Targeting Classical Complement Pathway to Treat Complement Mediated Autoimmune Diseases

  • Erdem Tüzün
  • Jing Li
  • Shamsher S. Saini
  • Huan Yang
  • Premkumar Christadoss
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 632)


Mice deficient for classical complement pathway (CCP) factor C4 are resistant to antibody and complement mediated experimental autoimmune myasthenia gravis (EAMG). Anti-C1q antibody administration before or following acetylcholine receptor immunization suppresses EAMG development by reducing lymph node cell IL-6 production and neuromuscular junction IgG, C3 and C5b-C9 deposition. This effect is achieved by treating mice with 10 µg of anti-C1q antibody, twice weekly for 4 weeks. Treatment with a higher amount of anti-C1q antibody gives rise to increased serum anti-acetylcholine receptor antibody, immune complex and C3 levels, facilitates kidney C3 and IgG deposits and thus reduces the treatment efficacy. C4 KO and anti-C1q antibody treated mice display normal immune system functions and intact antibody production capacity. Furthermore, CCP inhibition preserves alternative complement pathway activation, which is required for host defense against microorganisms. Therefore, CCP inhibition might constitute a specific treatment approach for not only myasthenia gravis but also other complement mediated autoimmune diseases.


Membrane Attack Complex Hereditary Angioedema Classical Complement Pathway Cobra Venom Factor Major Pathogenic Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Biesecker, G. and Gomez, C.M. (1989) Inhibition of acute passive transfer experimental autoimmune myasthenia gravis with Fab antibody to complement C6. J. Immunol. 142, 2654–2659PubMedGoogle Scholar
  2. Carroll, M. (1999) Negative selection of self-reactive B lymphocytes involves complement. Curr. Top. Microbiol. Immunol. 246, 21–27PubMedCrossRefGoogle Scholar
  3. Christadoss, P. (1988) C5 gene influences the development of murine myasthenia gravis. J. Immunol.140, 2589–2592PubMedGoogle Scholar
  4. Christadoss, P., Kaul, R., Shenoy, M. and Goluszko, E. (1995) Establishment of a mouse model of myasthenia gravis which mimics human myasthenia gravis pathogenesis for immune intervention. Adv. Exp. Med. Biol. 383, 195–199PubMedCrossRefGoogle Scholar
  5. De Serres, J., Groner, A. and Lindner, J. (2003) Safety and efficacy of pasteurized C1 inhibitor concentrate (Berinert P) in hereditary angioedema: a review. Transfus. Apher. Sci. 29, 247–254PubMedCrossRefGoogle Scholar
  6. De Simoni, M.G., Storini, C., Barba, M., Catapano, L., Arabia, A.M., Rossi, E. and Bergamaschini L. (2003) Neuroprotection by complement (C1) inhibitor in mouse transient brain ischemia. J. Cereb. Blood Flow. Metab. 23, 232–239PubMedCrossRefGoogle Scholar
  7. Deng, C., Goluszko, E., Tuzun, E., Yang, H. and Christadoss, P. (2002) Resistance to experimental autoimmune myasthenia gravis in IL-6-deficient mice is associated with reduced germinal center formation and C3 production. J. Immunol. 169, 1077–1083PubMedGoogle Scholar
  8. Dickneite, G. (1993) Influence of C1-inhibitor on inflammation, edema and shock. Behring Inst. Mitt. 93, 299–305PubMedGoogle Scholar
  9. Engel, A.G. and Fumagalli, G. (1982) Mechanisms of acetylcholine receptor loss from the neuromuscular junction. Ciba Found. Symp. 90, 197–224PubMedGoogle Scholar
  10. Engel, A.G., Lambert, E.H. and Howard, F.M. (1977) Immune complexes (IgG and C3) at the motor end-plate in myasthenia gravis: ultrastructural and light microscopic localization and electrophysiologic correlations. Mayo Clin. Proc. 52, 267–280PubMedGoogle Scholar
  11. Engel, A.G., Sakakibara, H., Sahashi, K., Lindstrom, J.M., Lambert, E.H. and Lennon, V.A. (1979) Passively transferred experimental autoimmune myasthenia gravis. Sequential and quantitative study of the motor end-plate fine structure and ultrastructural localization of immune complexes (IgG and C3), and of the acetylcholine receptor. Neurology 29, 179–188PubMedGoogle Scholar
  12. Engel, A.G., Sahashi, K. and Fumagalli, G. (1981) The immunopathology of acquired myasthenia gravis. Ann. N. Y. Acad. Sci. 377, 158–174PubMedCrossRefGoogle Scholar
  13. Graus, Y.M., Verschuuren, J.J., Spaans, F., Jennekens, F., van Breda Vriesman, P.J. and De Baets, M.H. (1993) Age-related resistance to experimental autoimmune myasthenia gravis in rats. J. Immunol. 150, 4093–4103PubMedGoogle Scholar
  14. Henze, U., Lennartz, A., Hafemann, B., Goldmann, C., Kirkpatrick, C.J. and Klosterhalfen, B. (1997) The influence of the C1-inhibitor BERINERT and the protein-free haemodialysate ACTIHAEMYL20% on the evolution of the depth of scald burns in a porcine model. Burns 23, 473–477PubMedCrossRefGoogle Scholar
  15. Howard, F.M. Jr., Lennon, V.A., Finley, J., Matsumoto, J. and Elveback, L.R. (1987) Clinical correlations of antibodies that bind, block, or modulate human acetylcholine receptors in myasthenia gravis. Ann. N. Y. Acad. Sci. 505, 526–538PubMedCrossRefGoogle Scholar
  16. Kamolvarin, N., Hemachudha, T., Ongpipattanakul, B., Phanthumchinda, K. and Sueblinvong, T. (1991) Plasma C3c in immune-mediated neurological diseases: a preliminary report. Acta. Neurol. Scand. 83, 382–387PubMedCrossRefGoogle Scholar
  17. Karachunski, P.I., Ostlie, N.S., Monfardini, C. and Conti-Fine, B.M. (2000) Absence of IFN-gamma or IL-12 has different effects on experimental myasthenia gravis in C57BL/6 mice. J. Immunol. 164, 5236–5244PubMedGoogle Scholar
  18. Lennon, V.A., Seybold, M.E., Lindstrom, J.M., Cochrane, C. and Ulevitch, R. (1978) Role of complement in the pathogenesis of experimental autoimmune myasthenia gravis. J. Exp. Med. 147, 973–983PubMedCrossRefGoogle Scholar
  19. Poussin, M.A., Goluszko, E., Franco, J.U. and Christadoss P. (2002) Role of IL-5 during primary and secondary immune response to acetylcholine receptor. J. Neuroimmunol. 125, 51–58PubMedCrossRefGoogle Scholar
  20. Romi, F., Kristoffersen, E.K., Aarli, J.A. and Gilhus, N.E. (2005) The role of complement in myasthenia gravis: serological evidence of complement consumption in vivo. J. Neuroimmunol. 158, 191–194PubMedCrossRefGoogle Scholar
  21. Sahashi, K., Engel, A.G., Lambert, E.H. and Howard, F.M. Jr. (1980) Ultrastructural localization of the terminal and lytic ninth complement component (C9) at the motor end-plate in myasthenia gravis. J. Neuropathol. Exp. Neurol. 39, 160–172PubMedCrossRefGoogle Scholar
  22. Scott, B.G., Yang, H., Tuzun, E., Dong, C., Flavell, R.A. and Christadoss, P. (2004) ICOS is essential for the development of experimental autoimmune myasthenia gravis. J. Neuroimmunol. 153, 16–25PubMedCrossRefGoogle Scholar
  23. Tuzun, E. and Christadoss, P. (2006) Unraveling myasthenia gravis immunopathogenesis using animal models. Drug Discov Today Dis Models 3, 15–20CrossRefGoogle Scholar
  24. Tuzun, E., Scott, B.G., Goluszko, E., Higgs, S. and Christadoss, P. (2003) Genetic evidence for involvement of classical complement pathway in induction of experimental autoimmune myasthenia gravis. J. Immunol. 171, 3847–3854PubMedGoogle Scholar
  25. Tuzun, E., Saini, S.S., Ghosh, S., Rowin, J., Meriggioli, M.N. and Christadoss, P. (2006a) Predictive value of serum anti-C1q antibody levels in experimental autoimmune myasthenia gravis. Neuromuscul. Disord. 16, 137–143CrossRefGoogle Scholar
  26. Tuzun, E., Saini, S.S., Yang, H., Alagappan, D., Higgs, S. and Christadoss, P. (2006b) Genetic evidence for the involvement of Fcgamma receptor III in experimental autoimmune myasthenia gravis pathogenesis. J. Neuroimmunol. 174, 157–167CrossRefGoogle Scholar
  27. Tuzun, E., Li, J., Saini, S.S., Yang, H. and Christadoss, P. (2007) Pros and cons of treating murine myasthenia gravis with anti-C1q antibody. J. Neuroimmunol. 182, 167–176PubMedCrossRefGoogle Scholar
  28. Vincent, A. (2006) Immunology of disorders of neuromuscular transmission. Acta Neurol. Scand. Suppl. 183, 1–7PubMedCrossRefGoogle Scholar
  29. Yang, H., Tuzun, E., Alagappan, D., Yu, X., Scott, B.G., Ischenko, A. and Christadoss, P. (2005) IL-1 receptor antagonist-mediated therapeutic effect in murine myasthenia gravis is associated with suppressed serum proinflammatory cytokines, C3, and anti-acetylcholine receptor IgG1. J. Immunol. 175, 2018–2025PubMedGoogle Scholar
  30. Zeerleder, S., Caliezi, C., van Mierlo, G., Eerenberg-Belmer, A., Sulzer, I., Hack, C.E. and Wuillemin, W.A. (2003) Administration of C1 inhibitor reduces neutrophil activation in patients with sepsis. Clin. Diagn. Lab. Immunol. 10, 529–535PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of NeurologyUniversity of IstanbulIstanbulTurkey
  2. 2.Department of NeurologyUniversity of Central South China UniversityP.R. China
  3. 3.Department of Microbiology and ImmunologyUniversity of Texas Medical BranchGalvestonUSA
  4. 4.Department of NeurologyUniversity of Central South China UniversiyP.R. China
  5. 5.Department of Microbiology and ImmunologyUniversity of Texas Medical BranchGalvestonUSA

Personalised recommendations