (2001) The complement system is an integrated part of the natural innate immune response in the brain. FASEB J. 15:(8)1410–1412PubMedGoogle Scholar
  36. Narumiya S, FitzGerald GA. (2001) Genetic and pharmacological analysis of prostanoid receptor function. J Clin Invest. 108:(1)25–30PubMedGoogle Scholar
  37. Narumiya S, Ogorochi T, Nakao K, Hayaishi O. (1982) Prostaglandin D2 in rat brain, spinal cord and pituitary: basal level and regional distribution. Life Sci. 31:(19)2093–2103PubMedCrossRefGoogle Scholar
  38. Narumiya S,Sugimoto Y, Ushikubi F. (1999) Prostanoid receptors: structures, properties, and functions. Physiol Rev. 79:(4)1193–1226PubMedGoogle Scholar
  39. Nataf S, Stahel PF, Davoust N, Barnum SR. (1999) Complement anaphylatoxin receptors on neurons: new tricks for old receptors? Trends Neurosci. 22:(9)397–402PubMedCrossRefGoogle Scholar
  40. O’Barr SA, Caguioa J, Gruol D, Perkins G, Ember JA, Hugli T, Cooper NR. (2001) Neuronal expression of a functional receptor for the C5a complement activation fragment. J Immunol. 166:(6)4154–4162PubMedGoogle Scholar
  41. Ohinata K,Inui A, Asakawa A, Wada K, Wada E, Yoshikawa M. (2002) Albutensin A and complement C3a decrease food intake in mice. Peptides. 23:(1)127–133PubMedCrossRefGoogle Scholar
  42. Ohinata K, Suetsugu K, Fujiwara Y, Yoshikawa M. (2006) Activation of prostaglandin E receptor EP4. subtype suppresses food intake in mice Prostaglandins Other Lipid Mediat. 81:(1–2)31–36PubMedCrossRefGoogle Scholar
  43. Ohinata K, Suetsugu K, Fujiwara Y, Yoshikawa M. (2007) Suppression of food intake by a complement C3a agonist [Trp5. ]-oryzatensin(5–9) Peptides. 28:(3)602–606PubMedCrossRefGoogle Scholar
  44. Ohinata K, Takagi K, Biyajima K, Fujiwara Y, Fukumoto S, Eguchi N, Urade Y, Asakawa A, Fujimiya M, Inui A, Yoshikawa M. (2008) Central prostaglandin D2 stimulates food intake via the neuropeptide Y system in mice. FEBS Lett. 582(5):679–684PubMedCrossRefGoogle Scholar
  45. Ohki-Hamazaki H, Sakai Y, Kamata K, Ogura H, Okuyama S, Watase K, Yamada K, Wada K. (1999) Functional properties of two bombesin-like peptide receptors revealed by the analysis of mice lacking neuromedin B receptor. J Neurosci. 19:(3)948–954PubMedGoogle Scholar
  46. Ohno M, Hirata T, Enomoto M, Araki T, Ishimaru H, Takahashi TA. (2000) A putative chemoattractant receptor, C5L2, is expressed in granulocyte and immature dendritic cells, but not in mature dendritic cells. Mol Immunol. 37:(8)407–412PubMedCrossRefGoogle Scholar
  47. Oida H, Hirata M, Sugimoto Y, Ushikubi F, Ohishi H, Mizuno N, Ichikawa A, Narumiya S. (1997) Expression of messenger RNA for the prostaglandin D receptor in the leptomeninges of the mouse brain. FEBS Lett. 417:(1)53–56PubMedCrossRefGoogle Scholar
  48. Ookuma K, Sakata T, Fukagawa K, Yoshimatsu H, Kurokawa M, Machidori H, Fujimoto K. (1993) Neuronal histamine in the hypothalamus suppresses food intake in rats. Brain Res. 628:(1–2)235–242PubMedCrossRefGoogle Scholar
  49. Puschel GP, Nolte A, Schieferdecker HL, Rothermel E, Gotze O, Jungermann K. (1996) Inhibition of anaphylatoxin C3a- and C5a- but not nerve stimulation- or Noradrenaline-dependent increase in glucose output and reduction of flow in Kupffer cell-depleted perfused rat livers. Hepatology. 24:(3)685–690PubMedCrossRefGoogle Scholar
  50. Sakata T. (1995) Histamine receptor and its regulation of energy metabolism. Obes Res. 4:3 Suppl 541S–548SGoogle Scholar
  51. Saleh J, Blevins JE, Havel PJ, Barrett JA, Gietzen DW, Cianflone K. (2001) Acylation stimulating protein (ASP) acute effects on postprandial lipemia and food intake in rodents. Int J Obes Relat Metab Disord. 25(5):705-713PubMedCrossRefGoogle Scholar
  52. Schupf N, Williams CA. (1987). Psychopharmacological activity of immune complexes in rat brain is complement dependent J Neuroimmunol. 13:(3)293–303PubMedCrossRefGoogle Scholar
  53. Schupf N, Williams CA, Hugli TE, Cox J. (1983) Psychopharmacological activity of anaphylatoxin C3a in rat hypothalamus. J Neuroimmunol. 5:(3)305–316PubMedCrossRefGoogle Scholar
  54. Scola AM, Higginbottom A, Partridge LJ, Reid RC, Woodruff T, Taylor SM, Fairlie DP, Monk PN. (2007) The role of the N-terminal domain of the complement fragment receptor C5L2 in ligand binding. J Biol Chem. 282:(6)3664–3671PubMedCrossRefGoogle Scholar
  55. Sniderman AD, Cianflone KM, Eckel RH. (1991) Levels of acylation stimulating protein in obese women before and after moderate weight loss. Int J Obes. 15:(5)333–336PubMedGoogle Scholar
  56. Strader AD, Woods SC. (2005) Gastrointestinal hormones and food intake. Gastroenterology. 128:(1)175–191PubMedCrossRefGoogle Scholar
  57. Takahashi M, Moriguchi S, Ikeno M, Kono S, Ohata K, Usui H, Kurahashi K, Sasaki R, Yoshikawa M. (1996) Studies on the ileum-contracting mechanisms and identification as a complement C3a receptor agonist of oryzatensin, a bioactive peptide derived from rice albumin. Peptides. 17:(1)5–12PubMedCrossRefGoogle Scholar
  58. Takahashi M, Moriguchi S, Suganuma H, Shiota A, Tani F, Usui H, Kurahashi K, Sasaki R, Yoshikawa M. (1997) Identification of casoxin C, an ileum-contracting peptide derived from bovine kappa-casein, as an agonist for C3a receptors. Peptides. 18:(3)329–336PubMedCrossRefGoogle Scholar
  59. Takahashi M, Moriguti S, Minami T, Suganuma H, Shiota A, Takenaka Y, Tani F, Sasaki R, Yoshikawa M. (1998) Albutensin A, an ileum-contracting peptide derived from serum albumin, acts through both receptors for complement C3a, and C5a. Peptide Science. 5:29–35Google Scholar
  60. Tornetta MA, Foley JJ, Sarau HM, Ames RS. (1997) The mouse anaphylatoxin C3a receptor: molecular cloning, genomic organization, and functional expression. J Immunol. 158:(11)5277–5282PubMedGoogle Scholar
  61. Urade Y, Hayaishi O. (1999) Prostaglandin D2 and sleep regulation. Biochim Biophys Acta. 1436:(3)606–615PubMedGoogle Scholar
  62. Urade Y, Kitahama K, Ohishi H, Kaneko T, Mizuno N, Hayaishi O. (1993) Dominant expression of mRNA for prostaglandin D synthase in leptomeninges, choroid plexus, and oligodendrocytes of the adult rat brain. Proc Natl Acad Sci U S A. 90:(19)9070–9074PubMedCrossRefGoogle Scholar
  63. Ushikubi F, Segi E, Sugimoto Y, Murata T, Matsuoka T, Kobayashi T, Hizaki H, Tuboi K, Katsuyama M, Ichikawa A, Tanaka T, Yoshida N, Narumiya S. (1998) Impaired febrile response in mice lacking the prostaglandin E receptor subtype EP3. Nature. 395:(6699)281–284PubMedCrossRefGoogle Scholar
  64. van Beek J, Elward K, Gasque P. (2003) Activation of complement in the central nervous system: roles in neurodegeneration and neuroprotection. Ann N Y Acad Sci. 992:56–71PubMedCrossRefGoogle Scholar
  65. Van Miert AS, Van Duin CT, Woutersen-Van Nijnanten FM. (1983) Effect of intracerebroventricular injection of PGE2 and 5HT on body temperature, heart rate and rumen motility of conscious goats. Eur J Pharmacol. 92:(1–2)143–146PubMedCrossRefGoogle Scholar
  66. Wada H, Inagaki N, Itowi N, Yamatodani, A. (1991) Histaminergic neuron system in the brain: distribution and possible functions. Brain Res Bull. 27:(3–4)367–370PubMedCrossRefGoogle Scholar
  67. Williams CA, Schupf N, Hugli TE. (1985) Anaphylatoxin C5a modulation of an alpha-adrenergic receptor system in the rat hypothalamus. J Neuroimmunol. 9:(1–2)29–40PubMedCrossRefGoogle Scholar
  68. Yatomi A, Iguchi A, Yanagisawa S, Matsunaga H, Niki I, Sakamoto N. (1987) Prostaglandins affect the central nervous system to produce hyperglycemia in rats. Endocrinology. 121:(1)36–41PubMedCrossRefGoogle Scholar
  69. Zhang J, Rivest S. (1999) Distribution, regulation and colocalization of the genes encoding the EP2- and EP4-PGE2receptors in the rat brain and neuronal responses to systemic inflammation. Eur J Neurosci. 11:(8)2651–2668PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Kousaku Ohinata
    • 1
  • Masaaki Yoshikawa
  1. 1.Division of Food science and BiotechnologyGraduate School of Agriculture Kyoto UniversityGokasho UjiJapan

Personalised recommendations