Subversion of Innate Immunity by Periodontopathic Bacteria via Exploitation of Complement Receptor-3

  • George Hajishengallis
  • Min Wang
  • Shuang Liang
  • Muhamad-Ali K. Shakhatreh
  • Deanna James
  • So-ichiro Nishiyama
  • Fuminobu Yoshimura
  • Donald R. Demuth
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 632)


The capacity of certain pathogens to exploit innate immune receptors enables them to undermine immune clearance and persist in their host, often causing disease. Here we review subversive interactions of Porphyromonas gingivalis, a major periodontal pathogen, with the complement receptor-3 (CR3; CD11b/CD18) in monocytes/macrophages. Through its cell surface fimbriae, P. gingivalis stimulates Toll-like receptor-2 (TLR2) inside-out signaling which induces the high-affinity conformation of CR3. Although this activates CR3-dependent monocyte adhesion and transendothelial migration, P. gingivalis has co-opted this TLR2 proadhesive pathway for CR3 binding and intracellular entry. In CR3-deficient macrophages, the internalization of P. gingivalis is reduced twofold but its ability to survive intracellularly is reduced 1,000-fold, indicating that CR3 is exploited by the pathogen as a relatively safe portal of entry. The interaction of P. gingivalis fimbriae with CR3 additionally inhibits production of bioactive (p70) interleukin-12, which mediates immune clearance. In vivo blockade of CR3 leads to reduced persistence of P. gingivalis in the mouse host and diminished ability to cause periodontal bone loss, the hallmark of periodontal disease. Strikingly, the ability of P. gingivalis to interact with and exploit CR3 depends upon quantitatively minor components (FimCDE) of its fimbrial structure, which predominantly consists of polymerized fimbrillin (FimA). Indeed, isogenic mutants lacking FimCDE but expressing FimA are dramatically less persistent and virulent than the wild-type organism both in vitro and in vivo. This model of immune evasion through CR3 exploitation by P. gingivalis supports the concept that pathogens evolved to manipulate innate immune function for promoting their adaptive fitness.


Intracellular Killing Innate Immune Function Immune Clearance Membrane Lipid Raft Gingivalis Infection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge support by U.S. Public Health Service Grants DE015254 and DE018292 (to G.H.), and DE14605 (to D.R.D.) from the National Institutes of Health; Grants-in-Aid for Scientific Research (15591957 to F.Y. and 17791318 to S.N.) from the Japan Society for the Promotion of Science; and the AGU High-Tech Research Center Project from the Ministry of Education, Culture, Sports, Science, and Technology, Japan (to F.Y.).


  1. Baker, P. J., Dixon, M. and Roopenian, D. C. (2000). Genetic control of susceptibility to Porphyromonas gingivalis. -induced alveolar bone loss in mice Infect Immun 68, 5864–5868PubMedCrossRefGoogle Scholar
  2. Bhat, N., Perera, P.-Y., Carboni, J. M., Blanco, J., Golenbock, D. T., Mayadas, T. N. and Vogel, S. N. (1999). Use of a photoactivatable taxol analogue to identify unique cellular targets in murine macrophages: identification of murine CD18 as a major taxol-binding protein and a role for Mac-1 in taxol-induced gene expression. J Immunol 162, 7335–7342PubMedGoogle Scholar
  3. Burns, E., Bachrach, G., Shapira, L. and Nussbaum, G. (2006). Cutting edge: TLR2 is required for the innate response to Porphyromonas gingivalis. : activation leads to bacterial persistence and TLR2 deficiency attenuates induced alveolar bone resorption J Immunol 177, 8296–8300PubMedGoogle Scholar
  4. Butcher, S., Chahel, H. and Lord, J. M. (2000). Ageing and the neutrophil: no appetite for killing? Immunology 100, 411–416PubMedCrossRefGoogle Scholar
  5. Butcher, S. K., Chahal, H., Nayak, L., Sinclair, A., Henriquez, N. V., Sapey, E., O’Mahony, D. and Lord, J. M. (2001). Senescence in innate immune responses: reduced neutrophil phagocytic capacity and CD16 expression in elderly humans. J Leukoc Biol 70, 881–886PubMedGoogle Scholar
  6. Calkins, C. C., Platt, K., Potempa, J. and Travis, J. (1998). Inactivation of tumor necrosis factor-a by proteinases (gingipains) from the periodontal pathogen, Porphyromonas gingivalis. . Implications of immune evasion J Biol Chem 273, 6611–6614PubMedCrossRefGoogle Scholar
  7. Caron, E. and Hall, A. (1998). Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 282, 1717–1721PubMedCrossRefGoogle Scholar
  8. Darveau, R. P., Belton, C. M., Reife, R. A. and Lamont, R. J. (1998). Local chemokine paralysis, a novel pathogenic mechanism for Porphyromonas gingivalis. Infect Immun 66, 1660–1665PubMedGoogle Scholar
  9. Darveau, R. P., Pham, T. T., Lemley, K., Reife, R. A., Bainbridge, B. W., Coats, S. R., Howald, W. N., Way, S. S. and Hajjar, A. M. (2004). Porphyromonas gingivalis. lipopolysaccharide contains multiple lipid A species that functionally interact with both toll-like receptors 2 and 4 Infect Immun 72, 5041–5051PubMedCrossRefGoogle Scholar
  10. Diamond, M. S., Garcia-Aguilar, J., Bickford, J. K., Corbi, A. L. and Springer, T. A. (1993). The I domain is a major recognition site on the leukocyte integrin Mac-1 (CD11b/CD18) for four distinct adhesion ligands. J Cell Biol 120, 1031–1043PubMedCrossRefGoogle Scholar
  11. Dixon, D. R. and Darveau, R. P. (2005). Lipopolysaccharide heterogeneity: innate host responses to bacterial modification of lipid a structure. J Dent Res 84, 584–595PubMedCrossRefGoogle Scholar
  12. Ehlers, M. R. W. (2000). CR3: a general purpose adhesion-recognition receptor essential for innate immunity. Microbes Infect 2, 289–294PubMedCrossRefGoogle Scholar
  13. Ernst, J. D. (1998). Macrophage receptors for Mycobacterium tuberculosis. Infect Immun 66, 1277–1281PubMedGoogle Scholar
  14. Gibson, F. C.III, Yumoto, H., Takahashi, Y., Chou, H. H. and Genco, C. A. (2006). Innate immune signaling and Porphyromonas gingivalis. -accelerated atherosclerosis J Dent Res 85, 106–121PubMedCrossRefGoogle Scholar
  15. Ginsberg, M. H., Partridge, A. and Shattil, S. J. (2005). Integrin regulation. Curr Opin Cell Biol 17, 509–516PubMedCrossRefGoogle Scholar
  16. Hajishengallis, G., Ratti, P. and Harokopakis, E. (2005). Peptide mapping of bacterial fimbrial epitopes interacting with pattern recognition receptors. J Biol Chem 280, 38902–38913PubMedCrossRefGoogle Scholar
  17. Hajishengallis, G., Tapping, R. I., Harokopakis, E., Nishiyama, S.-I., Ratti, P., Schifferle, R. E., Lyle, E. A., Triantafilou, M., Triantafilou, K. and Yoshimura, F. (2006a). Differential interactions of fimbriae and lipopolysaccharide from Porphyromonas gingivalis. with the toll-like receptor 2-centred pattern recognition apparatus Cell Microbiol 8, 1557–1570CrossRefGoogle Scholar
  18. Hajishengallis, G., Wang, M., Harokopakis, E., Triantafilou, M. and Triantafilou, K. (2006b). Porphyromonas gingivalis. fimbriae proactively modulate b2 integrin adhesive activity and promote binding to and internalization by macrophages Infect Immun 74, 5658–5666CrossRefGoogle Scholar
  19. Hajishengallis, G., Shakhatreh, M.-A. K., Wang, M. and Liang, S. (2007). Complement receptor 3 blockade Promotes IL-12-mediated clearance of Porphyromonas gingivalis. and negates its virulence in vivo J Immunol 179, 2359–2367PubMedGoogle Scholar
  20. Harokopakis, E. and Hajishengallis, G. (2005). Integrin activation by bacterial fimbriae through a pathway involving CD14, toll-like receptor 2, and phosphatidylinositol-3-kinase. Eur J Immunol 35, 1201–1210PubMedCrossRefGoogle Scholar
  21. Harokopakis, E., Albzreh, M. H., Martin, M. H. and Hajishengallis, G. (2006). TLR2 transmodulates monocyte adhesion and transmigration via Rac1- and PI3K-mediated inside-out signaling in response to Porphyromonas gingivalis. fimbriae J Immunol 176, 7645–7656PubMedGoogle Scholar
  22. Hawlisch, H., Belkaid, Y., Baelder, R., Hildeman, D., Gerard, C. and Kohl, J. (2005). C5a negatively regulates toll-like receptor 4-induced immune responses. Immunity 22, 415–426PubMedCrossRefGoogle Scholar
  23. Hellwig, S. M., van Oirschot, H. F., Hazenbos, W. L., van Spriel, A. B., Mooi, F. R. and van De Winkel, J. G. (2001). Targeting to Fcg receptors, but not CR3 (CD11b/CD18), increases clearance of Bordetella pertussis. J Infect Dis 183, 871–879PubMedCrossRefGoogle Scholar
  24. Kim, S., Elkon, K. B. and Ma, X. (2004). Transcriptional suppression of interleukin-12 gene expression following phagocytosis of apoptotic cells. Immunity 21, 643–653PubMedCrossRefGoogle Scholar
  25. Kozarov, E.V., Dorn, B. R., Shelburne, C. E., Dunn, W. A., Jr. and Progulske-Fox, A. (2005). Human atherosclerotic plaque contains viable invasive Actinobacillus actinomycetemcomitans. and Porphyromonas gingivalis Arterioscler Thromb Vasc Biol 25, e17–e18PubMedCrossRefGoogle Scholar
  26. Lamont, R. J. and Jenkinson, H. F. (1998). Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis. Microbiol Mol Biol Rev 62, 1244–1263PubMedGoogle Scholar
  27. Lamont, R. J., Chan, A., Belton, C. M., Izutsu, K. T., Vasel, D. and Weinberg, A. (1995). Porphyromonas gingivalis. invasion of gingival epithelial cells Infect Immun 63, 3878–3885PubMedGoogle Scholar
  28. Libby, P. (2002). Inflammation in atherosclerosis. Nature 420, 868–874PubMedCrossRefGoogle Scholar
  29. Lowell, C. A. (2006). Rewiring phagocytic signal transduction. Immunity 24, 243–245PubMedCrossRefGoogle Scholar
  30. Martin, M., Schifferle, R. E., Cuesta, N., Vogel, S. N., Katz, J. and Michalek, S. M. (2003). Role of the phosphatidylinositol 3 kinase-Akt pathway in the regulation of IL-10 and IL-12 by Porphyromonas gingivalis. lipopolysaccharide J Immunol 171, 717–725PubMedGoogle Scholar
  31. McGuirk, P. and Mills, K. H. (2000). Direct anti-inflammatory effect of a bacterial virulence factor: IL-10-dependent suppression of IL-12 production by filamentous hemagglutinin from Bordetella pertussis. Eur J Immunol 30, 415–422PubMedCrossRefGoogle Scholar
  32. Mevorach, D., Mascarenhas, J. O., Gershov, D. and Elkon, K. B. (1998). Complement-dependent clearance of apoptotic cells by human macrophages. J Exp Med 188, 2313–2320.PubMedCrossRefGoogle Scholar
  33. Montminy, S. W., Khan, N., McGrath, S., Walkowicz, M. J., Sharp, F., Conlon, J. E., Fukase, K., Kusumoto, S., Sweet, C., Miyake, K., Akira, S., Cotter, R. J., Goguen, J. D. and Lien, E. (2006). Virulence factors of Yersinia pestis. are overcome by a strong lipopolysaccharide response Nat Immunol 7, 1066–1073PubMedCrossRefGoogle Scholar
  34. Mosser, D. M. and Edelson, P. J. (1987). The third component of complement (C3) is responsible for the intracellular survival of Leishmania major. Nature 327, 329–331PubMedCrossRefGoogle Scholar
  35. Nishiyama, S.-I., Murakami, Y., Nagata, H., Shizukuishi, S., Kawagishi, I. and Yoshimura, F (2007). Involvement of minor components associated with the FimA fimbriae of Porphyromonas gingivalis. in adhesive functions Microbiology 153, 1916–1925PubMedCrossRefGoogle Scholar
  36. Pasare, C. and Medzhitov, R. (2005). Toll-like receptors: linking innate and adaptive immunity. Adv Exp Med Biol 560, 11–18PubMedCrossRefGoogle Scholar
  37. Payne, N. R. and Horwitz, M. A. (1987). Phagocytosis of Legionella pneumophila. is mediated by human monocyte complement receptors J Exp Med 166, 1377–1389PubMedCrossRefGoogle Scholar
  38. Pihlstrom, B. L., Michalowicz, B. S. and Johnson, N. W. (2005). Periodontal diseases. Lancet 366, 1809–1820PubMedCrossRefGoogle Scholar
  39. Popadiak, K., Potempa, J., Riesbeck, K. and Blom, A. M. (2007). Biphasic effect of gingipains from Porphyromonas gingivalis. on the human complement system J Immunol 178, 7242–7250PubMedGoogle Scholar
  40. Progulske-Fox, A., Kozarov, E., Dorn, B., Dunn, W., Jr., Burks, J. and Wu, Y. (1999). Porphyromonas gingivalis. virulence factors and invasion of cells of the cardiovascular system J Periodontal Res 34, 393–399PubMedCrossRefGoogle Scholar
  41. Romani, L., Bistoni, F. and Puccetti, P. (2002). Fungi, dendritic cells and receptors: a host perspective of fungal virulence. Trends Microbiol 10, 508–514PubMedCrossRefGoogle Scholar
  42. Rosenberger, C. M. and Finlay, B. B. (2003). Phagocyte sabotage: disruption of macrophage signalling by bacterial pathogens. Nat Rev Mol Cell Biol 4, 385–396PubMedCrossRefGoogle Scholar
  43. Russell, D. G. and Wright, S. D. (1988). Complement receptor type 3 (CR3) binds to an Arg-Gly-Asp-containing region of the major surface glycoprotein, gp63, of Leishmania. promastigotes J Exp Med 168, 279–292PubMedCrossRefGoogle Scholar
  44. Sebastian, C., Espia, M., Serra, M., Celada, A. and Lloberas, J. (2005). MacrophAging: a cellular and molecular review. Immunobiology 210, 121–126PubMedCrossRefGoogle Scholar
  45. Sendide, K., Reiner, N. E., Lee, J. S., Bourgoin, S., Talal, A. and Hmama, Z. (2005). Cross-talk between CD14 and complement receptor 3 promotes phagocytosis of mycobacteria: regulation by phosphatidylinositol 3-kinase and cytohesin-1. J Immunol 174, 4210–4219PubMedGoogle Scholar
  46. Shimaoka, M., Takagi, J. and Springer, T. A. (2002). Conformational regulation of integrin structure and function. Annu Rev Biophys Biomol Struct 31, 485–516PubMedCrossRefGoogle Scholar
  47. Sing, A., Reithmeier-Rost, D., Granfors, K., Hill, J., Roggenkamp, A. and Heesemann, J. (2005). A hypervariable N-terminal region of Yersinia. LcrV determines toll-like receptor 2-mediated IL-10 induction and mouse virulence Proc Natl Acad Sci U S A 102, 16049–16054PubMedCrossRefGoogle Scholar
  48. Slaney, J. M., Gallagher, A., Aduse-Opoku, J., Pell, K. and Curtis, M. A. (2006). Mechanisms of resistance of Porphyromonas gingivalis. to killing by serum complement Infect Immun 74, 5352–5361PubMedCrossRefGoogle Scholar
  49. Socransky, S. S., Haffajee, A. D., Cugini, M. A., Smith, C. and Kent, R. L., Jr. (1998). Microbial complexes in subgingival plaque. J Clin Periodontol 25, 134–144PubMedCrossRefGoogle Scholar
  50. Takeshita, A., Murakami, Y., Yamashita, Y., Ishida, M., Fujisawa, S., Kitano, S. and Hanazawa, S. (1998). Porphyromonas gingivalis. fimbriae use b2 integrin (CD11/CD18) on mouse peritoneal macrophages as a cellular receptor, and the CD18 b chain plays a functional role in fimbrial signaling Infect Immun 66, 4056–4060PubMedGoogle Scholar
  51. Triantafilou, M., Brandenburg, K., Kusumoto, S., Fukase, K., Mackie, A., Seydel, U. and Triantafilou, K. (2004). Combinational clustering of receptors following stimulation by bacterial products determines lipopolysaccharide responses. Biochem J 381, 527–536PubMedCrossRefGoogle Scholar
  52. Trinchieri, G. (1998). Immunobiology of interleukin-12. Immunol Res 17, 269–278PubMedCrossRefGoogle Scholar
  53. Trinchieri, G. (2003). Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3, 133–146PubMedCrossRefGoogle Scholar
  54. van Bruggen, R., Zweers, D., van Diepen, A., van Dissel, J. T., Roos, D., Verhoeven, A. J. and Kuijpers, T. W. (2007). Complement receptor 3 and toll-like receptor 4 act sequentially in uptake and intracellular killing of unopsonized Salmonella enterica serovar typhimurium. by human neutrophils Infect Immun 75, 2655–2660PubMedCrossRefGoogle Scholar
  55. Vieira, O. V., Botelho, R. J. and Grinstein, S. (2002). Phagosome maturation: aging gracefully. Biochem J 366, 689–704PubMedGoogle Scholar
  56. Wang, M., Shakhatreh, M.-A. K., James, D., Liang, S., Nishiyama, S.-i., Yoshimura, F., Demuth, D. R. and Hajishengallis, G. (2007). Fimbrial proteins of Porphyromonas gingivalis. mediate in vivo virulence and exploit TLR2 and complement receptor 3 to persist in macrophages J Immunol 179, 2349–2358PubMedGoogle Scholar
  57. Watanabe, K., Onoe, T., Ozeki, M., Shimizu, Y., Sakayori, T., Nakamura, H. and Yoshimura, F. (1996). Sequence and product analyses of the four genes downstream from the fimbrilin gene (fimA) of the oral anaerobe Porphyromonas gingivalis. Microbiol Immunol 40, 725–734PubMedGoogle Scholar
  58. Wingrove, J. A., DiScipio, R. G., Chen, Z., Potempa, J., Travis, J. and Hugli, T. E. (1992). Activation of complement components C3 and C5 by a cysteine proteinase (gingipain-1) from Porphyromonas (Bacteroides) gingivalis. J Biol Chem 267, 18902–18907PubMedGoogle Scholar
  59. Wright, S. D. and Silverstein, S. C. (1983). Receptors for C3b and C3bi promote phagocytosis but not the release of toxic oxygen from human phagocytes. J Exp Med 158, 2016–2023PubMedCrossRefGoogle Scholar
  60. Yakubenko, V. P., Lishko, V. K., Lam, S. C. and Ugarova, T. P. (2002). A molecular basis for integrin aMb2 ligand binding promiscuity. J Biol Chem 277, 48635–48642PubMedCrossRefGoogle Scholar
  61. Yamamoto, K. and Johnston, R. B., Jr. (1984). Dissociation of phagocytosis from stimulation of the oxidative metabolic burst in macrophages. J Exp Med 159, 405–416PubMedCrossRefGoogle Scholar
  62. Zhang, X., Kimura, Y., Fang, C., Zhou, L., Sfyroera, G., Lambris, J. D., Wetsel, R. A., Miwa, T. and Song, W. C. (2007). Regulation of toll-like receptor-mediated inflammatory response by complement in vivo. Blood 110, 228–2(a)36PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • George Hajishengallis
    • 1
  • Min Wang
  • Shuang Liang
  • Muhamad-Ali K. Shakhatreh
  • Deanna James
  • So-ichiro Nishiyama
    • 2
  • Fuminobu Yoshimura
  • Donald R. Demuth
  1. 1.Department of Periodontics/Oral Health and Systemic DiseaseUniversity of Louisville School of DentistryLouisvilleUSA
  2. 2.Department of MicrobiologyAichi-Gakuin University School of DentistryNagoya464-8650Japan

Personalised recommendations