Advertisement

Physiology of High/Fast Transporters

  • R. T. Krediet

Patients on peritoneal dialysis have large interindividual differences in the velocity of solute equilibration between plasma and the dialysate [1]. In an attempt to standardize assessment of this variability, Twardowski et al. developed the peritoneal equilibration test (PET) [2]. In the PET solute transport after a standardized dwell of 4 h is expressed as the dialyse/plasma (D/P) concentration ratio of various solutes. D/P creatinine had a mean value of 0.65, but it ranged from 0.34 to 1.03 [3]. A similar range was reported in another study using the PET [4]. Based on D/P creatinine, patients have been divided into four transport categories: low, low average, high average, and high [3]. This categorization was based on the mean value and the standard deviation (SD). Low is less than 1 SD, low average is between the mean and –1 SD, low average is between the mean and +1 SD, and high is above 1 SD. The cut-off levels are: <0.50 for low, 0.50–0.65 for low average, 0.65–0.81 for high average, and >0.81 for high transporters. About 10% of prevalent PD patients can be classified as high transporters [5].

Keywords

Vascular Endothelial Growth Factor Peritoneal Dialysis Continuous Ambulatory Peritoneal Dialysis Continuous Ambulatory Peritoneal Dialysis Patient Transport Category 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Nolph KD, Twardowski ZJ, Popovich RP, Rubin J. Equilibration of peritoneal dialysis solutions during long-dwell exchanges. J Lab Clin Med 1979; 93: 246–256.PubMedGoogle Scholar
  2. 2.
    Twardowski ZJ, Nolph KD, Khanna R, Prowant B, Ryan LP, Moore HL, Nielsen MP. Peritoneal equilibration test. Perit Dial Bull 1987; 7: 138–147.Google Scholar
  3. 3.
    Twardowski ZJ, Khanna R, Nolph KD. Peritoneal dialysis modifications to avoid CAPD drop-out. Adv CAPD 1987; 7: 171–178.Google Scholar
  4. 4.
    Davies SJ, Brown B, Bryan J, Russel GI. Clinical evaluation of the peritoneal equilibration test: a population-based study. Nephrol Dial Transplant 1993; 8: 64–70.PubMedGoogle Scholar
  5. 5.
    Blake P, Burkart JM, Churchill DN, Dangirdas J, Depner T, Hamburger RJ, et al. Recommended clinical practices for maximizing peritoneal dialysis clearances. Perit Dial Int 1996; 16: 448–456.PubMedGoogle Scholar
  6. 6.
    Wang T, Heimbürger O, Waniewski J, Bergström J, Lindholm B. Increased peritoneal permeability is associated with decreased small-solute removal and higher mortality in CAPD patients. Nephrol Dial Transplant 1998; 13: 1242–1249.CrossRefPubMedGoogle Scholar
  7. 7.
    Wang T, Waniewski J, Heimbürger O, Werynski A, Lindholm B. A quantitative analysis of sodium transport and removal during peritoneal dialysis. Kidney Int 1997; 52: 1609–1616.CrossRefPubMedGoogle Scholar
  8. 8.
    Twardowski ZJ. Clinical value of standardized equilibration testes in CAPD patients. Blood Purif 1989; 7: 95–108.CrossRefPubMedGoogle Scholar
  9. 9.
    Wu C-H, Huang C-C, Huang J-Y, Wu M-S, Leu M-L. High flux peritoneal membrane is a risk factor in survival of CAPD treatment. Adv Perit Dial 1996; 12: 105–109.PubMedGoogle Scholar
  10. 10.
    Churchill DN, Thorpe KE, Nolph KD, Keshaviah PR, Oreopoulos DG, Pagé D for the CANUSA Study Group. Increased peritoneal membrane transport is associated with decreased patient and technique survival for continuous peritoneal dialysis patients. J Am Soc Nephrol 1998; 9: 1285–1292.PubMedGoogle Scholar
  11. 11.
    Rocco MV, Jordan JR, Burkart JM. The efficacy number as a predictor of morbidity and mortality in peritoneal dialysis patients. J Am Soc Nephrol 1993; 4: 1184–1191.PubMedGoogle Scholar
  12. 12.
    Davies SJ, Philips L, Griffiths AM, Russell LH, Naish PF, Russell GI. What really happens to people on long-term peritoneal dialysis? Kidney Int 1998; 54: 2207–2217.CrossRefPubMedGoogle Scholar
  13. 13.
    Diaz-Buxo JA, Lowrie EG, Lew NL, Zhang SM, Zhu X, Lazarus JM. Associates of mortality among peritoneal dialysis patients with special reference to peritoneal transport rates and solute clearance. Am J Kidney Dis 1999; 33: 523–534.CrossRefPubMedGoogle Scholar
  14. 14.
    Hung KY, Lin TJ, Tsai TJ, Chen WY. Impact of peritoneal membrane transport on technique failure and patient survival in a population on automated peritoneal dialysis. ASAIO J 1999; 45: 568–573.CrossRefPubMedGoogle Scholar
  15. 15.
    Passadakis PS, Thodis ED, Panagoutsos SA, Selisiou CA, Pitta EM, Vargemezis VA. Outcome for continuous ambulatory peritoneal dialysis patients is not predicted by peritoneal permeability characteristics. Adv Perit Dial 2000; 16: 2–6.PubMedGoogle Scholar
  16. 16.
    Chung SH, Chu WS, Lee HA, Kim YH, Lee IS, Lindholm B, Lee HB. Peritoneal transport characteristics, comorbid diseases and survival in CAPD patients. Perit Dial Int 2000; 20: 541–547.PubMedGoogle Scholar
  17. 17.
    Bhaskaran S, Schaubel DE, Jassal SV, Thodis E, Singhal MK, Bargman JM, Vas SI, Oreopoulos DG. The effect of small solute clearances on survival of anuric peritoneal dialysis patients. Perit Dial Int 2000; 20: 181–187.PubMedGoogle Scholar
  18. 18.
    Cueto-Manzano AM, Correa-Rotter R. Is high peritoneal transport rate an independent risk factor for CAPD mortality? Kidney Int 2000; 57: 314–320.CrossRefPubMedGoogle Scholar
  19. 19.
    Ates K, Nergizoglu G, Keven K, Sen A, Kutlay S, Erturk S, Duman N, Karatan O, Ertug AE. Effect of fluid and sodium removal on mortality in peritoneal dialysis patients. Kidney Int 2001; 60: 767–776.CrossRefPubMedGoogle Scholar
  20. 20.
    Szeto CC, Law MC, Wong TY, Leung CB, Li PK. Peritoneal transport status correlates with morbidity but not longitudinal change of nutritional status of continuous ambulatory peritoneal dialysis patients: A 2-year prospective study. Am J Kidney Dis 2001; 37: 329–336.CrossRefPubMedGoogle Scholar
  21. 21.
    Park HC, Kang SW, Choi KH, Ha SK, Han DS, Lee HY. Clinical outcome in continuous ambulatory peritoneal dialysis patients is not influenced by high peritoneal transport status. Perit Dial Int 2001; 21 (Suppl 3): S80–S85.PubMedGoogle Scholar
  22. 22.
    Agarwal DK, Sharma AP, Gupta A, Sharma RK, Pandey CM, Kumar R, Masih SP. Peritoneal equilibration test in Indian patients on continuous ambulatory peritoneal dialysis: does it affect patient outcome? Adv Perit Dial 2000; 20: 148–151.Google Scholar
  23. 23.
    Iliescu EA, Marcovina SM, Morton AR, Lam M, Koschinsky ML. Apolipoprotein(a) phenotype and lipoprotein(a) level predict peritoneal dialysis patient mortality. Perit Dial Int 2002; 22: 492–499.PubMedGoogle Scholar
  24. 24.
    Aslam N, Bernadini J, Fried L, Piraino B. Large body mass index does not predict short-term survival in peritoneal dialysis patients. Perit Dial Int 2002; 22: 191–196.PubMedGoogle Scholar
  25. 25.
    Chung SH, Heimburge O, Lindholm B, Lee HB. Peritoneal dialysis patients survival: a comparison between a Swedish and a Korean centre. Nephrol Dial Transplant 2005; 20: 1207–1213.CrossRefPubMedGoogle Scholar
  26. 26.
    Rumpsfeld M, McDonald SP, Johnson DW. Higher peritoneal transport status is associated with higher mortality and technique failure in the Australian and New Zealand peritoneal dialysis patient populations. J Am Soc Nephrol 2006; 17: 271–278.CrossRefPubMedGoogle Scholar
  27. 27.
    Brown EA, Davies SJ, Rutherford P, Meeus F, Borras M, Riegel W, Divino Filho JC, Vonesh E, van Bree M. Survival of functionally anuric patients on automated peritoneal dialysis: The European APD Outcome Study. J Am Soc Nephrol 2003; 14: 2948–2957.CrossRefPubMedGoogle Scholar
  28. 28.
    Brimble KS, Walker M, Margetts PJ, Kundhal KK, Rabbat CG. Meta-analysis: peritoneal membrane transport, mortality, and technique failure in peritoneal dialysis. J Am Soc Nephrol 2006; 17: 2591–2598.CrossRefPubMedGoogle Scholar
  29. 29.
    Davies SJ, van Biesen W, Nicholas J, Lameire N. Integrated care. Perit Dial Int 2001; 21 (Suppl 3): S269–S274.PubMedGoogle Scholar
  30. 30.
    Heaf JG, Løkkegaard H, Madsen M. Initial survival advantage of peritoneal dialysis relative to haemodialysis. Nephrol Dial Transplant 2002; 17: 112–117.CrossRefPubMedGoogle Scholar
  31. 31.
    Liem YS, Wong JB, Hunnik MGM, De Charro FTh, Winkelmayer WC. Comparison of hemodialysis and peritoneal dialysis survival in The Netherlands. Kidney Int 2007; 72: 153–158.CrossRefGoogle Scholar
  32. 32.
    Imholz ALT, Koomen GCM, Struijk DG, Arisz L, Krediet RT. The effect of dialysate osmolarity on the transport of low molecular weight solutes and proteins during CAPD. Kidney Int 1993; 43: 1339–1346.CrossRefPubMedGoogle Scholar
  33. 33.
    Lo W-K, Brendolan A, Prowant BF, Moore HL, Khanna R, Twardowski ZJ, Nolph KD. Changes in the peritoneal equilibration test in selected chronic peritoneal dialysis patients. J Am Soc Nephrol 1994; 4: 1466–1474.PubMedGoogle Scholar
  34. 34.
    Rumpsfeld M, McDonald SP, Purdie DM, Collins J, Johnson DW. Predictors of baseline peritoneal transport status in Australian and New Zealand peritoneal dialysis patients. Am J Kidney Dis 2004; 43: 492–501.CrossRefPubMedGoogle Scholar
  35. 35.
    Goldman M, Vandenabeele P, Moulart J, Amraoui Z, Abramowicz D, Nortier J, Vanherweghem JL, Fiers W. Intraperitoneal secretion of interleukin-6 during continuous ambulatory peritoneal dialysis. Nephron 1990; 56: 277–280.CrossRefPubMedGoogle Scholar
  36. 36.
    Zemel D, ten Berge RJM, Struijk DG, Bloemena E, Koomen GCM, Krediet RT. Interleukin-6 in CAPD patients without peritonitis: Relationship to the intrinsic permeability of the peritoneal membrane. Clin Nephrol 1992; 37: 97–103.PubMedGoogle Scholar
  37. 37.
    Zweers MM, de Waart DR, Smit W, Struijk DG, Krediet RT. The growth factors VEGF and TGF-β1 in peritoneal dialysis. J Lab Clin Med 1999; 134: 124–132.CrossRefPubMedGoogle Scholar
  38. 38.
    Krediet RT. Dialysate cancer antigen 125 concentration as marker of peritoneal membrane status in patients treated with chronic peritoneal dialysis. Perit Dial Int 2001; 21: 560–567.PubMedGoogle Scholar
  39. 39.
    Pecoits-Filho R, Araujo MRT, Lindholm B, Stenvinkel P, Abensur H, Romão jr JE, Marcondes M, Freira de Oliveira AH, Noronha IL. Plasma and dialysate IL-6 and VEGF concentrations are associated with high peritoneal solute transport rate. Nephrol Dial Transplant 2002; 17: 1480–1486.CrossRefPubMedGoogle Scholar
  40. 40.
    Rodrigues A, Martins M, Santos MJ, Fonseca I, Oliveira JC, Cabrita A, Castro e Melo J, Krediet RT. Evaluation of effluent markers cancer antigen 125, vascular endothelial growth factor and interleukin-6: Relationship with peritoneal transport. Adv Perit Dial 2004; 20: 8–12.PubMedGoogle Scholar
  41. 41.
    Rodrigues AS, Martins M, Korevaar JC, Silva S, Oliveira JC, Cabrita A, Castro e Melo J, Krediet RT. Evaluation of peritoneal transport and membrane status in peritoneal dialysis: focus on incident fast transporters. Am J Nephrol 2007; 27: 84–91.CrossRefPubMedGoogle Scholar
  42. 42.
    Van Esch S, Zweers MM, Jansen MAM, de Waart DR, van Manen JG Krediet RT. Determinants of peritoneal solute transport rates in newly started nondiabetic peritoneal dialysis patients. Perit Dial Int 2004; 24: 554–561.PubMedGoogle Scholar
  43. 43.
    Pecoits-Filho R, Carvalho MJ, Stenvinkel P, Lindholm B, Heimburger O. Systemic and intraperitoneal interleukin-6 system during the first year of peritoneal dialysis. Perit Dial Int 2006; 26: 53–63.PubMedGoogle Scholar
  44. 44.
    Ho-Dac-Pannekeet MM, Krediet RT. Inflammatory changes in vivo during CAPD. What can the effluent tell us? Kidney Int 1996; 50 (Suppl 56): S12–S16.Google Scholar
  45. 45.
    Zemel D, Imholz ALT, de Waart DR, Dinkla C, Struijk DG, Krediet RT. Appearance of tumor necrosis factor-x and soluble TNF-receptors I and II in peritoneal effluent of CAPD. Kidney Int 1994; 46: 1422–1430.CrossRefPubMedGoogle Scholar
  46. 46.
    Selgas R, del Peso G, Bajo M-A, Castro M-L, Molina S, Cirugeda A, Sanchez-Tomero JA, Castro M-J, Alvarez V, Corbi A, Vara F. Spontaneous VEGF production by cultured mesothelial cells from patients on peritoneal dialysis. Perit Dial Int 2000; 20: 798–801.PubMedGoogle Scholar
  47. 47.
    Visser CE, Brouwer-Steenbergen JJE, Betjes MGH, Koomen GCM, Beelen RHJ, Krediet RT. Cancer antigen 125: a bulk marker for the mesothelial cell mass in stable peritoneal dialysis patients. Nephrol Dial Transplant 1995; 10: 64–69.PubMedGoogle Scholar
  48. 48.
    Lai KN, Lai KB, Szeto CC, Ho KKL, Poon P, Lam CWK, Leung JCK. Dialysate cell population and cancer antigen 125 in stable continuous ambulatory peritoneal dialysis patients: their relationship with transport parameters. Am J Kidney Dis 1997; 29: 699–705.CrossRefPubMedGoogle Scholar
  49. 49.
    Pannekeet MM, Koomen GCM, Struijk DG, Krediet RT. Dialysate CA125 in stable CAPD patients: no relation with transport parameters. Clin Nephrol 1995; 44: 248–154.PubMedGoogle Scholar
  50. 50.
    Ho-dac-Pannekeet MM, Hiralall JK, Struijk DG, Krediet RT. Longitudinal follow-up of CA125 in peritoneal effluent. Kidney Int 1997; 51: 888–893.CrossRefPubMedGoogle Scholar
  51. 51.
    Douma CE, de Waart DR, Struijk DG, Krediet RT. Are phospholipase A2 and nitric oxide involved in the alterations in peritoneal transport during CAPD peritonitis? J Lab Clin Med 1998; 132: 329–340.CrossRefPubMedGoogle Scholar
  52. 52.
    Krediet RT, Zuyderhoudt FMJ, Boeschoten EW, Arisz L. Alterations in the peritoneal transport of water and solutes during peritonitis in continuous ambulatory peritoneal dialysis patients. Eur J Clin Invest 1987; 17: 43–52.CrossRefPubMedGoogle Scholar
  53. 53.
    Zemel D, Koomen GCM, Hart AAM, ten Berge RJM, Struijk DG, Krediet RT. Relationship of TNF-α, interleukin-6 and prostogladins to peritoneal permeability for macromolecules during longitudinal follow-up of peritonitis in continuous ambulatory peritoneal dialysis. J Lab Clin Med 1993; 122: 686–696.PubMedGoogle Scholar
  54. 54.
    Smit W, van den Berg N, Schouten N, Aikens E, Struijk DG, Krediet RT. Free water transport in fast transport status: A comparison between CAPD peritonitis and long-term PD. Kidney Int 2004; 65: 298–303.CrossRefPubMedGoogle Scholar
  55. 55.
    Blumenkrantz MJ, Gahl GM, Kopple JD, Kamdar AV, Jonas MR, Kessel M, Coburn JW. Protein losses during peritoneal dialysis. Kidney Int 1981; 19: 593–602.CrossRefPubMedGoogle Scholar
  56. 56.
    Heimburger O, Waniewski J, Werynski A, Traneaus A, Lindholm B. Peritoneal transport in CAPD patients with permanent loss of ultrafiltration capacity. Kidney Int 1990; 38: 495–506.CrossRefPubMedGoogle Scholar
  57. 57.
    Smit W, Schouten N, van den Berg N, Langedijk M, Struijk DG, Krediet RT for the Netherlands Ultrafiltration failure study group. Analysis of the prevalence and causes of ultrafiltration failure during long-term peritoneal dialysis: a cross sectional study. Perit Dial Int 2004; 24: 562–570.PubMedGoogle Scholar
  58. 58.
    Davies SJ. Longitudinal relationship between solute transport and ultrafiltration capacity in peritoneal dialysis patients. Kidney Int 2004; 66: 2437–2445.CrossRefPubMedGoogle Scholar
  59. 59.
    Smit W, Struijk DG, Ho-dac-Pannekeet MM, Krediet RT. Quantifications of free water transport in peritoneal dialysis. Kidney Int 2004; 66: 849–854.CrossRefPubMedGoogle Scholar
  60. 60.
    Parikova A, Smit W, Struijk DG, Krediet RT. Analysis of fluid transport pathways and their determinants in peritoneal dialysis patients with ultrafiltration failure. Kidney Int 2006; 70: 1988–1994.PubMedGoogle Scholar
  61. 61.
    Honda K, Nitta K, Horita S, Yumura W, Nikei H. Morphological changes in the vasculature of patients on CAPD with ultrafiltration failure. Nephron 1996; 72: 171–176.CrossRefPubMedGoogle Scholar
  62. 62.
    Mateijsen MAM, van der Wal AC, Hendriks PMEM, Zweers MM, Mulder JB, Struijk DG, Krediet RT. Vascular and interstitial changes in the peritoneum of CAPD patients with peritoneal sclerosis. Perit Dial Int 1999; 19: 517–525.PubMedGoogle Scholar
  63. 63.
    Williams JD, Craig KJ, Topley N, von Ruhland C, Fallon M, Newman GR, Mackenzie RK, Williams GT on behalf of the peritoneal biopsy study group. Morphologic changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol 2002; 13: 470–479.PubMedGoogle Scholar
  64. 64.
    Brown EA, Davies SJ, Rutherford P, Meeus F, Borras M, Riegel W, Divino-Filho JC, Vonesh E, van Bree M on behalf of the EAPOS group. Survival of functionally anuric patients on automated peritoneal dialysis: the European APD outcome study. J Am Soc Nephrol 2003; 14: 2948–2957.CrossRefPubMedGoogle Scholar
  65. 65.
    Jansen MAM, Termorshuizen F, Korevaar JC, Dekker FW, Boeschoten EW, Krediet RT for the NECOSAD study group. Predictors of survival in anuric peritoneal dialysis patients. Kidney Int 2005; 68: 1199–1205.CrossRefPubMedGoogle Scholar
  66. 66.
    Olden RW van, Guchelaar H-J, Struijk DG, Krediet RT, Arisz L. Acute effects of high dose furosemide on residual renal function in CAPD patients. Perit Dial Int 2003; 23: 339–347.PubMedGoogle Scholar
  67. 67.
    Medcalf JF, Harris KPG, Walls J. Role of diuretics in the preservation of residual renal function in patients on continuous ambulatory peritoneal dialysis. Kidney Int 2001; 59: 1128–1133.CrossRefPubMedGoogle Scholar
  68. 68.
    Li P K-T, Chow K-M, Wong T Y-H, Leung C-B, Szeto C-C. Effects of an angiotensin-converting enzyme inhibitor on residual renal function in patients receiving peritoneal dialysis; a randomized controlled study. Ann Intern Med 2003; 139: 105–112.PubMedGoogle Scholar
  69. 69.
    Davies S, Woodrow G, Donovan K, Plum J, Williams P, Johansson AC, Bosselmann H-P, Heimburger O, Simonson O, Davenport A, Traneaus A, Divino-Filho JC. Icodextrin improves the fluid status of peritoneal dialysis patients: results of a double-blind randomized controlled trial. J Am Soc Nephrol 2003; 14: 1338–2344.Google Scholar
  70. 70.
    Konings CJAM, Koomen JP, Schonck M, Gladziwa U, Wirtz J, Gerlag PG, Hoorntje SJ, Wolters J, van der Sande FM, Leunissen KML. Effect of icodextrin on volume status, blood pressure and echocardiographic parameters: a randomized study. Kidney Int 2003; 63: 1556–1563.CrossRefPubMedGoogle Scholar
  71. 71.
    Caglar K, Hakim RM, Ikizler TA. Approaches to the reversal of malnutrition inflammation and atherosclerosis in end-stage renal disease. Nutr Rev 2002; 60: 378–387.CrossRefPubMedGoogle Scholar
  72. 72.
    Davies SJ, Phillips L, Naish PF, Russel GI. Peritoneal glucose exposure and changes in membrane solute transport with time on peritoneal dialysis. J Am Soc Nephrol 2001; 12: 1046–1051.PubMedGoogle Scholar
  73. 73.
    Hekking LH, Zareie M, Driesprong BA, Faict D, Welten AG, de Greeuw I, Schadee-Eestermans IL, Havenith CE, van den Born J, ter Wee PM, Beelen RH. Better preservation of peritoneal morphologic features and defense in rats after long-term exposure to a bicarbonate/lactate-buffered solution. J Am Soc Nephrol 2001; 12: 2775–2786.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Academic Medical Center University of AmsterdamThe Netherlands

Personalised recommendations