Advertisement

Animal Models for Peritoneal Dialysis Research

  • M. M. Zweers
  • P. J. Margetts

The concept of peritoneal dialysis as a therapeutic modality for end stage renal disease was first demonstrated by Putnam in 1923 in a canine animal model [1]. Over the past 30 years, as peritoneal dialysis has been increasingly used and modified as a therapy for renal failure, animal models have been used to understand the physiology of the peritoneum membrane, and to test new therapeutic interventions to improve the outcomes of patients treated with peritoneal dialysis.

Keywords

Peritoneal Dialysis Solute Transport Mesothelial Cell Peritoneal Dialysis Patient Dialysis Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Putnam J. The living peritoneum as a dialysing membrane. Am J Physiol 1923; 63: 548–565.Google Scholar
  2. 2.
    Lameire N, Van Biesen W, Van Landschoot M, Wang T, Heimburger O, Bergstrom J, Lindholm B, Hekking LP, Havenith CE, Beelen RH. Experimental models in peritoneal dialysis: a European experience. Kidney Int 1998; 54: 2194–2206.PubMedGoogle Scholar
  3. 3.
    Lameire N, De Vriese A, Mortier S. Intravital videomicroscopy in peritoneal dialysis research. Nefrologia. 2003; 23 (suppl. 3): 28–31.PubMedGoogle Scholar
  4. 4.
    Mateijsen MA, van der Wal AC, Hendriks PM, Zweers MM, Mulder J, Struijk DG, Krediet RT. Vascular and interstitial changes in the peritoneum of CAPD patients with peritoneal sclerosis. Perit Dial Int 1999; 19: 517–525.PubMedGoogle Scholar
  5. 5.
    Williams JD, Craig KJ, Topley N, Von Ruhland C, Fallon M, Newman GR, Mackenzie RK, Williams GT. Peritoneal Biopsy Study Group. Morphologic changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol 2002; 13: 470–479.PubMedGoogle Scholar
  6. 6.
    Wang T, Cheng HH, Heimburger O, Chen C, Waniewski J, Bergstrom J, Lindholm B. Intraperitoneal addition of hyaluronan improves peritoneal dialysis efficiency. Perit Dial Int 1999; 19 (suppl. 2): S106–S111.PubMedGoogle Scholar
  7. 7.
    Zweers MM, Douma CE, de Waart DR, van der Wardt AB, Ho-Dac-Pannekeet MM, Krediet RT, Struijk DG. The standard peritoneal permeability analysis in the rabbit: a longitudinal model for peritoneal dialysis. Perit Dial Int 1999; 19: 56–64.PubMedGoogle Scholar
  8. 8.
    Krediet RT, Zemel D, Imholz AL, Struijk DG. Impact of surface area and permeability on solute clearances. Perit Dial Int 1994; 14 (suppl. 3): S70–S77.PubMedGoogle Scholar
  9. 9.
    Park MS, Heimburger O, Bergstrom J, Waniewski J, Werynski A, Lindholm B. Evaluation of an experimental rat model for peritoneal dialysis: fluid and solute transport characteristics. Nephrol Dial Transplant 1994; 9: 404–412.PubMedGoogle Scholar
  10. 10.
    Rippe A, Rippe C, Sward K, Rippe B. Disproportionally low clearance of macromolecules from the plasma to the peritoneal cavity in a mouse model of peritoneal dialysis. Nephrol Dial Transplant 2007; 22: 88–95.PubMedGoogle Scholar
  11. 11.
    Ni J, Cnops Y, Debaix H, Boisde I, Verbavatz JM, Devuyst O. Functional and molecular characterization of a peritoneal dialysis model in the C57BL/6 J mouse. Kidney Int 2005; 67: 2021–2031.PubMedGoogle Scholar
  12. 12.
    Van Biesen W, De Vriese AS, Carlsson O, Van Landschoot M, Dheuvaert T, Lameire NH. Comparison of the radioiodinated serum albumin (RISA) dilution technique with direct volumetric measurements in animal models of peritoneal dialysis. Perit Dial Int 2002; 22: 316–322.PubMedGoogle Scholar
  13. 13.
    Carlsson O, Rippe B. Enhanced peritoneal diffusion capacity of 51Cr-EDTA during the initial phase of peritoneal dialysis dwells: role of vasodilatation, dialysate 'stirring', and of interstitial factors. Blood Purif 1998; 16: 162–170.PubMedGoogle Scholar
  14. 14.
    Shin SK, Kamerath CD, Gilson JF, Leypoldt JK. Effects of anaesthesia on fluid and solute transport in a C57BL6 mouse model of peritoneal dialysis. Nephrol Dial Transplant 2006; 21: 2874–2880.PubMedGoogle Scholar
  15. 15.
    Bazargani F, Albrektsson A, Yahyapour N, Braide M. Low molecular weight heparin improves peritoneal ultrafiltration and blocks complement and coagulation. Perit Dial Int 2005; 25: 394–404.PubMedGoogle Scholar
  16. 16.
    Flessner MF, Choi J, Vanpelt H, He Z, Credit K, Henegar J, Hughson M. Correlating structure with solute and water transport in a chronic model of peritoneal inflammation. Am J Physiol Renal Physiol 2006; 290: F232–F240.PubMedGoogle Scholar
  17. 17.
    Flessner MF, Lofthouse J. Blood flow does not limit peritoneal transport. Perit Dial Int 1999; 19 (suppl. 2): S102–S105.PubMedGoogle Scholar
  18. 18.
    Fox SD, Leypoldt JK, Henderson LW. Visceral peritoneum is not essential for solute transport during peritoneal dialysis. Kidney Int 1991; 40: 612–620.PubMedGoogle Scholar
  19. 19.
    Kumano K, Go K, He M, Sakai T. Role of diaphragmatic, visceral, and parietal pathways in peritoneal fluid absorption in rat peritoneal dialysis. Perit Dial Int 1996; 16 (suppl, 1): S80–S83.PubMedGoogle Scholar
  20. 20.
    Yuan Z, Rodela H, Hay JB, Oreopoulos D, Johnston MG. Lymph flow and lymphatic drainage of inflammatory cells from the peritoneal cavity in a casein-peritonitis model in sheep. Lymphology 1994; 27: 114–128.PubMedGoogle Scholar
  21. 21.
    Fischbach M, Michallat AC, Zollner G, Dheu C, Barthelmebs M, Helwig JJ, Loichot C, Escande B, Schmitt KP, Schaefer F Haraldsson B, Jacques C. Measurement by magnetic resonance imaging of the peritoneal membrane in contact with dialysate in rats. Adv Perit Dial 2005; 21: 17–20.PubMedGoogle Scholar
  22. 22.
    Flessner MF, Lofthouse J, Zakaria ER. Improving contact area between the peritoneum and intraperitoneal therapeutic solutions. J Am Soc Nephrol 2001; 12: 807–813.PubMedGoogle Scholar
  23. 23.
    Flessner MF, Lofthouse J, Williams A. Increasing peritoneal contact area during dialysis improves mass transfer. J Am Soc Nephrol 2001; 12: 2139–2145.PubMedGoogle Scholar
  24. 24.
    Rosengren BI, Rippe B. Blood flow limitation in vivo of small solute transfer during peritoneal dialysis in rats. J Am Soc Nephrol 2003; 14: 1599–1604.PubMedGoogle Scholar
  25. 25.
    Rosengren BI, Rippe B, Tenstad O, Wiig H. Acute peritoneal dialysis in rats results in a marked reduction of interstitial colloid osmotic pressure. J Am Soc Nephrol 2004; 15: 3111–3116.PubMedGoogle Scholar
  26. 26.
    Zakaria ER, Lofthouse J, Flessner MF. In vivo effects of hydrostatic pressure on interstitium of abdominal wall muscle. Am J Physiol 1999; 276: H517–H529.PubMedGoogle Scholar
  27. 27.
    Ni J, Verbavatz JM, Rippe A, Boisde I, Moulin P, Rippe B, Verkman AS, Devuyst O. Aquaporin-1 plays an essential role in water permeability and ultrafiltration during peritoneal dialysis. Kidney Int 2006; 69: 1518–1525.PubMedGoogle Scholar
  28. 28.
    Rosengren BI, Rippe A, Rippe C, Venturoli D, Sward K, Rippe B. Transvascular protein transport in mice lacking endothelial caveolae. Am J Physiol Heart Circ Physiol 2006; 291: H1371–H1377.PubMedGoogle Scholar
  29. 29.
    Rosengren BI, Carlsson O, Venturoli D, Al Rayyes O, Rippe B. Transvascular passage of macromolecules into the peritoneal cavity of normo- and hypothermic rats in vivo: active or passive transport? J Vasc Res 2004; 41: 123–130.PubMedGoogle Scholar
  30. 30.
    Endemann M, Bergmeister H, Bidmon B, Boehm M, Csaicsich D, Malaga-Dieguez L, Arbeiter K, Regele H, Herkner K, Aufricht C. Evidence for HSP-mediated cytoskeletal stabilization in mesothelial cells during acute experimental peritoneal dialysis. Am J Physiol Renal Physiol 2007; 292: F47–F56.PubMedGoogle Scholar
  31. 31.
    Di Paolo N, Garosi G, Petrini G, Monaci G. Morphological and morphometric changes in mesothelial cells during peritoneal dialysis in the rabbit. Nephron 1996; 74: 594–599.PubMedGoogle Scholar
  32. 32.
    Von Ruhland CJ, Newman GR, Topley N, Williams JD. Can artifact mimic the pathology of the peritoneal mesothelium? Perit Dial Int 2003; 23: 428–433.Google Scholar
  33. 33.
    Zheng ZH, Sederholm F, Anderstam B, Qureshi AR, Wang T, Sodersten P, Bergstrom J, Lindholm B. Acute effects of peritoneal dialysis solutions on appetite in non-uremic rats. Kidney Int 2001; 60: 2392–2398.PubMedGoogle Scholar
  34. 34.
    Matsubara K, Kiyomoto H, Moriwaki K, Hara T, Kondo N, Shokoji T, Hitomi H, Aki Y, Aono M, Nishiyama A, Ohmori K, Kohno M. Leptin kinetics during peritoneal dialysis in acutely uraemic rats. Nephrology (Carlton) 2004; 9: 256–261.Google Scholar
  35. 35.
    Cheng HH, Wang T, Heimburger O, Bergstrom J, Lindholm B. Fluid and solute transport using different sodium concentrations in peritoneal dialysis solutions. Perit Dial Int 2001; 21: 65–71.PubMedGoogle Scholar
  36. 36.
    Mortier S, De Vriese AS, McLoughlin RM, Topley N, Schaub TP, Passlick-Deetjen J, Lameire NH. Effects of conventional and new peritoneal dialysis fluids on leukocyte recruitment in the rat peritoneal membrane. J Am Soc Nephrol 2003; 14: 1296–1306.PubMedGoogle Scholar
  37. 37.
    Mortier S, Faict D, Gericke M, Lameire N, De Vriese A. Effects of new peritoneal dialysis solutions on leukocyte recruitment in the rat peritoneal membrane. Nephron Exp Nephrol 2005; 101: e139–e145.PubMedGoogle Scholar
  38. 38.
    Breborowicz A, Polubinska A, Pawlaczyk K, Kuzlan-Pawlaczyk M, Moberly J, Martis L, Oreopoulos D. Intraperitoneal hyaluronan administration in conscious rats: absorption, metabolism, and effects on peritoneal fluid dynamics. Perit Dial Int 2001; 21: 130–135.PubMedGoogle Scholar
  39. 39.
    De Waart DR, Zweers MM, Struijk DG, Krediet RT. Icodextrin degradation products in spent dialysate of CAPD patients and the rat, and its relation with dialysate osmolality. Perit Dial Int 2001; 21: 269–274.PubMedGoogle Scholar
  40. 40.
    McLoughlin RM, Hurst SM, Nowell MA, Harris DA, Horiuchi S, Morgan LW, Wilkinson TS, Yamamoto N, Topley N, Jones SA. Differential regulation of neutrophil-activating chemokines by IL-6 and its soluble receptor isoforms. J Immunol 2004; 172: 5676–5683.PubMedGoogle Scholar
  41. 41.
    Calame W, Afram C, Blijleven N, Hendrickx RJ, Namavar F, Beelen RH. Establishing an experimental infection model for peritoneal dialysis: effect of inoculum and volume. Perit Dial Int 1993; 13 (suppl. 2): S79–S80.PubMedGoogle Scholar
  42. 42.
    Combet S, Van Landschoot M, Moulin P, Piech A, Verbavatz JM, Goffin E, Balligand JL, Lameire N, Devuyst O. Regulation of aquaporin-1 and nitric oxide synthase isoforms in a rat model of acute peritonitis. J Am Soc Nephrol 1999; 10: 2185–2196.PubMedGoogle Scholar
  43. 43.
    Wang T, Cheng HH, Heimburger O, Waniewski J, Bergstrom J, Lindholm B. Effect of peritonitis on peritoneal transport characteristics: glucose solution versus polyglucose solution. Kidney Int 2000; 57: 1704–1712.PubMedGoogle Scholar
  44. 44.
    Margetts PJ, Kolb M, Yu L, Hoff CM, Holmes CJ, Anthony DC, Gauldie J. Inflammatory cytokines, angiogenesis, and fibrosis in the rat peritoneum. Am J Pathol 2002; 160: 2285–2294.PubMedGoogle Scholar
  45. 45.
    Kim YL, Kim SH, Kim JH, Kim SJ, Kim CD, Cho DK, Kim YJ, Moberly JB. Effects of peritoneal rest on peritoneal transport and peritoneal membrane thickening in continuous ambulatory peritoneal dialysis rats. Perit Dial Int 1999; 19 (suppl. 2): S384–S387.PubMedGoogle Scholar
  46. 46.
    Welten AG, Zareie M, van Den BJ, ter Wee PM, Schalkwijk CG, Driesprong BA, Mul FP, Hordijk PL, Beelen RH, Hekking LH. In vitro and in vivo models for peritonitis demonstrate unchanged neutrophil migration after exposure to dialysis fluids. Nephrol Dial Transplant 2004; 19: 831–839.PubMedGoogle Scholar
  47. 47.
    Hung KY, Shyu RS, Fang CC, Tsai CC, Lee PH, Tsai TJ, Hsieh BS. Dipyridamole inhibits human peritoneal mesothelial cell proliferation in vitro and attenuates rat peritoneal fibrosis in vivo. Kidney Int 2001; 59: 2316–2324.PubMedGoogle Scholar
  48. 48.
    Breborowicz A, Polubinska A, Wu G, Tam P, Oreopoulos DG. N-acetylglucosamine reduces inflammatory response during acute peritonitis in uremic rats. Blood Purif 2006; 24: 274–281.PubMedGoogle Scholar
  49. 49.
    Ni J, Moulin P, Gianello P, Feron O, Balligand JL, Devuyst O. Mice that lack endothelial nitric oxide synthese are protected against functional and structural modifications induced by acute peritonitis. J Am Soc Nephrol 2003; 14: 3205–3216.PubMedGoogle Scholar
  50. 50.
    Catalan MP, Esteban J, Subira D, Egido J, Ortiz A. Inhibition of caspases improves bacterial clearance in expiremental peritonitis. Perit Dial Int 2003; 23: 123–126.PubMedGoogle Scholar
  51. 51.
    De Vriese AS, Lameire NH. Intravital microscopy: an integrated evaluation of peritoneal function and structure. Nephrol Dial Transplant 2001; 16: 657–660.PubMedGoogle Scholar
  52. 52.
    Bazargani F, Rother RP, Braide M. The roles of complement factor C5a and CICN-1 in glucose transport, ultrafiltration, and neutrophil recruitement during peritoeneal dialysis. Perit Dial Int 2006; 26: 688–696.PubMedGoogle Scholar
  53. 53.
    Breborowicz A, Polubinska A, Moberly J, Ogle K, Martis L, Oreopoulos D. Hyaluronan modifies inflammatory response and peritoneal permeability during peritonitis in rats. Am J Kidney Dis 2001; 37: 594–600.PubMedGoogle Scholar
  54. 54.
    Luo Q, Cheung AK, Kamerath CD, Reimer LG, Leypoldt JK. Increased protein loss during peritonitis associated with peritoneal dialysis is neutrophil dependent. Kidney Int 2000; 57: 1736–1742.PubMedGoogle Scholar
  55. 55.
    Peng H, Cheung AK, Reimer LG, Kamerath CD, Leypoldt JK. Effect of indomethacin on peritoneal protein loss in a rabbit model of peritonitis. Kidney Int 2001; 59: 44–51.PubMedGoogle Scholar
  56. 56.
    Bazargani F. Acute inflammation in peritoneal dialysis: experimental studies in rats. Characterization of regulatory mechanisms. Swed Dent J Suppl 2005; 171: 1–57.PubMedGoogle Scholar
  57. 57.
    Ferrier ML, Combet S, Van Landschoot M, Stoenoiu MS, Cnops Y, Lameire N, Devuyst O. Inhibition of nitric oxide synthase reverses changes in peritoneal permeability in a rat model of acute peritonitis. Kidney Int 2001; 60: 2343–2350.PubMedGoogle Scholar
  58. 58.
    Mortier S, Lameire NH, De Vriese AS. Animal models in peritoneal dialysis research: a need for consensus. Perit Dial Int 2005; 25: 16–24.PubMedGoogle Scholar
  59. 59.
    Miller TE, Findon G, Rowe L. Characterization of an animal model of continuous peritoneal dialysis in chronic renal impairment. Clin Nephrol 1992; 37: 42–47.PubMedGoogle Scholar
  60. 60.
    Pawlaczyk K, Kuzlan-Pawlaczyk M, Anderstam B, Heimburger O, Bergstrom J, Waniewski J, Breborowicz A, Lindholm B. Effects of intraperitoneal heparin on peritoneal transport in a chronic animal model of peritoneal dialysis. Nephrol Dial Transplant 2001; 16: 669–671.PubMedGoogle Scholar
  61. 61.
    Pawlaczyk K, Kuzlan-Pawlaczyk M, Wieczorowska-Tobis K, Polubinska A, Breborowicz A, Oreopoulos D. Evaluation of the effect of uremia on peritoneal permeability in an experimental model of continuous ambulatory peritoneal dialysis in anephric rats. Adv Perit Dial 1999; 15: 32–35.PubMedGoogle Scholar
  62. 62.
    Choi J, Credit K, Henderson K, Deverkadra R, Vanpelt HM, He Z, Flessner MF. Antibiotic prophylaxis in an animal model of chronic peritoneal exposure. Perit Dial Int 2006; 26: 249–258.PubMedGoogle Scholar
  63. 63.
    De Vriese AS, Mortier S, Cornelissen M, Palmans E, Vanacker NJ, Leyssens A, Faict D, De Ridder L, Lameire NH. The effects of heparin administration in an animal model of chronic peritoneal dialysate exposure. Perit Dial Int 2002; 22: 566–572.PubMedGoogle Scholar
  64. 64.
    Mortier S, De Vriese AS, Leyssens A, Vanacker NJ, Faict D, Cornelissen M, De Ridder L, Lameire NH. Antibiotic administration in an animal model of chronic peritoneal dialysate exposure. Perit Dial Int 2003; 23: 331–338.PubMedGoogle Scholar
  65. 65.
    Zweers MM, Splint LJ, Krediet RT, Struijk DG. Ultrastructure of basement membranes of peritoneal capillaries in a chronic peritoneal infusion model in the rat. Nephrol Dial Transplant 2001; 16: 651–654.PubMedGoogle Scholar
  66. 66.
    Ishii Y, Sawada T, Shimizu A, Tojimbara T, Nakajima I, Fuchinoue S, Teraoka S. An experimental sclerosing encapsulating peritonitis model in mice. Nephrol Dial Transplant 2001; 16: 1262–1266.PubMedGoogle Scholar
  67. 67.
    Mishima Y, Miyazaki M, Abe K, Ozono Y, Shioshita K, Xia Z, Harada T, Taguchi T, Koji T, Kohno S. Enhanced expression of heat shock protein 47 in rat model of peritoneal fibrosis. Perit Dial Int 2003; 23: 14–22.PubMedGoogle Scholar
  68. 68.
    Yoshio Y, Miyazaki M, Abe K, Nishino T, Furusu A, Mizuta Y, Harada T, Ozono Y, Koji T, Kohno S. TNP-470, an angiogenesis inhibitor, suppresses the progression of peritoneal fibrosis in mouse experimental model. Kidney Int 2004; 66: 1677–1685.PubMedGoogle Scholar
  69. 69.
    Io H, Hamada C, Ro Y, Ito Y, Hirahara I, Tomino Y. Morphologic changes of peritoneum and expression of VEGF in encapsulated peritoneal sclerosis rat models. Kidney Int 2004; 65: 1927–1936.PubMedGoogle Scholar
  70. 70.
    Tanabe K, Maeshima Y, Ichinose K, Kitayama H, Takazawa Y, Hirokoshi K, Kinomura M, Sugiyama H, Makino H. Endostatin peptide, an inhibitor of angiogenesis, prevents the progression of peritoneal sclerosis in a mouse experimental model. Kidney Int 2006; 71: 227–238.PubMedGoogle Scholar
  71. 71.
    Nishino T, Miyazaki M, Abe K, Farusu A, Mishima Y, Harada T, Ozono Y, Koji T, Kohno S. Antisense oligonucleotides against collagen-binding stress protein HSP47 suppress peritoneal fibrosis in rats. Kidney Int 2003; 64: 887–896.PubMedGoogle Scholar
  72. 72.
    Sawada T, Ishii Y, Tojimbara T, Nakajima I, Fuchinoue S, Teraoka S. The ACE inhibitor, quinapril, ameliorates peritoneal fibrosis in an encapsulating peritoneal sclerosis model in mice. Pharmacol Res 2002; 46: 505–510.PubMedGoogle Scholar
  73. 73.
    Imai H, Nakamoto H, Fukushima R, Ishida Y, Yamanouchi Y, Suzuki H. Role of adhesion molecules in the progression of peritoneal sclerosis. Adv Perit Dial 2003; 19: 180–185.PubMedGoogle Scholar
  74. 74.
    Nakamoto H, Imai H, Ishida Y, Yamanouchi Y, Inoue T, Okada H, Suzuki H. New animal models for encapsulating peritoneal sclerosis – role of acidic solution. Perit Dial Int 2001; 21(suppl. 3): S349–S353.PubMedGoogle Scholar
  75. 75.
    Fang CC, Lai MN, Chien CT, Hung KY, Tsai CC, Tsai TJ, Hsieh BS. Effects of pentoxifylline on peritoneal fibroblasts and silica-induced peritoneal fibrosis. Perit Dial Int 2003; 23: 228–236.PubMedGoogle Scholar
  76. 76.
    Gotloib L, Wajsbrot V, Cuperman Y, Shostak A. Acute oxidative stress induces peritoneal hyperpermeability, mesothelial loss, and fibrosis. J Lab Clin Med 2004; 143: 31–40.PubMedGoogle Scholar
  77. 77.
    Mun KC, Yeo MY, Kim SP, Kim HC, Kwak CS. Chronic peritoneal inflammation by cyanate in rats. Perit Dial Int 2000; 20: 699–702.PubMedGoogle Scholar
  78. 78.
    Levine S, Saltzman A. Repeated toxic injury of peritoneum: accumulation of toxicity and adaptation to injury. J Appl Toxicol 2000; 20: 431–434.PubMedGoogle Scholar
  79. 79.
    Levine S, Saltzman A. Abdominal cocoon: an animal model for a complication of peritoneal dialysis. Perit Dial Int 1996; 16: 613–616.PubMedGoogle Scholar
  80. 80.
    Zareie M, De Vriese AS, Hekking LH, ter Wee PM, Schalkwijk CG, Driesprong BA, Schadee-Eestermans IL, Beelen RH, Lameire N, van den Born J. Immunopathological changes in a uraemic rat model for peritoneal dialysis. Nephrol Dial Transplant 2005; 20: 1350–1361.PubMedGoogle Scholar
  81. 81.
    Kakuta T, Tanaka R, Satoh Y, Izuhara Y, Inagi R, Nangaku M, Saito A, Miyata T. Pyridoxamine improves functional, structural, and biochemical alterations of peritoneal membranes in uremic peritoneal dialysis rats. Kidney Int 2005; 68: 1326–1336.PubMedGoogle Scholar
  82. 82.
    Combet S, Ferrier ML, Van Landschoot M, Stoenoiu M, Moulin P, Miyata T, Lameire N, Devuyst O. Chronic uremia induces permeability changes, increased nitric oxide synthase expression, and structural modifications in the peritoneum. J Am Soc Nephrol 2001; 12: 2146–2157.PubMedGoogle Scholar
  83. 83.
    De Vriese AS, Tilton RG, Mortier S, Lameire NH. Myofibroblast transdifferentiation of mesothelial cells is mediated by RAGE and contributes to peritoneal fibrosis in uraemia. Nephrol Dial Transplant 2006; 21: 2549–2555.PubMedGoogle Scholar
  84. 84.
    Stoenoiu MS, De Vriese AS, Brouet A, Moulin P, Feron O, Lameire N, Devuyst O. Experimental diabetes induces functional and structural changes in the peritoneum. Kidney Int 2002; 62: 668–678.PubMedGoogle Scholar
  85. 85.
    De Vriese AS, Tilton RG, Stephan CC, Lameire NH. Vascular endothelial growth factor is essential for hyperglycemia-induced structural and functional alterations of the peritoneal membrane. J Am Soc Nephrol 2001; 12: 1734–1741.PubMedGoogle Scholar
  86. 86.
    De Vriese AS, Flyvbjerg A, Mortier S, Tilton RG, Lameire NH. Inhibition of the interaction of AGE-RAGE prevents hyperglycemia-induced fibrosis of the peritoneal membrane. J Am Soc Nephrol 2003; 14: 2109–2118.PubMedGoogle Scholar
  87. 87.
    Verkman AS. Lessons on renal physiology from transgenic mice lacking aquaporin water channels. J Am Soc Nephrol 1999; 10: 1126–1135.PubMedGoogle Scholar
  88. 88.
    Yang B, Folkesson HG, Yang J, Matthay MA, Ma T, Verkman AS. Reduced osmotic water permeability of the peritoneal barrier in aquaporin-1 knockout mice. Am J Physiol 1999; 276: C76–C81.PubMedGoogle Scholar
  89. 89.
    Margetts PJ, Kolb M, Galt T, Hoff CM, Shockley TR, Gauldie J. Gene transfer of transforming growth factor-beta1 to the rat peritoneum: effects on membrane function. J Am Soc Nephrol 2001; 12: 2029–2039.PubMedGoogle Scholar
  90. 90.
    Martin-Martinez MD, Stoenoiu M, Verkaeren C, Devuyst O, Delporte C. Recombinant adenovirus administration in rat peritoneum: endothelial expression and safety concerns. Nephrol Dial Transplant 2004; 19: 1293–1297.PubMedGoogle Scholar
  91. 91.
    Engler H, Machemer TR, Schluep T, Wen SF, Quijano E, Wills KN, Harper AE, Maneval DC, Conroy SE. Development of a formulation that enhances gene expression and efficacy following intraperitoneal administration in rabbits and mice. Mol Ther 2003; 7: 558–564.PubMedGoogle Scholar
  92. 92.
    Margetts PJ, Bonniaud P, Liu L, Hoff CM, Holmes CJ, West-Mays JA, Kelly MM. Transient overexpression of TGFbeta-1 induces epithelial mesenchymal transition in the rodent peritoneum. J Am Soc Nephrol 2005; 16: 425–436.PubMedGoogle Scholar
  93. 93.
    Margetts PJ, Gyorffy S, Kolb M, Yu L, Hoff CM, Holmes CJ, Gauldie J. Antiangiogenic and antifibrotic gene therapy in a chronic infusion model of peritoneal dialysis in rats. J Am Soc Nephrol 2002; 13: 721–728.PubMedGoogle Scholar
  94. 94.
    Di Paolo N, Vanni L, Sacchi G. Autologous implant of peritoneal mesothelium in rabbits and man. Clin Nephrol 1990; 34: 179–184.PubMedGoogle Scholar
  95. 95.
    Hekking LH, Harvey VS, Havenith CE, van Den BJ, Beelen RH, Jackman RW, Nagy JA. Mesothelial cell transplantation in models of acute inflammation and chronic peritoneal dialysis. Perit Dial Int 2003; 23: 323–330.PubMedGoogle Scholar
  96. 96.
    Hekking LH, Zweers MM, Keuning ED, Driesprong BA, de Waart DR, Beelen RH, van Den BJ. Apparent successful mesothelial cell transplantation hampered by peritoneal activation. Kidney Int 2005; 68: 2362–2367.PubMedGoogle Scholar
  97. 97.
    Einbinder T, Sufaro Y, Yusim I, Byk G, Passlick-Deetjen J, Chaimovitz C, Douvdevani A. Correction of anemia in uremic mice by genetically modified peritoneal mesothelial cells. Kidney Int 2003; 63: 2103–2112.PubMedGoogle Scholar
  98. 98.
    Hoff CM, Cusick JL, Masse EM, Jackman RW, Nagy JA, Shockley TR. Modulation of transgene expression in mesothelial cells by activation of an inducible promoter. Nephrol Dial Transplant 1998; 13: 1420–1429.PubMedGoogle Scholar
  99. 99.
    Okada H, Inoue T, Kanno Y, Kobayashi T, Watanabe Y, Ban S, Neilson EG, Suzuki H. Selective depletion of fibroblasts preserves morphology and the functional integrity of peritoneum in transgenic mice with peritoneal fibrosing syndrome. Kidney Int 2003; 64: 1722–1732.PubMedGoogle Scholar
  100. 100.
    Krediet RT, Lindholm B, Rippe B. Pathophysiology of peritoneal membrane failure. Perit Dial Int 2000; 20 (suppl. 4): S22–S42.PubMedGoogle Scholar
  101. 101.
    Van Westrhenen R, de Waart DR, Akman S, Krediet RT. Assessment of peritoneal fibrosis by conventional light microscopy and hydroxyproline measurements. Perit Dial Int 2004; 24: 290–292.PubMedGoogle Scholar
  102. 102.
    Hirahara I, Ogawa Y, Kusano E, Asano Y. Activation of matrix metalloproteinase-2 causes peritoneal injury during peritoneal dialysis in rats. Nephrol Dial Transplant 2004; 19: 1732–1741.PubMedGoogle Scholar
  103. 103.
    Gallimore B, Gagnon RF, Richards GK. Response of chronic renal failure mice to peritoneal Staphylococcus epidermidis challenge: impact of repeated peritoneal instillation of dialysis solution. Am J Kidney Dis 1989; 14: 184–195.PubMedGoogle Scholar
  104. 104.
    Di Paolo N, Sacchi G, Garosi G, Sansoni E, Bargagli L, Ponzo P, Tanganelli P, Gaggiotti E. Omental milky spots and peritoneal dialysis – review and personal experience. Perit Dial Int 2005; 25: 48–57.PubMedGoogle Scholar
  105. 105.
    Hekking LH, Zareie M, Driesprong BA, Faict D, Welten AG, de G, I, Schadee-Eestermans IL, Havenith CE, van Den BJ, ter Wee PM, Beelen RH. Better preservation of peritoneal morphologic features and defense in rats after long-term exposure to a bicarbonate/lactate-buffered solution. J Am Soc Nephrol 2001; 12: 2775–2786.PubMedGoogle Scholar
  106. 106.
    Rippe B, Stelin G, Haraldsson B. Computer simulations of peritoneal fluid transport in CAPD. Kidney Int 1991; 40: 315–325.PubMedGoogle Scholar
  107. 107.
    Zeltzer E, Klein O, Rashid G, Katz D, Korzets Z, Bernheim J. Intraperitoneal infusion of glucose-based dialysate in the rat – an animal model for the study of peritoneal advanced glycation end-products formation and effect on peritoneal transport. Perit Dial Int 2000; 20: 656–661.PubMedGoogle Scholar
  108. 108.
    Peng WX, Guo QY, Liu SM, Liu CZ, Lindholm B, Wang T. Comparison of three chronic dialysis models. Adv Perit Dial 2000; 16: 51–54.PubMedGoogle Scholar
  109. 109.
    Breborowicz A, Knapowski J. Augmentation of peritoneal dialysis clearance with procaine. Kidney Int 1984; 26: 392–396.PubMedGoogle Scholar
  110. 110.
    Pecoits-Filho RF, Twardowski ZJ, Kim YL, Khanna R, Moore H, Nolph KD. The absence of toxicity in intraperitoneal iron dextran administration: a functional and histological analysis. Perit Dial Int 1998; 18: 64–70.PubMedGoogle Scholar
  111. 111.
    Zegwaard AH, Struijk DG, de Graaff M, Krediet RT, Zweers M.M. The effects of an experimental peritoneal dialysis solution on the peritoneum in a uraemic rat model. Nephrol Dial Transplant 2006; 21 (suppl. 4): 254.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Academic Medical Center University of AmsterdamAmsterdam
  2. 2.Dept. of Medicine, McMaster University, Div. of Nephrology, St. Joseph’s HospitalHamiltonCanada

Personalised recommendations