Role of Complement in Motor Neuron Disease: Animal Models and Therapeutic Potential of Complement Inhibitors

  • Trent M. Woodruff
  • Kerina J. Costantini
  • Steve M. Taylor
  • Peter G. Noakes
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 632)


Amyotrophic lateral sclerosis (ALS) is one of the major forms of motor neuron disease (MND), a group of degenerative disorders causing progressive motor neuron death leading to eventual paralysis and death. The pathogenesis of MND is poorly understood and may include genetic and/or environmental factors, with a common end-stage outcome. The majority of cases are sporadic, with a small percentage of familial cases identified. Mutations in the copper/zinc superoxide dismutase (SOD1) enzyme are frequent in familial ALS, and have allowed for the development of transgenic SOD1 rodent models of ALS. There has been evidence for immune system involvement in the disease, and activated components of the classical complement pathway have been observed in the serum, cerebrospinal fluid and neuronal tissue of diseased individuals. Furthermore, motor neurons and spinal cord tissue from SOD1 transgenic mice show an upregulation in C1q mRNA transcript and protein, in some cases prior to disease onset. Our laboratory has preliminary data indicating a specific pathogenic role for the activation fragment of complement C5 (C5a) in this disease. Using selective C5a receptor antagonists, we dosed SOD1 transgenic rats and observed an extension in survival and reduced motor symptoms compared to untreated rats. Collectively, these clinical and experimental findings suggest that targeting complement using specific inhibitors may represent a novel therapeutic approach to treating MND. Further experimental and clinical studies are required to validate this hypothesis. This review will summarize the clinical and experimental evidence to date implicating complement in the pathogenesis of MND.


Amyotrophic Lateral Sclerosis Motor Neuron Amyotrophic Lateral Sclerosis Patient Motor Neuron Disease Motor Neuron Disease 



We would like to thank the Motor Neuron Disease Research Institute of Australia and the National Health and Medical Research Council of Australia for grants supporting our research.


  1. Abe, K., Aoki, M., Ikeda, M., Watanabe, M., Hirai, S. and Itoyama, Y. (1996) Clinical characteristics of familial amyotrophic lateral sclerosis with Cu/Zn superoxide dismutase gene mutations. J Neurol Sci, 136, 108–116PubMedCrossRefGoogle Scholar
  2. Andrews, J.M., Gardner, M.B., Wolfgram, F.J., Ellison, G.W., Porter, D.D. andBrandkamp, W.W. (1974) Studies on a murine form of spontaneous lower motor neuron degeneration – the wobbler (wa) mouse. Am J Pathol, 76, 63–78PubMedGoogle Scholar
  3. Annunziata, P. and Volpi, N. (1985) High-levels of C3c in the cerebrospinal-fluid from amyotrophic lateral sclerosis patients. Acta Neurol Scand, 72, 61–64PubMedCrossRefGoogle Scholar
  4. Apostolski, S., Nikolic, J., Bugarski-Prokopljevic, C., Miletic, V., Pavlovic, S. andFilipovic, S. (1991) Serum and CSF immunological findings in ALS. Acta Neurol Scand, 83, 96–98PubMedCrossRefGoogle Scholar
  5. Arumugam, T.V., Shiels, I.A., Woodruff, T.M., Reid, R.C., Fairlie, D.P. and Taylor, S.M. (2002) Protective effect of a new C5a receptor antagonist against ischemia-reperfusion injury in the rat small intestine. J Surg Res, 103, 260–267PubMedCrossRefGoogle Scholar
  6. Arumugam, T.V., Shiels, I.A., Strachan, A.J., Abbenante, G., Fairlie, D.P. and Taylor, S.M (2003) A small molecule C5a receptor antagonist protects kidneys from ischemia/ reperfusion injury in rats. Kidney Int, 63, 134–142PubMedCrossRefGoogle Scholar
  7. Arumugam, T.V., Woodruff, T.M., Stocks, S.Z., Proctor, L.M., Pollitt, S., Shiels, I.A., Reid, R.C., Fairlie, D.P. and Taylor, S.M. (2004). Protective effect of a human C5a receptor antagonist against hepatic ischaemia-reperfusion injury in rats J Hepatol, 40, 934–941PubMedCrossRefGoogle Scholar
  8. Bao, L., Osawe, I., Puri, T., Lambris, J.D., Haas, M. and Quigg, R.J. (2005) C5a promotes development of experimental lupus nephritis which can be blocked with a specific receptor antagonist. Eur J Immunol,352496–2506PubMedCrossRefGoogle Scholar
  9. Benatar, M. (2007) Lost in translation: Treatment trials in the SOD1 mouse and in human ALS. Neurobiol Dis, 26, 1–13PubMedCrossRefGoogle Scholar
  10. Boor, P., Konieczny, A., Villa, L., Schult, A.L., Bucher, E., Rong, S., Kunter, U., van Roeyen, C.R.C., Polakowski, T., Hawlisch, H., Hillebrandt, S., Lammert, F., Eitner, F., Floege, J. and Ostendorf, T. (2007) Complement C5 mediates experimental tubulointerstitial fibrosis. J Am Soc Nephrol, 18, 1508–1515PubMedCrossRefGoogle Scholar
  11. Brown, R.H., Jr. (1995) Amyotrophic lateral sclerosis: recent insights from genetics and transgenic mice. Cell, 80, 687–692PubMedCrossRefGoogle Scholar
  12. Chio, A., Benzi, G., Dossena, M., Mutani, R. and Mora, G. (2005) Severely increased risk of amyotrophic lateral sclerosis among Italian professional football players. Brain, 128, 472–476PubMedCrossRefGoogle Scholar
  13. Clark, J.D., Qiao, Y.L., Li, X.Q., Shi, X.Y., Angst, M.S. and Yeomans, D.C. (2006) Blockade of the complement C5a receptor reduces incisional allodynia, edema, and cytokine expression. Anesthesiology, 104, 1274–1282PubMedCrossRefGoogle Scholar
  14. Cleveland, D.W. and Rothstein, J.D. (2001) From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat Rev Neurosci, 2, 806–819CrossRefGoogle Scholar
  15. Denny, K.J., Crane, J.W., Taylor, S.M. and Noakes, P.G. (2006) Differential localization and expression of complement in a rat model of motor neuron disease. Proc Aust Soc Biochem Mol Biol, 38, 58Google Scholar
  16. Donnenfeld, H., Kascsak, R.J. and Bartfeld, H. (1984) Deposits of IgG and C3 in the spinal cord and motor cortex of ALS patients. J Neuroimmunol, 6, 51–57PubMedCrossRefGoogle Scholar
  17. Dupuis, L., di Scala, F., Rene, F., de Tapia, M., Oudart, H., Pradat, P.F., Meininger, V. and Loeffler, J.P. (2003) Up-regulation of mitochondrial uncoupling protein 3 reveals an early muscular metabolic defect in amyotrophic lateral sclerosis. FASEB J, 17, 2091–2093PubMedGoogle Scholar
  18. Ferraiuolo, L., Heath, P.R., Holden, H., Kasher, P., Kirby, J. and Shaw, P.J. (2007) Microarray analysis of the cellular pathways involved in the adaptation to and progression of motor neuron injury in the SOD1 G93A mouse model of familial ALS. J Neurosci, 27, 9201–9219PubMedCrossRefGoogle Scholar
  19. Finch, A.M., Wong, A.K., Paczkowski, N.J., Wadi, S.K., Craik, D.J., Fairlie, D.P. and Taylor, S.M. (1999) Low-molecular-weight peptidic and cyclic antagonists of the receptor for the complement factor C5a. J Med Chem, 42, 1965-1974.PubMedCrossRefGoogle Scholar
  20. Friedlander, R.M., Brown, R.H., Gagliardini, V., Wang, J. and Yuan, J. (1997) Inhibition of ICE slows ALS in mice. Nature, 388, 31PubMedCrossRefGoogle Scholar
  21. Fukada, Y., Yasui, K., Kitayama, M., Doi, K., Nakano, T., Watanabe, Y. and Nakashima, K. (2007) Gene expression analysis of the murine model of amyotrophic lateral sclerosis: Studies of the Leu126delTT mutation in SOD1. Brain Res, 1160, 1–10PubMedCrossRefGoogle Scholar
  22. Garbuzova-Davis, S., Haller, E., Saporta, S., Kolomey, I., Nicosia, S.V. and Sanberg, P.R. (2007) Ultrastructure of blood-brain barrier and blood-spinal cord barrier in SOD1 mice modeling ALS. Brain Res, 1157, 126–137PubMedCrossRefGoogle Scholar
  23. Gasque, P., Dean, Y.D., McGreal, E.P., VanBeek, J. and Morgan, B.P. (2000) Complement components of the innate immune system in health and disease in the CNS. Immunopharmacology, 49, 171–186PubMedCrossRefGoogle Scholar
  24. Girardi, G., Berman, J., Redecha, P., Spruce, L., Thurman, J.M., Kraus, D., Hollmann, T.J., Casali, P., Caroll, M.C., Wetsel, R.A., Lambris, J.D., Holers, V.M. and Salmon, J.E. (2003) Complement C5a receptors and neutrophils mediate fetal injury in the antiphospholipid syndrome. J Clin Invest, 112, 1644–1654PubMedGoogle Scholar
  25. Girardi, G., Yarilin, D., Thurman, J.M., Holers, V.M. and Salmon, J.E. (2006) Complement activation induces dysregulation of angiogenic factors and causes fetal rejection and growth restriction. J Exp Med, 203, 2165–2175PubMedCrossRefGoogle Scholar
  26. Goldknopf, I.L., Sheta, E.A., Bryson, J., Folsom, B., Wilson, C., Duty, J., Yen, A.A. and Appel, S.H. (2006) Complement C3c and related protein biomarkers in amyotrophic lateral sclerosis and Parkinson’s disease. Biochem Biophys Res Commun, 342, 1034–1039PubMedCrossRefGoogle Scholar
  27. Gong, Y.H., Parsadanian, A.S., Andreeva, A., Snider, W.D. and Elliott, J.L. (2000) Restricted expression of G86R Cu/Zn superoxide dismutase in astrocytes results in astrocytosis but does not cause motoneuron degeneration. J Neurosci, 20, 660–665PubMedGoogle Scholar
  28. Grewal, R.P., Morgan, T.E. and Finch, C.E. (1999) C1qB and clusterin mRNA increase in association with neurodegeneration in sporadic amyotrophic lateral sclerosis. Neurosci Lett, 271, 65–67PubMedCrossRefGoogle Scholar
  29. Griffin, R.S., Costigan, M., Brenner, G.J., Ma, C.H.E., Scholz, J., Moss, A., Allchorne, A.J., Stahl, G.L. and Woolf, C.J. (2007) Complement induction in spinal cord microglia results in anaphylatoxin C5a-mediated pain hypersensitivity. J Neurosci, 27, 8699–8708PubMedCrossRefGoogle Scholar
  30. Groeneveld, G.J., Veldink, J.H., van der Tweel, I., Kalmijn, S., Beijer, C., de Visser, M., Wokke, J.H., Franssen, H. and van den Berg, L.H. (2003) A randomized sequential trial of creatine in amyotrophic lateral sclerosis. Ann Neurol, 53, 437–445PubMedCrossRefGoogle Scholar
  31. Gurney, M.E., Pu, H., Chiu, A.Y., Dal Canto, M.C., Polchow, C.Y., Alexander, D.D., Caliendo, J., Hentati, A., Kwon, Y.W., Deng, H.X. et al. (1994) Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science, 264, 1772–1775PubMedCrossRefGoogle Scholar
  32. Harkin, D.W., Romaschin, A., Taylor, S.M., Rubin, B.B. and Lindsay, T.F. (2004) Complement C5a receptor antagonist attenuates multiple organ injury in a model of ruptured abdominal aortic aneurysm. J Vasc Surg, 39, 196–206PubMedCrossRefGoogle Scholar
  33. Hillebrandt, S., Wasmuth, H.E., Weiskirchen, R., Hellerbrand, C., Keppeler, H., Werth, A., Schirin-Sokhan, R., Wilkens, G., Geier, A., Lorenzen, J., Kohl, J., Gressner, A.M., Matern, S. and Lammert, F. (2005) Complement factor 5 is a quantitative trait gene that modifies liver fibrogenesis in mice and humans. Nat Genet, 37, 835–843PubMedCrossRefGoogle Scholar
  34. Howland, D.S., Liu, J., She, Y.J., Goad, B., Maragakis, N.J., Kim, B., Erickson, J., Kulik, J., DeVito, L., Psaltis, G., DeGennaro, L.J., Cleveland, D.W. and Rothstein, J.D. (2002) Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc Natl Acad Sci U S A, 99, 1604–1609CrossRefGoogle Scholar
  35. Huber-Lang, M.S., Riedeman, N.C., Sarma, J.V., Younkin, E.M., McGuire, S.R., Laudes, I.J., Lu, K.T., Guo, R.F., Neff, T.A., Padgaonkar, V.A., Lambris, J.D., Spruce, L., Mastellos, D., Zetoune, F.S. and Ward, P.A. (2002) Protection of innate immunity by C5aR antagonist in septic mice. FASEB J, 16, 1567–1574PubMedCrossRefGoogle Scholar
  36. Jiang, Y.M., Yamamoto, M., Kobayashi, Y., Yoshihara, T., Liang, Y., Terao, S., Takeuchi, H., Ishigaki, S., Katsuno, M., Adachi, H., Niwa, J., Tanaka, F., Doyu, M., Yoshida, M., Hashizume, Y. and Sobue, G. (2005) Gene expression profile of spinal motor neurons in sporadic amyotrophic lateral sclerosis. Ann Neurol, 57, 236–251PubMedCrossRefGoogle Scholar
  37. Jonsson, P.A., Ernhill, K., Andersen, P.M., Bergemalm, D., Brannstrom, T., Gredal, O., Nilsson, P. and Marklund, S.L. (2004) Minute quantities of misfolded mutant superoxide dismutase-1 cause amyotrophic lateral sclerosis. Brain, 127, 73–88PubMedCrossRefGoogle Scholar
  38. Jonsson, P.A., Graffmo, K.S., Brannstrom, T., Nilsson, P., Andersen, P.M. and Marklund, S.L. (2006) Motor neuron disease in mice expressing the wild type-like D90A mutant superoxide dismutase-1. J Neuropathol Exp Neurol, 65, 1126–1136PubMedCrossRefGoogle Scholar
  39. Kawamata, T., Akiyama, H., Yamada, T. and McGeer, P.L. (1992) Immunologic reactions in amyotrophic lateral sclerosis brain and spinal cord tissue. Am J Pathol, 140, 691–707PubMedGoogle Scholar
  40. Klivenyi, P., Ferrante, R.J., Matthews, R.T., Bogdanov, M.B., Klein, A.M., Andreassen, O.A., Mueller, G., Wermer, M., Kaddurah-Daouk, R. and Beal, M.F. (1999) Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nat Med, 5, 347–350PubMedCrossRefGoogle Scholar
  41. Krieger, C., Perry, T.L., Hansen, S. and Mitsumoto, H. (1991) The wobbler mouse: amino acid contents in brain and spinal cord. Brain Res, 551, 142–144PubMedCrossRefGoogle Scholar
  42. Lee, M.K., Borchelt, D.R., Wong, P.C., Sisodia, S.S. and Price, D.L. (1996) Transgenic models of neurodegenerative diseases. Curr Opin Neurobiol, 6, 651–660PubMedCrossRefGoogle Scholar
  43. Lobsiger, C.S., Boillee, S. and Cleveland, D.W. (2007) Toxicity from different SOD1 mutants dysregulates the complement system and the neuronal regenerative response in ALS motor neurons. Proc Natl Acad Sci U S A, 104, 7319–7326PubMedCrossRefGoogle Scholar
  44. Ludolph, A.C., Bendotti, C., Blaugrund, E., Hengerer, B., Loffler, J.P., Martin, J., Meininger, V., Meyer, T., Moussaoui, S., Robberecht, W., Scott, S., Silani, V. and Van Den Berg, L.H. (2007) Guidelines for the preclinical in vivo evaluation of pharmacological active drugs for ALS/MND: report on the 142nd ENMC international workshop. Amyotroph Lateral Scler, 8, 217–223PubMedCrossRefGoogle Scholar
  45. March, D.R., Proctor, L.M., Stoermer, M.J., Sbaglia, R., Abbenante, G., Reid, R.C., Woodruff, T.M., Wadi, K., Paczkowski, N., Tyndall, J.D., Taylor, S.M. and Fairlie, D.P. (2004) Potent cyclic antagonists of the complement C5a receptor on human polymorphonuclear leukocytes. Relationships between structures and activity. Mol Pharmacol, 65, 868-879.PubMedCrossRefGoogle Scholar
  46. Matsumoto, A., Okada, Y., Nakamichi, M., Nakamura, M., Toyama, Y., Sobue, G., Nagai, M., Aoki, M., Itoyama, Y. and Okano, H. (2006) Disease progression of human SOD1 (G93A) transgenic ALS model rats. J Neurosci Res, 83, 119–133PubMedCrossRefGoogle Scholar
  47. McGeer, P.L. and McGeer, E.G. (2002) Inflammatory processes in amyotrophic lateral sclerosis. Muscle Nerve, 26, 459–470PubMedCrossRefGoogle Scholar
  48. Messer, A. and Flaherty, L. (1986) Autosomal dominance in a late-onset motor neuron disease in the mouse. J Neurogenet, 3, 345–355PubMedCrossRefGoogle Scholar
  49. Miller, R.G., Mitchell, J.D., Lyon, M. and Moore, D.H. (2007) Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst Rev Jan24;(1):CD001447Google Scholar
  50. Mitchell, J.D. and Borasio, G.D. (2007) Amyotrophic lateral sclerosis. Lancet, 369, 2031–2041PubMedCrossRefGoogle Scholar
  51. Mollnes, T.E. (2004) Therapeutic manipulation of the complement system. In: Szebeni, J. (ed.). The Complement System: Novel Roles in Health and Disease, Kluwer Academic Publishers, Boston, pp. 483–516Google Scholar
  52. Moreau, C., Devos, D., Brunaud-Danel, V., Defebvre, L., Perez, T., Destee, A., Tonnel, A.B., Lassalle, P. and Just, N. (2005) Elevated IL-6 and TNF-alpha levels in patients with ALS: inflammation or hypoxia? Neurology, 65, 1958–1960PubMedCrossRefGoogle Scholar
  53. Niebroj-Dobosz, I., Dziewulska, D. and Janik, P. (2006) Auto-antibodies against proteins of spinal cord cells in cerebrospinal fluid of patients with amyotrophic lateral sclerosis (ALS). Folia Neuropathol, 44, 191–196PubMedGoogle Scholar
  54. Pardo, C.A., Rabin, B.A., Palmer, D.N. and Price, D.L. (1994) Accumulation of the adenosine triphosphate synthase subunit C in the mnd mutant mouse. A model for neuronal ceroid lipofuscinosis. Am J Pathol, 144, 829–835PubMedGoogle Scholar
  55. Perrin, F.E., Boisset, G., Docquier, M., Schaad, O., Descombes, P. and Kato, A.C. (2005) No widespread induction of cell death genes occurs in pure motoneurons in an amyotrophic lateral sclerosis mouse model. Hum Mol Genet, 14, 3309–3320PubMedCrossRefGoogle Scholar
  56. Pramatarova, A., Laganiere, J., Roussel, J., Brisebois, K. and Rouleau, G.A. (2001) Neuron-specific expression of mutant superoxide dismutase 1 in transgenic mice does not lead to motor impairment. J Neurosci, 21, 3369–3374PubMedGoogle Scholar
  57. Reaume, A.G., Elliott, J.L., Hoffman, E.K., Kowall, N.W., Ferrante, R.J., Siwek, D.F., Wilcox, H.M., Flood, D.G., Beal, M.F., Brown, R.H., Jr., Scott, R.W. and Snider, W.D. (1996) Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet, 13, 43–47PubMedCrossRefGoogle Scholar
  58. Ripps, M.E., Huntley, G.W., Hof, P.R., Morrison, J.H. and Gordon, J.W. (1995) Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A, 92, 689–693PubMedCrossRefGoogle Scholar
  59. Schmalbruch, H., Jensen, H.J., Bjaerg, M., Kamieniecka, Z. and Kurland, L. (1991) A new mouse mutant with progressive motor neuronopathy. J Neuropathol Exp Neurol, 50, 192–204PubMedCrossRefGoogle Scholar
  60. Sewell, D.L., Nacewicz, B., Liu, F., Macvilay, S., Erdei, A., Lambris, J.D., Sandor, M. and Fabry, Z. (2004) Complement C3 and C5 play critical roles in traumatic brain cryoinjury: blocking effects on neutrophil extravasation by C5a receptor antagonist. J Neuroimmunol, 155, 55-63.PubMedCrossRefGoogle Scholar
  61. Shaw, B.F. and Valentine, J.S. (2007) How do ALS-associated mutations in superoxide dismutase 1 promote aggregation of the protein? Trends Biochem Sci, 32, 78–85PubMedCrossRefGoogle Scholar
  62. Spalloni, A., Albo, F., Ferrari, F., Mercuri, N., Bernardi, G., Zona, C. and Longone, P. (2004) Cu/Zn-superoxide dismutase (GLY93. →ALA) mutation alters AMPA receptor subunit expression and function and potentiates kainate-mediated toxicity in motor neurons in culture Neurobiol Dis, 15, 340–350PubMedCrossRefGoogle Scholar
  63. Strachan, A.J., Woodruff, T.M., Haaima, G., Fairlie, D.P. and Taylor, S.M. (2000) A new small molecule C5a receptor antagonist inhibits the reverse-passive Arthus reaction and endotoxic shock in rats. J Immunol, 164, 6560–6565PubMedGoogle Scholar
  64. Strachan, A.J., Shiels, I.A., Reid, R.C., Fairlie, D.P. and Taylor, S.M. (2001) Inhibition of immune-complex mediated dermal inflammation in rats following either oral or topical administration of a small molecule C5a receptor antagonist. Br J Pharmacol, 134, 1778–1786PubMedCrossRefGoogle Scholar
  65. Tomiyama, M., Kannari, K., Nunomura, J., Oyama, Y., Takebe, K. and Matsunaga, M. (1994) Quantitative autoradiographic distribution of glutamate receptors in the cervical segment of the spinal cord of the wobbler mouse. Brain Res, 650, 353–357PubMedCrossRefGoogle Scholar
  66. Trbojevic-Cepe, M., Brinar, V., Pauro, M., Vogrinc, Z. and Stambuk, N. (1998) Cerebrospinal fluid complement activation in neurological diseases. J Neurol Sci, 154, 173–181PubMedCrossRefGoogle Scholar
  67. Tsuboi, Y. and Yamada, T. (1994) Increased concentration of C4d complement protein in CSF in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry, 57, 859–861PubMedCrossRefGoogle Scholar
  68. Valentine, J.S., Doucette, P.A. and Zittin Potter, S. (2005) Copper-zinc superoxide dismutase and amyotrophic lateral sclerosis. Annu Rev Biochem, 74, 563–593PubMedCrossRefGoogle Scholar
  69. Wang, J., Xu, G., Slunt, H.H., Gonzales, V., Coonfield, M., Fromholt, D., Copeland, N.G., Jenkins, N.A., and Borchelt, D.R. (2005) Coincident thresholds of mutant protein for paralytic disease and protein aggregation caused by restrictively expressed superoxide dismutase cDNA. Neurobiol Dis, 20, 943-952.PubMedCrossRefGoogle Scholar
  70. Whitaker, J.N., Sciabbarrasi, J., Engel, W.K., Warmolts, J.R. and Strober, W. (1973) Serum immunoglobulin and complement (C3) levels: a study in adults with idiopathic, chronic polyneuropathies and motor neuron diseases. Neurology, 23, 1164–1173PubMedGoogle Scholar
  71. Wong, P.C., Pardo, C.A., Borchelt, D.R., Lee, M.K., Copeland, N.G., Jenkins, N.A., Sisodia, S.S., Cleveland, D.W. and Price, D.L. (1995) An adverse property of a familial ALS-Linked SOD1 mutation causes motor-neuron disease characterized by vacuolar degeneration of mitochondria. Neuron, 14, 1105–1116PubMedCrossRefGoogle Scholar
  72. Woodruff, T.M. and Taylor, S.M. (2005) Promics Pty Ltd. Use of a C5a receptor inhibitor to treat neurological or neurodegenerative condition (e.g. Huntington’s disease, spinocerebellar ataxia, dentatorubral pallidoluysian atrophy, ischemic damage, motor neuron disease) involving inflammation. International Patent: WO2005092366-A1 Google Scholar
  73. Woodruff, T.M., Strachan, A.J., Sanderson, S.D., Monk, P.N., Wong, A.K., Fairlie, D.P. and Taylor, S.M. (2001) Species dependence for binding of small molecule agonist and antagonists to the C5a receptor on polymorphonuclear leukocytes. Inflammation, 25, 171–177PubMedCrossRefGoogle Scholar
  74. Woodruff, T.M., Strachan, A.J., Dryburgh, N., Shiels, I.A., Reid, R.C., Fairlie, D.P. and Taylor, S.M. (2002) Antiarthritic activity of an orally active C5a receptor antagonist against antigen-induced monarticular arthritis in the rat. Arthritis Rheum, 46, 2476–2485PubMedCrossRefGoogle Scholar
  75. Woodruff, T.M., Arumugam, T.V., Shiels, I.A., Reid, R.C., Fairlie, D.P. and Taylor, S.M. (2003) A potent human C5a receptor antagonist protects against disease pathology in a rat model of inflammatory bowel disease. J Immunol, 171, 5514–5520PubMedGoogle Scholar
  76. Woodruff, T.M., Arumugam, T.V., Shiels, I.A., Reid, R.C., Fairlie, D.P. and Taylor, S.M. (2004) Protective effects of a potent C5a receptor antagonist on experimental acute limb ischemia-reperfusion in rats. J Surg Res, 116, 81–90PubMedCrossRefGoogle Scholar
  77. Woodruff, T.M., Pollitt, S., Proctor, L.M., Stocks, S.Z., Manthey, H.D., Williams, H.M., Mahadevan, I.B., Shiels,I.A. and Taylor, S.M. (2005) Increased potency of a novel complement factor 5a receptor antagonist in a rat model of inflammatory bowel disease. J Pharmacol Exp Ther, 314, 811–817PubMedCrossRefGoogle Scholar
  78. Woodruff, T.M., Crane, J.W., Proctor, L.M., Buller, K.M., Shek, A.B., de Vos, K., Pollitt, S., Williams, H.M., Shiels, I.A., Monk, P.N. and Taylor, S.M. (2006a) Therapeutic activity of C5a receptor antagonists in a rat model of neurodegeneration. FASEB J, 20, 1407–1417CrossRefGoogle Scholar
  79. Woodruff, T.M., Proctor, L.M., Strachan, A.J. and Taylor, S.M. (2006b) Complement factor 5a as a therapeutic target. Drugs Future, 31, 325–334CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Trent M. Woodruff
    • 1
  • Kerina J. Costantini
  • Steve M. Taylor
  • Peter G. Noakes
  1. 1.School of Biomedical SciencesUniversity of QueenslandSt LuciaAustralia

Personalised recommendations