Adipokines and the Immune System: An Adipocentric View

  • Robin MacLaren
  • Wei Cui
  • Katherine Cianflone
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 632)


There is increasing evidence of close interactions between the adipose and the immune systems. Adipocytes secrete multiple factors, including adipokines such as leptin and adiponectin that have both pro- and anti-inflammatory effects, and influence diseases involving the immune system. Further, adipose tissue also secretes various chemokines and cytokines, derived from either the adipocytes themselves, or the neighbouring cells including both resident and infiltrating macrophages. This close physical and paracrine interaction results in reciprocal actions of adipocytes, preadipocytes and macrophages within the microenvironment of the adipose tissue. Adipose tissue is a source of Acylation Stimulating Protein (ASP)/C3adesArg which interacts with the receptor C5L2 to stimulate triglyceride synthesis and glucose transport. C5L2, present on adipocytes, preadipocytes, macrophages, and numerous other myeloid and non-myeloid cells is also postulated to be a decoy receptor for C5a in immune cells. Several reviews within the past year have recently examined the role of C5L2 in C5a-mediated physiology. The present mini-review is an adipocentric view with emphasis on the role of ASP and C5L2 in lipid metabolism. C5L2 may play a role in mediating, on one hand, ASP stimulation of triglyceride synthesis in adipose, and, on the other hand, a role as mediator of C5a immune function. Both roles remain controversial, and will only be resolved with further studies.


Adipose Tissue Visceral Adipose Tissue Acylation Stimulate Protein Adipose Tissue Macrophage Adipocyte Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arora, K.K., Cheng, Z. and Catt, K.J. (1997) Mutations of the conserved DRS motif in the second intracellular loop of the gonadotropin-releasing hormone receptor affect expression, activation, and internalization. Mol. Endocrinol. 11, 1203–1212PubMedCrossRefGoogle Scholar
  2. Baldo, A., Sniderman, A.D., St Luce, S., Avramoglu, R.K., Maslowska, M., Hoang, B., Monge, J.C., Bell, A., Mulay, S. and Cianflone, K. (1993) The adipsin-acylation stimulating protein system and regulation of intracellular triglyceride synthesis. J. Clin. Invest. 92, 1543–1547PubMedCrossRefGoogle Scholar
  3. Barrington, R., Zhang, M., Fischer, M. and Carroll, M.C. (2001) The role of complement in inflammation and adaptive immunity. Immunol. Rev. 180, 5–15PubMedCrossRefGoogle Scholar
  4. Beltowski, J. (2006) Apelin and visfatin: unique “beneficial” adipokines upregulated in obesity? Med. Sci. Monit. 12, RA112–RA119PubMedGoogle Scholar
  5. Berg, A.H., Combs, T.P., Du, X., Brownlee, M. and Scherer, P.E. (2001) The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat. Med. 7, 947–953PubMedCrossRefGoogle Scholar
  6. Bouloumie, A., Curat, C.A., Sengenes, C., Lolmede, K., Miranville, A. and Busse, R. (2005) Role of macrophage tissue infiltration in metabolic diseases. Curr. Opin. Clin. Nutr. Metab Care. 8, 347–354PubMedCrossRefGoogle Scholar
  7. Cain, S.A. and Monk, P.N. (2002) The orphan receptor C5L2 has high affinity binding sites for complement fragments C5a and C5a des-Arg(74). J. Biol. Chem. 277, 7165–7169PubMedCrossRefGoogle Scholar
  8. Cancello, R. and Clement, K. (2006) Is obesity an inflammatory illness? Role of low-grade inflammation and macrophage infiltration in human white adipose tissue. BJOG 113, 1141–1147PubMedCrossRefGoogle Scholar
  9. Cancello, R., Henegar, C., Viguerie, N., Taleb, S., Poitou, C., Rouault, C., Coupaye, M., Pelloux, V., Hugol, D., Bouillot, J.L., Bouloumie, A., Barbatelli, G., Cinti, S., Svensson, P.A., Barsh, G.S., Zucker, J.D., Basdevant, A., Langin, D. and Clement, K. (2005) Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes 54, 2277–2286PubMedCrossRefGoogle Scholar
  10. Cancello, R., Tordjman, J., Poitou, C., Guilhem, G., Bouillot, J.L., Hugol, D., Coussieu, C., Basdevant, A., Bar, H.A., Bedossa, P., Guerre-Millo, M. and Clement, K. (2006) Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity. Diabetes 55, 1554–1561PubMedCrossRefGoogle Scholar
  11. Chen, A., Gao, Z.G., Barak, D., Liang, B.T. and Jacobson, K.A. (2001) Constitutive activation of A(3) adenosine receptors by site-directed mutagenesis. Biochem. Biophys. Res. Commun. 284, 596–601PubMedCrossRefGoogle Scholar
  12. Chen, N.J., Mirtsos, C., Suh, D., Lu, Y.C., Lin, W.J., McKerlie, C., Lee, T., Baribault, H., Tian, H. and Yeh, W.C. (2007) C5L2 is critical for the biological activities of the anaphylatoxins C5a and C3a. Nature 446, 203–207PubMedCrossRefGoogle Scholar
  13. Choy, L.N. and Spiegelman, B.M. (1996) Regulation of alternative pathway activation and C3a production by adipose cells. Obes. Res. 4, 521–532PubMedGoogle Scholar
  14. Choy, L.N., Rosen, B.S. and Spiegelman, B.M. (1992) Adipsin and an endogenous pathway of complement from adipose cells. J. Biol. Chem. 267, 12736–12741PubMedGoogle Scholar
  15. Chung, D.A., Wade, S.M., Fowler, C.B., Woods, D.D., Abada, P.B., Mosberg, H.I. and Neubig, R.R. (2002) Mutagenesis and peptide analysis of the DRY motif in the alpha2A adrenergic receptor: evidence for alternate mechanisms in G protein-coupled receptors. Biochem. Biophys. Res. Commun. 293, 1233–1241Google Scholar
  16. Chung, S., Lapoint, K., Martinez, K., Kennedy, A., Boysen, S.M. and McIntosh, M.K. (2006) Preadipocytes mediate lipopolysaccharide-induced inflammation and insulin resistance in primary cultures of newly differentiated human adipocytes. Endocrinology 147, 5340–5351PubMedCrossRefGoogle Scholar
  17. Cianflone, K.M., Sniderman, A.D., Walsh, M.J., Vu, H.T., Gagnon, J. and Rodriguez, M.A. (1989) Purification and characterization of acylation stimulating protein. J. Biol. Chem. 264, 426–430PubMedGoogle Scholar
  18. Cianflone, K., Roncari, D.A., Maslowska, M., Baldo, A., Forden, J. and Sniderman, A.D. (1994) Adipsin/acylation stimulating protein system in human adipocytes: regulation of triacylglycerol synthesis. Biochemistry 33, 9489–9495PubMedCrossRefGoogle Scholar
  19. Cianflone, K., Xia, Z. and Chen, L.Y. (2003) Critical review of acylation-stimulating protein physiology in humans and rodents. Biochim. Biophys. Acta. 1609, 127–143PubMedCrossRefGoogle Scholar
  20. Cinti, S., Mitchell, G., Barbatelli, G., Murano, I., Ceresi, E., Faloia, E., Wang, S., Fortier, M., Greenberg, A.S. and Obin, M.S. (2005) Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 46, 2347–2355PubMedCrossRefGoogle Scholar
  21. Coenen, K.R., Gruen, M.L., Chait, A. and Hasty, A.H. (2007) Diet-induced increases in adiposity, but not plasma lipids, promote macrophage infiltration into white adipose tissue. Diabetes 56, 564–573PubMedCrossRefGoogle Scholar
  22. Conner, A.C., Simms, J., Barwell, J., Wheatley, M. and Poyner, D.R. (2007) Ligand binding and activation of the CGRP receptor. Biochem. Soc. Trans. 35, 729–732PubMedCrossRefGoogle Scholar
  23. Cottam, D.R., Mattar, S.G., Barinas-Mitchell, E., Eid, G., Kuller, L., Kelley, D.E. and Schauer, P.R. (2004) The chronic inflammatory hypothesis for the morbidity associated with morbid obesity: implications and effects of weight loss. Obes. Surg. 14, 589–600PubMedCrossRefGoogle Scholar
  24. Cui, W., Paglialunga, S., Kalant, D., Lu, H., Roy, C., Laplante, M., Deshaies, Y. and Cianflone, K. (2007) Acylation stimulating protein/C5L2 neutralizing antibodies alter triglyceride metabolism in vitro and in vivo. Am. J. Physiol Endocrinol. Metab. 293, E1482–E1491PubMedCrossRefGoogle Scholar
  25. DiGirolamo, M. (1991) Cellular, metabolic, and clinical consequences of adipose mass enlargement in obesity. Nutrition 7, 287–289PubMedGoogle Scholar
  26. Drolet, R., Richard, C., Sniderman, A.D., Mailloux, J., Fortier, M., Huot, C., Rheaume, C. and Tchernof, A. (2007) Hypertrophy and hyperplasia of abdominal adipose tissues in women. Int. J. Obes. (Lond). 32, (2)283–291CrossRefGoogle Scholar
  27. Fain, J.N. (2006) Release of interleukins and other inflammatory cytokines by human adipose tissue is enhanced in obesity and primarily due to the nonfat cells. Vitam. Horm. 74, 443–477PubMedCrossRefGoogle Scholar
  28. Fanelli, F., Barbier, P., Zanchetta, D., de Benedetti, P.G. and Chini, B. (1999) Activation mechanism of human oxytocin receptor: a combined study of experimental and computer-simulated mutagenesis. Mol. Pharmacol. 56, 214–225PubMedGoogle Scholar
  29. Funahashi, T., Nakamura, T., Shimomura, I., Maeda, K., Kuriyama, H., Takahashi, M., Arita, Y., Kihara, S. and Matsuzawa, Y. (1999) Role of adipocytokines on the pathogenesis of atherosclerosis in visceral obesity. Intern. Med. 38, 202–206PubMedCrossRefGoogle Scholar
  30. Gao, H., Neff, T.A., Guo, R.F., Speyer, C.L., Sarma, J.V., Tomlins, S., Man, Y., Riedemann, N.C., Hoesel, L.M., Younkin, E., Zetoune, F.S. and Ward, P.A. (2005) Evidence for a functional role of the second C5a receptor C5L2. FASEB J. 19, 1003–1005PubMedGoogle Scholar
  31. Gavrilyuk, V., Kalinin, S., Hilbush, B.S., Middlecamp, A., McGuire, S., Pelligrino, D., Weinberg, G. and Feinstein, D.L. (2005) Identification of complement 5a-like receptor (C5L2) from astrocytes: characterization of anti-inflammatory properties. J. Neurochem. 92, 1140–1149PubMedCrossRefGoogle Scholar
  32. Gruijthuijsen, Y.K., Beuken, E.V., Smit, M.J., Leurs, R., Bruggeman, C.A. and Vink, C. (2004) Mutational analysis of the R33-encoded G protein-coupled receptor of rat cytomegalovirus: identification of amino acid residues critical for cellular localization and ligand-independent signalling. J. Gen. Virol. 85, 897–909PubMedCrossRefGoogle Scholar
  33. Guzik, T.J., Mangalat, D. and Korbut, R. (2006) Adipocytokines – novel link between inflammation and vascular function? J. Physiol Pharmacol. 57, 505–528PubMedGoogle Scholar
  34. Harmon, C.M. and Abumrad, N.A. (1993) Binding of sulfosuccinimidyl fatty acids to adipocyte membrane proteins: isolation and amino-terminal sequence of an 88-kD protein implicated in transport of long-chain fatty acids. J. Membr. Biol. 133, 43–49PubMedGoogle Scholar
  35. Honczarenko, M., Lu, B., Nicholson-Weller, A., Gerard, N.P., Silberstein, L.E. and Gerard, C. (2005a) C5L2 receptor is not involved in C3a / C3a-desArg-mediated enhancement of bone marrow hematopoietic cell migration to CXCL12. Leukemia 19, 1682–1683CrossRefGoogle Scholar
  36. Honczarenko, M., Ratajczak, M., Nicholson-Weller, A. and Silberstein, L. (2005b) Complement C3a enhances CXCL12 (SDF-1)-mediated chemotaxis of bone marrow hematopoietic cells independently of C3a receptor. J Immunol. 175, 3698–3706Google Scholar
  37. Hotamisligil, G.S. (2006) Inflammation and metabolic disorders. Nature 444, 860–867PubMedCrossRefGoogle Scholar
  38. Hotamisligil, G.S. and Spiegelman, B.M. (1994) Tumor necrosis factor alpha: a key component of the obesity-diabetes link. Diabetes 43, 1271–1278PubMedCrossRefGoogle Scholar
  39. Huber-Lang, M., Sarma, J.V., Rittirsch, D., Schreiber, H., Weiss, M., Flierl, M., Younkin, E., Schneider, M., Suger-Wiedeck, H., Gebhard, F., McClintock, S.D., Neff, T., Zetoune, F., Bruckner, U., Guo, R.F., Monk, P.N. and Ward, P.A. (2005) Changes in the novel orphan, C5a receptor (C5L2), during experimental sepsis and sepsis in humans. J. Immunol. 174, 1104–1110PubMedGoogle Scholar
  40. Johswich, K. and Klos, A. (2007) C5L2 – an anti-inflammatory molecule or a receptor for acylation stimulating protein (C3a-desArg)? Adv. Exp. Med. Biol. 598, 159–180PubMedCrossRefGoogle Scholar
  41. Johswich, K., Martin, M., Thalmann, J., Rheinheimer, C., Monk, P.N. and Klos, A. (2006) Ligand specificity of the anaphylatoxin C5L2 receptor and its regulation on myeloid and epithelial cell lines. J. Biol. Chem. 281, 39088–39095PubMedCrossRefGoogle Scholar
  42. Kalant, D., Cain, S.A., Maslowska, M., Sniderman, A.D., Cianflone, K. and Monk, P.N. (2003a) The chemoattractant receptor-like protein C5L2 binds the C3a des-Arg77/ acylation-stimulating protein. J. Biol. Chem. 278, 11123–11129CrossRefGoogle Scholar
  43. Kalant, D., Maslowska, M., Scantlebury, T., Wang, H. and Cianflone, K. (2003b) Control of lipogenesis in adipose tissue and the role of acylation stimulating protein. Can. J. Diabetes27, 154–171Google Scholar
  44. Kalant, D., MacLaren, R., Cui, W., Samanta, R., Monk, P.N., Laporte, S.A. and Cianflone, K. (2005) C5L2 is a functional receptor for acylation-stimulating protein. J. Biol. Chem. 280, 23936–23944PubMedCrossRefGoogle Scholar
  45. Koerner, A., Kratzsch, J. and Kiess, W. (2005) Adipocytokines: leptin – the classical, resistin – the controversical, adiponectin – the promising, and more to come. Best. Pract. Res. Clin. Endocrinol. Metab. 19, 525–546PubMedCrossRefGoogle Scholar
  46. Lago, F., Dieguez, C., Gomez-Reino, J. and Gualillo, O. (2007) The emerging role of adipokines as mediators of inflammation and immune responses. Cytokine Growth Factor Rev. 18, 313–325PubMedCrossRefGoogle Scholar
  47. Lefebvre, A.M., Laville, M., Vega, N., Riou, J.P., van Gaal, L., Auwerx, J. and Vidal, H. (1998) Depot-specific differences in adipose tissue gene expression in lean and obese subjects. Diabetes 47, 98–103PubMedCrossRefGoogle Scholar
  48. Lumeng, C.N., Bodzin, J.L. and Saltiel, A.R. (2007) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184PubMedCrossRefGoogle Scholar
  49. Luttrell, L.M. and Lefkowitz, R.J. (2002) The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J. Cell Sci. 115, 455–465PubMedGoogle Scholar
  50. MacLaren, R., Kalant, D. and Cianflone, K. (2007) The ASP receptor C5L2 is regulated by metabolic hormones associated with insulin resistance. Biochem. Cell Biol. 85, 11–21PubMedCrossRefGoogle Scholar
  51. Marcil, M., Vu, H., Cui, W., Dastani, Z., Engert, J.C., Gaudet, D., Castro-Cabezas, M., Sniderman, A.D., Genest, J.,. and JrCianflone, K. (2006) Identification of a novel C5L2 variant (S323I) in a French Canadian family with familial combined hyperlipemia. Arterioscler. Thromb. Vasc. Biol. 26, 1619–1625PubMedCrossRefGoogle Scholar
  52. Maslowska, M., Scantlebury, T., Germinario, R. and Cianflone, K. (1997) Acute in vitro production of acylation stimulating protein in differentiated human adipocytes. J. Lipid Res. 38, 1–11PubMedGoogle Scholar
  53. Maslowska, M., Vu, H., Phelis, S., Sniderman, A.D., Rhode, B.M., Blank, D. and Cianflone, K. (1999) Plasma acylation stimulating protein, adipsin and lipids in non-obese and obese populations. Eur. J. Clin. Invest. 29, 679–686PubMedCrossRefGoogle Scholar
  54. Maslowska, M., Legakis, H., Assadi, F. and Cianflone, K. (2006) Targeting the signaling pathway of acylation stimulating protein. J. Lipid Res. 47, 643–652PubMedCrossRefGoogle Scholar
  55. Matarese, G., Leiter, E.H. and La Cava, A. (2007) Leptin in autoimmunity: many questions, some answers. Tissue Antigens 70, 87–95PubMedCrossRefGoogle Scholar
  56. Meier, U. and Gressner, A.M. (2004) Endocrine regulation of energy metabolism: review of pathobiochemical and clinical chemical aspects of leptin, ghrelin, adiponectin, and resistin. Clin. Chem. 50, 1511–1525PubMedCrossRefGoogle Scholar
  57. Monk, P.N., Scola, A.M., Madala, P. and Fairlie, D.P. (2007) Function, structure and therapeutic potential of complement C5a receptors. Br. J. Pharmacol. 152, 429–448PubMedCrossRefGoogle Scholar
  58. Montague, C.T., Prins, J.B., Sanders, L., Zhang, J., Sewter, C.P., Digby, J., Byrne, C.D. and O’Rahilly, S. (1998) Depot-related gene expression in human subcutaneous and omental adipocytes. Diabetes 47, 1384–1391PubMedCrossRefGoogle Scholar
  59. Muscari, A., Antonelli, S., Bianchi, G., Cavrini, G., Dapporto, S., Ligabue, A., Ludovico, C., Magalotti, D., Poggiopollini, G. and Zoli, M. (2007) Serum C3 is a stronger inflammatory marker of insulin resistance than C-reactive protein, leukocyte count, and erythrocyte sedimentation rate: comparison study in an elderly population. Diabetes Care 30, 2362–2368PubMedCrossRefGoogle Scholar
  60. Neels, J.G. and Olefsky, J.M. (2006) Inflamed fat: what starts the fire? J. Clin. Invest. 116, 33–35PubMedCrossRefGoogle Scholar
  61. Nomiyama, T., Perez-Tilve, D., Ogawa, D., Gizard, F., Zhao, Y., Heywood, E.B., Jones, K.L., Kawamori, R., Cassis, L.A., Tschop, M.H. and Bruemmer, D. (2007) Osteopontin mediates obesity-induced adipose tissue macrophage infiltration and insulin resistance in mice. J. Clin. Invest. 117, 2877–2888PubMedCrossRefGoogle Scholar
  62. Odegaard, J.I., Ricardo-Gonzalez, R.R., Goforth, M.H., Morel, C.R., Subramanian, V., Mukundan, L., Eagle, A.R., Vats, D., Brombacher, F., Ferrante, A.W. and Chawla, A. (2007) Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 447, 1116–1120PubMedCrossRefGoogle Scholar
  63. Ohno, M., Hirata, T., Enomoto, M., Araki, T., Ishimaru, H. and Takahashi, T.A. (2000) A putative chemoattractant receptor, C5L2, is expressed in granulocyte and immature dendritic cells, but not in mature dendritic cells. Mol. Immunol. 37, 407–412PubMedCrossRefGoogle Scholar
  64. Ohyama, K., Yamano, Y., Sano, T., Nakagomi, Y., Wada, M. and Inagami, T. (2002) Role of the conserved DRY motif on G protein activation of rat angiotensin II receptor type 1A. Biochem. Biophys. Res. Commun. 292, 362–367PubMedCrossRefGoogle Scholar
  65. Okinaga, S., Slattery, D., Humbles, A., Zsengeller, Z., Morteau, O., Kinrade, M.B., Brodbeck, R.M., Krause, J.E., Choe, H.R., Gerard, N.P. and Gerard, C. (2003) C5L2, a nonsignaling C5A binding protein. Biochemistry 42, 9406–9415PubMedCrossRefGoogle Scholar
  66. Otto, M., Hawlisch, H., Monk, P.N., Muller, M., Klos, A., Karp, C.L. and Kohl, J. (2004a) C5a mutants are potent antagonists of the C5a receptor (CD88) and of C5L2: position 69 is the locus that determines agonism or antagonism. J. Biol. Chem. 279, 142–151CrossRefGoogle Scholar
  67. Otto, M., Hawlisch, H., Monk, P.N., Muller, M., Klos, A., Karp, C.L. and Kohl, J. (2004b) C5a mutants are potent antagonists of the C5a receptor (CD88) and of C5L2: position 69 is the locus that determines agonism or antagonism. J. Biol. Chem. 279, 142–151CrossRefGoogle Scholar
  68. Paglialunga, S., Schrauwen, P., Roy, C., Moonen-Kornips, E., Lu, H., Hesselink, M.K., Deshaies, Y., Richard, D. and Cianflone, K. (2007) Reduced adipose tissue triglyceride synthesis and increased muscle fatty acid oxidation in C5L2 knockout mice. J. Endocrinol. 194, 293–304PubMedCrossRefGoogle Scholar
  69. Pausova, Z. (2006) From big fat cells to high blood pressure: a pathway to obesity-associated hypertension. Curr. Opin. Nephrol. Hypertens. 15, 173–178PubMedCrossRefGoogle Scholar
  70. Pelleymounter, M.A., Cullen, M.J., Baker, M.B., Hecht, R., Winters, D., Boone, T. and Collins, F. (1995) Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269, 540–543PubMedCrossRefGoogle Scholar
  71. Pilz, S., Mangge, H., Obermayer-Pietsch, B. and Marz, W. (2007) Visfatin/pre-B-cell colony-enhancing factor: a protein with various suggested functions. J. Endocrinol. Invest. 30, 138–144PubMedGoogle Scholar
  72. Price, S.R., Olivecrona, T. and Pekala, P.H. (1986) Regulation of lipoprotein lipase synthesis by recombinant tumor necrosis factor – the primary regulatory role of the hormone in 3T3-L1 adipocytes. Arch. Biochem. Biophys. 251, 738–746PubMedCrossRefGoogle Scholar
  73. Rhee, M.H., Nevo, I., Levy, R. and Vogel, Z. (2000) Role of the highly conserved Asp-Arg-Tyr motif in signal transduction of the CB2 cannabinoid receptor. FEBS Lett. 466, 300–304PubMedCrossRefGoogle Scholar
  74. Rosenkilde, M.M., Kledal, T.N. and Schwartz, T.W. (2005) High constitutive activity of a virus-encoded seven transmembrane receptor in the absence of the conserved DRY motif (Asp-Arg-Tyr) in transmembrane helix 3. Mol. Pharmacol. 68, 11–19PubMedGoogle Scholar
  75. Rovati, G.E., Capra, V. and Neubig, R.R. (2007) The highly conserved DRY motif of class A G protein-coupled receptors: beyond the ground state. Mol. Pharmacol. 71, 959–964PubMedCrossRefGoogle Scholar
  76. Saladin, R., De Vos, P., Guerre-Millo, M., Leturque, A., Girard, J., Staels, B. and Auwerx, J. (1995) Transient increase in obese gene expression after food intake or insulin administration. Nature 377, 527–529PubMedCrossRefGoogle Scholar
  77. Savill, J., Hogg, N. and Haslett, C. (1991) Macrophage vitronectin receptor, CD36, and thrombospondin cooperate in recognition of neutrophils undergoing programmed cell death. Chest 99, 6S–7SCrossRefGoogle Scholar
  78. Scantlebury, T., Maslowska, M. and Cianflone, K. (1998) Chylomicron-specific enhancement of acylation stimulating protein and precursor protein C3 production in differentiated human adipocytes. J. Biol. Chem. 273, 20903–20909PubMedCrossRefGoogle Scholar
  79. Scheer, A., Costa, T., Fanelli, F., de Benedetti, P.G., Mhaouty-Kodja, S., Abuin, L., Nenniger-Tosato, M. and Cotecchia, S. (2000) Mutational analysis of the highly conserved arginine within the Glu/Asp-Arg-Tyr motif of the alpha(1b)-adrenergic receptor: effects on receptor isomerization and activation. Mol. Pharmacol. 57, 219–231PubMedGoogle Scholar
  80. Scola, A.M., Higginbottom, A., Partridge, L.J., Reid, R.C., Woodruff, T., Taylor, S.M., Fairlie, D.P. and Monk, P.N. (2007) The role of the N-terminal domain of the complement fragment receptor C5L2 in ligand binding. J. Biol. Chem. 282, 3664–3671PubMedCrossRefGoogle Scholar
  81. Seibold, A., Dagarag, M. and Birnbaumer, M. (1998) Mutations of the DRY motif that preserve beta 2-adrenoceptor coupling. Recept. Channels 5, 375–385PubMedGoogle Scholar
  82. Stephens, J.M. and Pekala, P.H. (1991) Transcriptional repression of the GLUT4 and C/EBP genes in 3T3-L1 adipocytes by tumor necrosis factor-alpha. J. Biol. Chem. 266, 21839–21845PubMedGoogle Scholar
  83. Talle, M.A., Rao, P.E., Westberg, E., Allegar, N., Makowski, M., Mittler, R.S. and Goldstein, G. (1983) Patterns of antigenic expression on human monocytes as defined by monoclonal antibodies. Cell Immunol. 78, 83–99PubMedCrossRefGoogle Scholar
  84. Tams, J.W., Knudsen, S.M. and Fahrenkrug, J. (2001) Characterization of a G protein coupling “YL” motif of the human VPAC1 receptor, equivalent to the first two amino acids in the “DRY” motif of the rhodopsin family. J. Mol. Neurosci. 17, 325–330PubMedCrossRefGoogle Scholar
  85. Tataranni, P.A. and Ortega, E. (2005) A burning question: does an adipokine-induced activation of the immune system mediate the effect of overnutrition on type 2 diabetes? Diabetes 54, 917–927PubMedCrossRefGoogle Scholar
  86. Tchoukalova, Y.D., Sarr, M.G. and Jensen, M.D. (2004) Measuring committed preadipocytes in human adipose tissue from severely obese patients by using adipocyte fatty acid binding protein. Am. J. Physiol. Regul. Integr. Comp Physiol. 287, R1132–R1140PubMedCrossRefGoogle Scholar
  87. Tilg, H. and Moschen, A.R. (2006) Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat. Rev. Immunol. 6, 772–783PubMedCrossRefGoogle Scholar
  88. Tomas, E., Tsao, T.S., Saha, A.K., Murrey, H.E., Zhang, C.C., Itani, S.I., Lodish, H.F. and Ruderman, N.B. (2002) Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc. Natl. Acad. Sci.U S A 99, 16309–16313PubMedCrossRefGoogle Scholar
  89. Trayhurn, P. and Wood, I.S. (2004) Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br. J. Nutr. 92, 347–355PubMedCrossRefGoogle Scholar
  90. Trayhurn, P. and Wood, I.S. (2005) Signalling role of adipose tissue: adipokines and inflammation in obesity. Biochem. Soc. Trans. 33, 1078–1081PubMedCrossRefGoogle Scholar
  91. Uysal, K.T., Wiesbrock, S.M., Marino, M.W. and Hotamisligil, G.S. (1997) Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 389, 610–614PubMedCrossRefGoogle Scholar
  92. Ward, P.A. (2008) Role of the complement in experimental sepsis. J. Leukoc. Biol. 83, (3)467–470PubMedCrossRefGoogle Scholar
  93. Weisberg, S.P., McCann, D., Desai, M., Rosenbaum, M., Leibel, R.L. and Ferrante, A.W., Jr.(2003) Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808PubMedGoogle Scholar
  94. Wellen, K.E. and Hotamisligil, G.S. (2003) Obesity-induced inflammatory changes in adipose tissue. J. Clin. Invest. 112, 1785–1788PubMedGoogle Scholar
  95. Wilkison, W.O., Min, H.Y., Claffey, K.P., Satterberg, B.L. and Spiegelman, B.M. (1990) Control of the adipsin gene in adipocyte differentiation. Identification of distinct nuclear factors binding to single- and double-stranded DNA. J. Biol. Chem. 265, 477–482PubMedGoogle Scholar
  96. Xia, Z., Stanhope, K.L., Digitale, E., Simion, O.M., Chen, L., Havel, P. and Cianflone, K. (2004) Acylation-stimulating protein (ASP)/complement C3adesArg deficiency results in increased energy expenditure in mice. J. Biol. Chem. 279, 4051–4057PubMedCrossRefGoogle Scholar
  97. Xu, H., Barnes, G.T., Yang, Q., Tan, G., Yang, D., Chou, C.J., Sole, J., Nichols, A., Ross, J.S., Tartaglia, L.A. and Chen, H. (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin.Invest. 112, 1821–1830PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Robin MacLaren
    • 1
  • Wei Cui
    • 2
  • Katherine Cianflone
  1. 1.Department of Experimental MedicineMcGill UniversityMontrealCanada
  2. 2.Centre de Recherche Hôpital LavalUniversité LavalQuébecCanada

Personalised recommendations