Functional Structure of the Peritoneum as a Dialyzing Membrane

  • L. Gotloib

More than a century ago, Robinson [1], after summarizing more than two centuries of research, defined the diverse natural functions of the peritoneum as follows: a) to regulate fluid for nutrient and mechanical purposes: b) to facilitate motion; c) to minimize friction, and d) to conduct vessels and nerves to the viscera.


Peritoneal Dialysis Mesothelial Cell Continuous Ambulatory Peritoneal Dialysis Postcapillary Venule Pinocytotic Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Robinson B. The Peritoneum. Chicago, IL: WT Keener, 1897, p. 13.Google Scholar
  2. 2.
    Ganter G. Uber die Beseitigung giftiger Stoffe aus dem Blute durch dialyse. Munchen Med Wochenschr 1923; 70: 1478–1480.Google Scholar
  3. 3.
    Boen ST. Peritoneal Dialysis in Clinical Medicine. Springfield, IL: Charles C. Thomas, 1964.Google Scholar
  4. 4.
    Tenckhoff H, Schechter H. A bacteriologically safe peritoneal access device for repeated dialysis. Trans Am Soc Artif Intern Organs 1968; 14: 181–187.PubMedGoogle Scholar
  5. 5.
    Popovich RP, Moncrief JW, Decherd JF, Bomar JB, Pyle WK. Preliminary verification of the low dialysis clearance hypothesis via a novel equilibrium peritoneal dialysis technique. Absts Am Soc Artif Intern Organs 1976; 5: 64.Google Scholar
  6. 6.
    Nolph KD, Sorkin M, Rubin J, Arfania D, Prowant B, Fruto L, Kennedy D. Continuous ambulatory peritoneal dialysis: three-year experience at one center. Ann Intern Med 1980; 92: 609–613.PubMedGoogle Scholar
  7. 7.
    Luschka H. Die Structure der serosen haute des menschen. Tubingen, 1851.Google Scholar
  8. 8.
    Putiloff PV. Materials for the study of the laws of growth of the human body in relation to the surface areas of different systems: the trial on Russian subjects of planigraphic anatomy as a mean of exact anthropometry. Presented at the Siberian branch of the Russian Geographic Society, Omsk, 1886.Google Scholar
  9. 9.
    Wegner G. Chirurgische bemerkingen uber die peritoneal Hole, mit Besonderer Berucksichtigung der ovariotomie. Arch Klin Chir 1877; 20: 51–59.Google Scholar
  10. 10.
    Esperanca MJ, Collins DL. Peritoneal dialysis efficiency in relation to body weight. J Pediatr Surg 1966; 1: 162–169.CrossRefGoogle Scholar
  11. 11.
    Krediet RT, Zemel D, Imholz AL, Struijk DG. Impact of surface area and permeability on solute clearances. Perit Dial Int 1994; 14 (suppl. 3): S70–S77.PubMedGoogle Scholar
  12. 12.
    Chagnac A, Herskovitz P, Weinstein T, Elyashiv S, Hirsh J, Hammel I, Gafter U. The peritoneal membrane in peritoneal dialysis patients: estimation of its functional surface area by applying stereologic methods to computerized tomography. J Am Soc Nephrol 1999; 10: 342–346.PubMedGoogle Scholar
  13. 13.
    Flessner M. Small-solute transport across specific peritoneal tissue surfaces in the rat. J Am. Soc Nephrol 1996; 7: 225–233.PubMedGoogle Scholar
  14. 14.
    Gotloib L, Digenis GE, Rabinovich S, Medline A, Oreopolous DG. Ultrastructure of normal rabbit mesentery. Nephron 1983; 34: 248–255.PubMedCrossRefGoogle Scholar
  15. 15.
    Gosselin RE, Berndt WO. Diffusional transport of solutes through mesentery and peritoneum. J Theor Biol 1962; 3: 487.CrossRefGoogle Scholar
  16. 16.
    Haar JL, Ackerman GA. A phase and electron microscopic study of vasculogenesis and erythropoiesis in the yolk sac of the mouse. Anat Rec 1971; 170: 199–224.PubMedCrossRefGoogle Scholar
  17. 17.
    Ukeshima A, Hayashi Y, Fujimore T. Surface morphology of the human yolk sac: endoderm and mesothelium. Arch Histol Jpn 1986; 49: 483–494.Google Scholar
  18. 18.
    Puulmala RM. Morphologic comparison of parietal and visceral peritoneal epithelium in fetus and adult. Anat Rec 1937; 68: 327–330.CrossRefGoogle Scholar
  19. 19.
    Robertson JD. Molecular structure of biological membranes. In: Lima de Faria A, ed. Handbook of Molecular Cytology. Amsterdam: North Holland, 1969, p. 1404.Google Scholar
  20. 20.
    Kolossow A. Weber die struktur des endothels der pleuroperitoneal hole der blut und lymphgefasse. Biol Centralbl Bd 1892; 12: S87–S94.Google Scholar
  21. 21.
    Odor L. Observations of the rat mesothelium with the electron and phase microscopes. Am J Anat 1954; 95: 433–465.PubMedCrossRefGoogle Scholar
  22. 22.
    Felix DM, Dalton AJ. A comparison of mesothelial cells and macrophages in mice after the intraperitoneal inoculation of melanine granules. J Biophys Biochem Cytol 1956; 2 (suppl. part 2): 109–117.PubMedCrossRefGoogle Scholar
  23. 23.
    Baradi AF, Hope J. Observations on ultrastructure of rabbit mesothelium. Exp Cell Res 1964; 34: 33–34.PubMedCrossRefGoogle Scholar
  24. 24.
    Baradi AF, Crae SN. A scanning electron microscope study of mouse peritoneal mesothelium. Tissue Cell 1976; 8: 159.PubMedCrossRefGoogle Scholar
  25. 25.
    Whitaker D, Papadimitriou JM, Walters MNI. The mesothelium and its reactions: a review. CRC Crit Rev Toxicol 1982; 10: 81–144.CrossRefGoogle Scholar
  26. 26.
    Di Paolo N, Sacchi G, De-Mia M et al. Morphology of the peritoneal membrane during continuous ambulatory peritoneal dialysis. Nephron 1986; 44: 204–211.PubMedCrossRefGoogle Scholar
  27. 27.
    Kondo T, Takeuchi K, Doi Y, Yonemura S, Nagata S, Tsukita S. ERM (ezrin–radixin/moesin)-based molecular mechanism of microvillar breakdown at an early stage of apoptosis. J Cell Biol 1997; 139: 749–758.PubMedCrossRefGoogle Scholar
  28. 28.
    Bonelli G, Sacchi MC, Barbiero G et al. Apoptosis of L929 cells by etoposide: a quantitative and kinetic approach. Exp Cell Res 1996; 228: 292–305.PubMedCrossRefGoogle Scholar
  29. 29.
    Boe R, Gjertsen BT, Doskeland SO, Vintermyr OK. 8-Chloro-cAMP induces apoptotic cell death in a human mammary carcinoma cell (MCF–7) line. Br J Cancer 1995; 72: 1151–1159.PubMedCrossRefGoogle Scholar
  30. 30.
    Efskind L. Experimentelle Untersuchungen uber die Biologie des Peritoneums. 1. Die morphologische reaktion des peritoneums auf riexze. Oslo: Det Norske Videnk aps Academii, 1940.Google Scholar
  31. 31.
    Gotloib L, Wajsbrut V, Shostak A, Kushnier R. Acute and long-term changes observed in imprints of mouse mesothelium exposed to glucose-enriched, lactated, buffered dialysis solutions. Nephron 1995; 70: 466–477.PubMedCrossRefGoogle Scholar
  32. 32.
    Fukata H. Electron microscopic study on normal rat peritoneal mesothelium and its changes in adsorption of particulate iron dextran complex. Acta Pathol Jpn 1963; 13: 309–325.PubMedGoogle Scholar
  33. 33.
    Lieberman-Meffet D, White H. The Greater Omentum: Anatomy, Physiology, Pathology, Surgery with an Historical Survey. Berlin: Springer-Verlag, 1983, p. 6.Google Scholar
  34. 34.
    Madison LD, Bergstrom MU, Porter B, Torres R, Shelton E. Regulation of surface topography of mouse peritoneal cells. J Cell Biol 1979; 82: 783.PubMedCrossRefGoogle Scholar
  35. 35.
    Gotloib L, Shostak A. Ultrastructural morphology of the peritoneum: new findings and speculations on transfer of solutes and water during peritoneal dialysis. Perit Dial Bull 1987; 7: 119–129.Google Scholar
  36. 36.
    Gotloib L. Anatomical basis for peritoneal permeability. In: La Greca G, Chiaramonte S, Fabris A, Feriani M, Ronco G, eds. Peritoneal Dialysis. Milan: Wichtig Ed, 1986, pp. 3–10.Google Scholar
  37. 37.
    Gotloib L, Shostak A, Jaichenko J. Ruthenium red stained anionic charges of rat and mice mesothelial cells and basal lamina: the peritoneum is a negatively charged dialyzing membrane. Nephron 1988; 48: 65–70.PubMedCrossRefGoogle Scholar
  38. 38.
    Luft JH. Fine structure of capillary and endocapillary layer as revealed by ruthenium red. Fed Proc 1966; 25: 1173–1183.Google Scholar
  39. 39.
    Gotloib L, Bar-Sella P, Jaichenko J, Shostak A. Ruthenium red stained polyanionic fixed charges in peritoneal microvessels. Nephron 1987; 47: 22–28.PubMedCrossRefGoogle Scholar
  40. 40.
    Curry FE, Michel CC. A fiber matrix model of capillary permeability. Microvasc Res 1980; 20: 96–99.PubMedCrossRefGoogle Scholar
  41. 41.
    Morris RG, Hargreaves AD, Duvall E. Wyllie AH. Hormone-induced cell death. 2. Surface changes in thymocytes undergoing apoptosis. Am J Pathol 1984; 115: 426–436.PubMedGoogle Scholar
  42. 42.
    Moog F. The lining of the small intestine. Sci Am 1981; 2455: 116–125.Google Scholar
  43. 43.
    Gotloib L. Anatomy of the peritoneal membrane. In: La Greca G, Biasoli G, Ronco G, eds. Peritoneal dialysis. Proceedings of the First Int Course. Vicenza, Italy. Milan: Wichtig Ed., 1982, pp. 17–30. Google Scholar
  44. 44.
    Leak LV. Distribution of cell surface charges on mesothelium and lymphatic endothelium. Microvasc Res 1986; 31: 18–30.PubMedCrossRefGoogle Scholar
  45. 45.
    Lewis WH. Pinocytosis. Bull Johns Hopkins Hosp 1931; 49: 17–23.Google Scholar
  46. 46.
    Casley-Smith JR. The dimensions and numbers of small vesicles in cells, endothelial and mesothelial and the significance of these for endothelial permeability. J Microsc 1969; 90: 251–269.PubMedGoogle Scholar
  47. 47.
    Casley-Smith JR, Chin JC. The passage of cytoplasmic vesicles across endothelial and mesothelial cells. J Microsc 1971; 93: 167–189.PubMedGoogle Scholar
  48. 48.
    Fedorko ME, Hirsch JG, Fried B. Studies on transport of macromolecules and small particles across mesothelial cells of the mouse omentum. Exp Cell Res 1971; 63: 313–323.CrossRefGoogle Scholar
  49. 49.
    Simionescu N, Simionescu M, Palade GE. Structural basis of permeability in sequential segments of the microvasculature. II. Pathways followed by microperoxidase across the endothelium. Microvasc Res 1978; 15: 17–36.PubMedCrossRefGoogle Scholar
  50. 50.
    Palade GE, Simionescu M, Simionescu N. Structural aspects of the permeability of the microvascular endothelium. Acta Physiol Scand Suppl 1979; 463: 11–32.PubMedGoogle Scholar
  51. 51.
    Palade GE. Fine structure of blood capillaries. J Appl Phys 1953; 24: 1424.Google Scholar
  52. 52.
    Florey HW. The transport of materials across the capillary wall. Q J Exp Physiol 1964; 49: 117–128.Google Scholar
  53. 53.
    Pappenheimer JR, Renkin EM, Borrero LM. Filtration, diffusion and molecular sieving through peripheral capillary membranes. A contribution to the pore theory of capillary permeability. Am J Physiol 1951; 167: 13–46.PubMedGoogle Scholar
  54. 54.
    Frokjaer-Jensen J. The plasmalemmal vesicular system in capillary endothelium. Prog Appl Microcirc 1983; 1: 17–34.Google Scholar
  55. 55.
    Wagner RC, Robinson CS. High voltage electron microscopy of capillary endothelial vesicles. Microvasc Res 1984; 28: 197–205.PubMedCrossRefGoogle Scholar
  56. 56.
    Smart EJ, Foster DC, Ying YS, Kamen BA, Anderson RGW. Protein kinase G activators inhibit receptor-mediated potocytosis by preventing internalization of caveolae. J Cell Biol 1994; 124: 307–313.PubMedCrossRefGoogle Scholar
  57. 57.
    Lisanti MP, Scherer PE, Vidugiriene J et al. Characterization of caveolin-rich membrane domains isolated from an endothelial-rich source: implications for human disease. J Cell Biol 1994; 126: 111–126.PubMedCrossRefGoogle Scholar
  58. 58.
    Moldovan NI, Heltianu G, Simionescu N, Simionescu M. Ultrastructural evidence of differential solubility in Triton X–100 of endothelial vesicles and plasma membrane. Exp Cell Res 1995; 219: 309–313.PubMedCrossRefGoogle Scholar
  59. 59.
    Shasby DM, Roberts RL. Transendothelial transfer of macromolecules in vivo. Fed Proc 1987; 46: 2506–2510.PubMedGoogle Scholar
  60. 60.
    Shasby DM, Shasby SS. Active transendothelial transport of albumin. Interstitium to lumen. Circ Res 1985; 57: 903–908.PubMedGoogle Scholar
  61. 61.
    Milici AJ, Watrous NE, Stukenbrok M, Palade GE. Transcytosis of albumin in capillary endothelium. J Cell Biol 1987; 105: 2603–2612.PubMedCrossRefGoogle Scholar
  62. 62.
    Ghitescu L, Bendayan M. Transendothelial transport of serum albumin: a quantitative immunocytochemical study. J Cell Biol 1992; 17: 747–755.Google Scholar
  63. 63.
    Schnitzer JE, Oh P. Albondin-mediated capillary permeability to albumin. Differential role of receptors in endothelial transcytosis and endocytosis of native and modified albumins. J Biol Chem 1994; 269: 6072–6082.PubMedGoogle Scholar
  64. 64.
    Ghitescu L, Galis Z, Simionescu M, Simionescu N. Differentiated uptake and transcytosis of albumin in successive vascular segments. J Submicrosc Cytol Pathol 1988; 20: 657–669.PubMedGoogle Scholar
  65. 65.
    Williams SK, Devenny JJ, Bitensky MW. Micropinocytic ingestion of glycosylated albumin by isolated microvessels: possible role in pathogenesis of diabetic microangiopathy. Proc Natl Acad Sci U S A 1981; 78: 2393–2397.PubMedCrossRefGoogle Scholar
  66. 66.
    Ghilescu L, Fixman A, Simionescu M, Simionescu N. Specific binding sites for albumin restricted to plasmalemmal vesicles of continuous capillary endothelium: receptor-mediated transcytosis. J Cell Biol 1986; 102: 1304–1311.CrossRefGoogle Scholar
  67. 67.
    Predescu D, Simionescu M, Simionescu N, Palade GE. Binding and transcytosis of glycoalbumin by the microvascular endothelium of the murine myocardium: evidence that glycoalbumin behaves as a bifunctional ligand. J Cell Biol 1988; 107: 1729–1738.PubMedCrossRefGoogle Scholar
  68. 68.
    Dehouck B, Fenart L, Dehouck MP, Pierce A, Torpier G, Cecchelli R. A new function for the LDL receptor: transcytosis of LDL across the blood–brain barrier. J Cell Biol 1997; 138: 877–889.PubMedCrossRefGoogle Scholar
  69. 69.
    Simionescu N, Simionescu M. Interactions of endogenous lipoproteins with capillary endothelium in spontaneously hyperlipoproteinemic rats. Microvasc Res. 1985; 30: 314–332.PubMedCrossRefGoogle Scholar
  70. 70.
    Snelting-Havinga I, Mommaas M, Van-Hinsbergh VW, Daha MR, Daems WT, Vermeer BJ. Immunoelectron microscopic visualization of the transcytosis of low density lipoproteins in perfused rat arteries. Eur J Cell Biol 1989; 48: 27–36.PubMedGoogle Scholar
  71. 71.
    Vasile E, Simionescu M, Simionescu N. Visualization of the binding, endocytosis, and transcytosis of low-density lipoprotein in the arterial endothelium in situ. J Cell Biol 1983; 96: 1677–1689.PubMedCrossRefGoogle Scholar
  72. 72.
    Ghinea N, Hai MTV, Groyer-Picard MT, Milgrom E. How protein hormones reach their target cells. Receptor mediated transcytosis of hCG through endothelial cells. J Cell Biol 1994; 125: 87–97.PubMedCrossRefGoogle Scholar
  73. 73.
    Bendayan M, Rasio EA. Transport of insulin and albumin by the microvascular endothelium of the rete mirabile. J Cell Sci 1996; 109: 1857–1864.PubMedGoogle Scholar
  74. 74.
    Schmidt AM, Vianna M, Gerlach M et al. Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface. J Biol Chem 1992; 267: 14987–14997.PubMedGoogle Scholar
  75. 75.
    Predescu D, Predescu S, McQuistan T, Palade GE. Transcytosis of alpha 1-acidic glycoprotein in the continuous microvascular endothelium. Proc Natl Acad Sci U S A 1998; 95: 6175–6180.PubMedCrossRefGoogle Scholar
  76. 76.
    Pappenheimer JR. Passage of molecules through capillary walls. Physiol Rev 1953; 33: 387–423.PubMedGoogle Scholar
  77. 77.
    Grotte G. Passage of dextran molecules across the blood–lymph barrier. Acta Chir Scand 1956; (suppl. 211): 1–84.Google Scholar
  78. 78.
    Nolph KD. The peritoneal dialysis system. Contrib Nephrol 1979; 17: 44–49.PubMedGoogle Scholar
  79. 79.
    Gotloib L, Shostak A. Endocytosis and transcytosis of albumin–gold through mice peritoneal mesothelium. Kidney Int 1995; 47: 1274–84.PubMedCrossRefGoogle Scholar
  80. 80.
    Schnitzer JE, Allard J, Oh P. NEM inhibits transcytosis, endocytosis and capillary permeability: implication of caveolae fusion in endothelia. Am J Physiol 1995; 168: H48–H55.Google Scholar
  81. 81.
    Schnitzer JE, Oh P, Pinney E, Allard J. Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J Cell Biol 1994; 127: 1217–1232.PubMedCrossRefGoogle Scholar
  82. 82.
    Tiruppathi G, Song W, Bergenfeldt M, Sass P, Malik AB. Gp60 activation mediates albumin transcytosis in endothelial cells by tyrosine kinase-dependent pathway. J Biol Chem 1997; 272: 25968–25975.PubMedCrossRefGoogle Scholar
  83. 83.
    Schnitzer JE, Oh P, Jacobson BS, Dvorak AM. Caveolae from luminal plasmalemma of rat lung endothelium: microdomains enriched in caveolin, Ca (2+)-ATPase, and inositol triphos–phate receptor. Proc Natl Acad Sci U S A 1995; 92: 1759–1763.PubMedCrossRefGoogle Scholar
  84. 84.
    Glenney JR, Soppet D. Sequence and expression of caveolin, a protein component of caveolae plasma membrane domains phosphorylated on tyrosine in Rous sarcoma virus-transformed fibroblasts. Proc Natl Acad Sci U S A 1992; 89: 10517–10521.PubMedCrossRefGoogle Scholar
  85. 85.
    Bush KT, Stuart RO, Li SH et al. Epithelial inositol 1,4,5-triphosphate receptors. Multiplicity of localization, solubility, and isoforms. J Biol Chem 1994; 269: 23694–23699.PubMedGoogle Scholar
  86. 86.
    Brown D, Lydon J, McLaughlin M, Stuart-Tilley A, Tyszkowski R, Alper S. Antigen retrieval in cryostat tissue sections and cultured cells by treatment with sodium dodecyl sulfate (SDS). Histochem Cell Biol 1996; 105: 261–267.PubMedCrossRefGoogle Scholar
  87. 87.
    Breton S, Lisante MP, Tyszkowski R, McLaughlin M, Brown D. Basolateral distribution of caveolin-1 in the kidney. Absence from ATPase-coated endocytic vesicles in intercalated cells. J Histochem Cytochem 1998; 46: 205–214.PubMedGoogle Scholar
  88. 88.
    Schmid SL. Clathrin-coated vesicle formation and protein sorting: an integrated process. Annu Rev Biochem 1997; 66: 511–548.PubMedCrossRefGoogle Scholar
  89. 89.
    Pfeffer SR, Drubin DG, Kelly RB. Identification of three coated vesicle components as alpha- and beta-tubulin linked to a phosphorylated 50,000-dalton polypeptide. J Cell Biol 1983; 97: 40–47.PubMedCrossRefGoogle Scholar
  90. 90.
    Pearse BMF. Clathrin: a unique protein associated with intracellular transfer of membrane by coated vesicles. Proc Natl Acad Sci U S A 1976; 73: 1255–1259.PubMedCrossRefGoogle Scholar
  91. 91.
    Lin HC, Duncan JA, Kozasa T, Gilman AG. Sequestration of the G protein beta gamma subunit complex inhibits receptor-mediated endocytosis. Proc Natl Acad Sci U S A 1998; 95: 505–560.CrossRefGoogle Scholar
  92. 92.
    Damke H. Dynamin and receptor-mediated endocytosis. FEBS Lett 1996; 389: 48–51.PubMedCrossRefGoogle Scholar
  93. 93.
    Sweitzer SM, Hinsshaw JE. Dynamin undergoes a GTP dependent conformational change causing vesiculation. Cell 1998; 93: 1021–1029.PubMedCrossRefGoogle Scholar
  94. 94.
    Henley JR, Krueger EW, Oswald BJ, McNiven MA. Dynamin-mediated internalization of caveolae. J Cell Biol 1998; 141: 85–99.PubMedCrossRefGoogle Scholar
  95. 95.
    Oh P, McIntosh DP, Schnitzer JE. Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J Cell Biol 1998; 141: 101–114.PubMedCrossRefGoogle Scholar
  96. 96.
    Chambers R, Zweifach BW. Capillary cement in relation to permeability. J Cell Comp Physiol 1940; 15: 255–272.CrossRefGoogle Scholar
  97. 97.
    Rippe B. A three-pore model of peritoneal transport. Perit Dial Int 1993; 13 (suppl. 2): S35–S38.PubMedGoogle Scholar
  98. 98.
    Simionescu N, Simionescu M, Palade GE. Differentiated microdomains on the luminal surface of capillary endothelium. I. Preferential distribution of anionic sites. J Cell Biol 1981; 90: 605–613.PubMedCrossRefGoogle Scholar
  99. 99.
    Steinman RM, Mellman IS, Muller WA, Cohn ZA. Endocytosis and the recycling of plasma membrane. J Cell Biol 1983; 96: 1–27.PubMedCrossRefGoogle Scholar
  100. 100.
    Shea SM, Karnovsky MJ. Brownian motion: a theoretical explanation for the movement of vesicles across the endothelium. Nature (Lond) 1966; 212: 353–354.CrossRefGoogle Scholar
  101. 101.
    Simionescu M, Simionescu N, Palade GE. Morphometric data on the endothelium of blood capillaries. J Cell Biol 1974; 60: 128–152.PubMedCrossRefGoogle Scholar
  102. 102.
    Wagner JC, Johnson NF, Brown DG, Wagner MMF. Histology and ultrastructure of serially transplanted rat mesotheliomas. Br J Cancer 1982; 46: 294–299.PubMedCrossRefGoogle Scholar
  103. 103.
    Petersen OW, Van Deurs B. Serial section analysis of coated pits and vesicles involved in adsorptive pinocytosis in cultured fibroblasts. J Cell Biol 1983; 96: 277–281.PubMedCrossRefGoogle Scholar
  104. 104.
    Peters KR, Carley WW, Palade GE. Endothelial plasmalemmal vesicles have a characteristic stripped bipolar surface structure. J Cell Biol 1985; 101: 2233–2238.PubMedCrossRefGoogle Scholar
  105. 105.
    Fishchereder M, Schryppel B, Wiese P, Fink M, Banas B, Schmidbauer S, Schlyndorff D. Regulation of glucose transporters in human peritoneal mesothelial cells. J Nephrol 2003; 16: 103–109.Google Scholar
  106. 106.
    Sands JM. Regulation of urea transporter proteins in kidney and liver. Mount Sinai J Med 2000;67: 112–119.Google Scholar
  107. 107.
    Takahashi H, Hasegawa H, Kamijo T et al. Regulation and localization of peritoneal water channels in rats. Perit Dial Int 1998; 18 (suppl. 2): S70.Google Scholar
  108. 108.
    Henle FGH. Splacnologie, Vol. II, pp. 175, 1875.Google Scholar
  109. 109.
    Simionescu M, Simionescu N, Silbert J, Palade GE. Differentiated microdomains on the luminal surface of the capillary endothelium. II. Partial characterization of their anionic sites. J Cell Biol 1981; 90: 614–621.PubMedCrossRefGoogle Scholar
  110. 110.
    Simionescu M, Simionescu N. Organization of cell junctions in the peritoneal mesothelium. J Cell Biol 1977; 74: 98.PubMedCrossRefGoogle Scholar
  111. 111.
    Von Recklinghausen FD. Zur Fettresorption. Arch Pathol Anat Physiol 1863; Bd 26: S172–S208.CrossRefGoogle Scholar
  112. 112.
    Bizzozero G, Salvioli G. Sulla suttura della membrana serosa e particolarmente del peritoneo diaphragmatico. Giorn R Acad Med Torino 1876; 19: 466–470.Google Scholar
  113. 113.
    Allen L. The peritoneal stomata. Anat Rec 1937; 67: 89–103.CrossRefGoogle Scholar
  114. 114.
    French JE, Florey HW, Morris B. The adsorption of particles by the lymphatics of the diaphragm. Q J Exp Physiol 1959; 45: 88–102.Google Scholar
  115. 115.
    Tourneux F, Herman G. Recherches sur quelques epitheliums plats dans la serie animale (Deuxieme partie). J Anat Physiol 1876; 12: 386–424.Google Scholar
  116. 116.
    Kolossow A. Uber die struktur des pleuroperitoneal und gefassepithels (endothels). Arch Mikr Anat 1893; 42: 318–383.CrossRefGoogle Scholar
  117. 117.
    Simer PM. The passage of particulate matter from the peritoneal cavity into the lymph vessels of the diaphragm. Anat Rec 1948; 101: 333–351.PubMedCrossRefGoogle Scholar
  118. 118.
    Leak LW, Just EE. Permeability of peritoneal mesothelium. J Cell Biol 1976; 70: 423a.Google Scholar
  119. 119.
    Tsilibarry EC, Wissig SL. Absorption from the peritoneal surface of the muscular portion of the diaphragm. Am J Anat 1977; 149: 127–133.CrossRefGoogle Scholar
  120. 120.
    Abu-Hijleh MF, Scothorne RJ. Studies on haemolymph nodes. IV. Comparison of the route of entry of carbon particles into parathymic nodes after intravenous and intraperitoneal injection. J Anat 1996; 188: 565–573.PubMedGoogle Scholar
  121. 121.
    Hashimoto B, Filly RA, Callen PW, Parer JT. Absorption of fetal intraperitoneal blood after intrauterine transfusion. J Ultrasound Med 1987; 6: 421–423.PubMedGoogle Scholar
  122. 122.
    Smedsrood B, Aminoff D. Studies on the sequestration of chemically and enzymatically modified erythrocytes. Am J Hematol 1983; 15: 123–133.PubMedCrossRefGoogle Scholar
  123. 123.
    Fowler JM, Knight R, Patel KM. Intraperitoneal blood transfusion in African adults with hookworm anaemia. Br Med J 1968; 3: 200–201.CrossRefGoogle Scholar
  124. 124.
    Chandler K, Fitzpatrik J, Mellor D, Milne M, Fishwick G. Intraperitoneal administration of whole blood as a treatment for anaemia in lambs. Vet Rec 1998; 142: 175–176.PubMedCrossRefGoogle Scholar
  125. 125.
    Aba MA, Pissani AA, Alzola RH, Videla-Dorna I, Ghezzi MS, Marcilese NA. Evaluation of intraperitoneal route for the transfusion of erythrocytes using rats and dogs. Acta Physiol Pharmacol Ther Latinoam 1991; 41: 387–395.PubMedGoogle Scholar
  126. 126.
    Remmele W, Richter IE, Wildenhof H. Experimental investigations on cell resorption from the peritoneal cavity by use of the scanning electron microscope. Klin Wochenschr 1975; 53: 913–922.PubMedCrossRefGoogle Scholar
  127. 127.
    Dumont AE, Maas WK, Iliescu H, Shin RD. Increased survival from peritonitis after blockade of transdiaphragmatic absorption of bacteria. Surg Gynecol Obstet 1986; 162: 248–252.PubMedGoogle Scholar
  128. 128.
    Leak LV. Permeability of peritoneal mesothelium: a TEM and SEM study. J Cell Biol 1976; 70: 423–433.Google Scholar
  129. 129.
    Leak LV. Polycationic ferritin binding to diaphragmatic mesothelial and lymphatic endothelial cells. J Cell Biol 1982; 95: 103–111.Google Scholar
  130. 130.
    Ettarh RR, Carr KE. Ultrastructural observations on the peritoneum in the mouse. J Anat 1996; 188: 211–215.PubMedGoogle Scholar
  131. 131.
    Wassilev M, Wedel T, Michailova K, Kuhnel W. A scanning electron microscopy study of peritoneal stomata in different peritoneal regions. Anat Anz 1998; 180: 137–143.Google Scholar
  132. 132.
    Li J, Zhou J, Gao Y. The ultrastructure and computer imaging of the lymphatic stomata in the human pelvic peritoneum. Anat Anz 1997; 179: 215–220.Google Scholar
  133. 133.
    Yoffey JM, Courtice FC. Lymphatics, Lymph and Lymphoid Tissue. London: Edward Arnold, 1956, p. 176.Google Scholar
  134. 134.
    Andrews PM, Porter KR. The ultrastructural morphology and possible functional significance of mesothelial microvilli. Anat Rec 1973; 177: 409–414.PubMedCrossRefGoogle Scholar
  135. 135.
    Ghadially FN. Ultrastructural Pathology of the Cell. London: Butterworths, 1978, p. 403.Google Scholar
  136. 136.
    Todd RB, Bowman W. The Physiological Anatomy and Physiology of Man, Vols I and II, London, 1845 and 1846.Google Scholar
  137. 137.
    Baron MA. Structure of the intestinal peritoneum in man. Am J Anat 1941; 69: 439–496.CrossRefGoogle Scholar
  138. 138.
    Maximow A. Bindgewebe und blutbildende gewebe. Handbuch der mikroskopischen Anatomie des menschen. von Mollendorf 1927; Bd 2 T 1: S232–S583.Google Scholar
  139. 139.
    Kanwar YS, Farquhar MG. Anionic sites in the glomerular basement membrane. In vivo and in vitro localization to the laminae rarae by cationic probes. J Cell Biol 1979; 81: 137–153.PubMedCrossRefGoogle Scholar
  140. 140.
    Rohrbach R. Reduced content and abnormal distribution of anionic sites (acid proteoglycans) in the diabetic glomerular basement membrane. Virchows Arch B Cell Pathol Incl Mol Pathol 1986; 51: 127–135.PubMedCrossRefGoogle Scholar
  141. 141.
    Ghinea N, Simionescu N. Anionized and cationized hemeundecapeptides as probes for cell surface charge and permeability studies: differentiated labeling of endothelial plasmalemmal vesicles. J Cell Biol 1985; 100: 606–612.PubMedCrossRefGoogle Scholar
  142. 142.
    Gotloib L, Shostak A, Jaichenko J. Loss of mesothelial electronegative fixed charges during murine septic peritonitis. Nephron 1989; 51: 77–83.PubMedCrossRefGoogle Scholar
  143. 143.
    Shostak A, Gotloib L. Increased peritoneal permeability to albumin in streptozotocin diabetic rats. Kidney Int 1996; 49: 705–714.PubMedCrossRefGoogle Scholar
  144. 144.
    Gotloib L, Shostak A, Bar-Sella P, Eiali V. Reduplicated skin and peritoneal blood capillaries and mesothelial basement membrane in aged non-diabetic chronic uremic patients. Perit Dial Bull 1984; 4: S28.Google Scholar
  145. 145.
    Di Paolo N, Sacchi G. Peritoneal vascular changes in continuous ambulatory peritoneal dialysis (CAPD): an in-vivo model for the study of diabetic microangiopathy. Perit Dial Int 1989; 9: 41–45.PubMedGoogle Scholar
  146. 146.
    Gersh I, Catchpole HR. The organization of ground substances and basement membrane and its significance in tissue injury, disease and growth. Am J Anat 1949; 85: 457–522.PubMedCrossRefGoogle Scholar
  147. 147.
    Williamson JT, Vogler NJ, Kilo CH. Regional variations in the width of the basement membrane of muscle capillaries in man and giraffe. Am J Pathol 1971; 63: 359–367.PubMedGoogle Scholar
  148. 148.
    Vracko R. Skeletal muscle capillaries in non-diabetics. A quantitative analysis. Circulation 1970; 16: 285–297.Google Scholar
  149. 149.
    Parthasarathy N, Spiro RG. Effect of diabetes on the glycosaminoglycan component of the human glomerular basement membrane. Diabetes 1982; 31: 738–741.PubMedCrossRefGoogle Scholar
  150. 150.
    Vracko R. Basal lamina scaffold – anatomy and significance for maintenance of orderly tissue structure. A review. Am J Pathol 1974; 77: 313–346.Google Scholar
  151. 151.
    Vracko R, Pecoraro RE, Carter WB. Basal lamina of epidermis, muscle fibers, muscle capillaries, and renal tubules: changes with aging and diabetes mellitus. Ultrastruct Pathol 1980; 1: 559–574.PubMedCrossRefGoogle Scholar
  152. 152.
    Hruza Z. Connective tissue. In: Kaley G, Altura BM, eds. Microcirculation, Vol. I, Baltimore, MD: University Park Press, 1977, pp. 167–83.Google Scholar
  153. 153.
    Comper WD, Laurent TC. Physiological function of connective tissue polysaccharides. Physiol Rev 1978; 58: 255–315.PubMedGoogle Scholar
  154. 154.
    Flessner MF. The importance of the interstitium in peritoneal transport. Perit Dial Int 1996; 16 (suppl. 1): S76–S79.PubMedGoogle Scholar
  155. 155.
    Parker JC, Gilchrist S, Cartledge JT. Plasma–lymph exchange and interstitial distribution volumes of charged macromolecules in the lung. J Appl Physiol 1985; 59: 1128–1136.PubMedGoogle Scholar
  156. 156.
    Lai-Fook SJ, Brown LV. Effects of electric charge on hydraulic conductivity of pulmonary interstitium. J Appl Physiol 1991; 70: 1928–1932.PubMedGoogle Scholar
  157. 157.
    Gilchrist SA, Parker JC. Exclusion of charged macromolecules in the pulmonary interstitium. Microvasc Res 1985; 30: 88–98.PubMedCrossRefGoogle Scholar
  158. 158.
    Haljamae H. Anatomy of the interstitial tissue. Lymphology 1978; 11: 128–32.PubMedGoogle Scholar
  159. 159.
    Guyton AC. A concept of negative interstitial pressure based on pressures in implanted perforated capsules. Circ Res 963; 12: 399–414.PubMedGoogle Scholar
  160. 160.
    Scholander PF, Hargens AR, Miller SL. Negative pressure in the interstitial fluid of animals. Fluid tensions are spectacular in plants; in animals they are elusively small, but just as vital. Science 1968; 161: 321–328.PubMedCrossRefGoogle Scholar
  161. 161.
    Aukland K, Reed PK. Interstitial–lymphatic mechanisms in the control of extracellular fluid volume. Physiol Rev 1993; 73: 1–78.PubMedGoogle Scholar
  162. 162.
    Rutili G, Arfors KE. Protein concentration in interstitial and lymphatic fluids from the subcutaneous tissue. Acta Physiol Scand 1977; 99: 1–8.PubMedCrossRefGoogle Scholar
  163. 163.
    Rutili G, Kvietys P, Martin D, Parker JC, Taylor AE. Increased pulmonary microvascular permeability induced by alpha-naphthylthiourea. J Appl Physiol 1982; 52: 1316–1323.PubMedGoogle Scholar
  164. 164.
    Flessner MF. Peritoneal transport physiology: insights from basic research. J Am Soc Nephrol 1991; 2: 122–135.PubMedGoogle Scholar
  165. 165.
    Gotloib L, Mines M, Garmizo AL, Varka I. Hemodynamic effects of increasing intra-abdominal pressure in peritoneal dialysis. Perit Dial Bull 1981; 1: 41–42.Google Scholar
  166. 166.
    Flessner MF, Schwab A. Pressure threshold for fluid loss from the peritoneal cavity. Am J Physiol 1996; 270: F377–F390.PubMedGoogle Scholar
  167. 167.
    Simionescu N. Cellular aspects of transcapillary exchange. Physiol Rev 1983; 63: 1536–1579.PubMedGoogle Scholar
  168. 168.
    Wolff JR. Ultrastructure of the terminal vascular bed as related to function. In: Kaley G, Altura BM, eds. Microcirculation, Vol. I, Baltimore, MD: University Park Press, 1977, pp. 95–130.Google Scholar
  169. 169.
    Majno G. Ultrastructure of the vascular membrane. Handbook of Physiology. Section II – Circulation, Vol. III. Washington, DC: Am Physiol Soc, 1965, pp. 2293–2375.Google Scholar
  170. 170.
    Gotloib L, Shostak A, Jaichenko J. Fenestrated capillaries in mice submesothelial mesenteric microvasculature. Int J Artif Organs 1989; 12: 20–24.PubMedGoogle Scholar
  171. 171.
    Gotloib L, Shostak A. In search of a role for submesothelial fenestrated capillaries. Perit Dial Int 1993; 13: 98–102.PubMedGoogle Scholar
  172. 172.
    Gotloib L, Shostak A, Bar-Sella P, Eiali V. Fenestrated capillaries in human parietal and rabbit diaphragmatic peritoneum. Nephron 1985; 41: 200–202.PubMedCrossRefGoogle Scholar
  173. 173.
    Friederici HHR. The tridimensional ultrastructure of fenestrated capillaries. J Ultrastruct Res 1968; 23: 444–456.PubMedCrossRefGoogle Scholar
  174. 174.
    Clough G, Smaje LH. Exchange area and surface properties of the microvasculature of the rabbit submandibular gland following duct ligation. J Physiol 1984; 354: 445–456.PubMedGoogle Scholar
  175. 175.
    Gotloib L, Shostak A, Jaichenko J, Galdi P, Fudin R. Anionic fixed charges in the fenestrated capillaries of the mouse mesentery. Nephron 1990; 55: 419–422.PubMedCrossRefGoogle Scholar
  176. 176.
    Rhodin JAG. The diaphragm of capillary endothelial fenestrations. J Ultrastruc Res 1962; 6: 171–185.CrossRefGoogle Scholar
  177. 177.
    Gotloib L, Shostak A, Bar-Sella P, Eiali V. Heterogeneous density and ultrastructure of rabbit’s peritoneal microvasculature. Int J Artif Organs 1984; 7: 123–125.PubMedGoogle Scholar
  178. 178.
    Rhodin YAG. Ultrastructure of mammalian venous capillaries, venules and small collecting veins. J Ultrastruct Res 1968; 25: 452–500.PubMedCrossRefGoogle Scholar
  179. 179.
    Gotloib L, Shostak A, Jaichenko J. Loss of mesothelial and microvascular fixed anionic charges during murine experimentally induced septic peritonitis. In: Avram M, Giordano G, eds. Ambulatory Peritoneal Dialysis. New York: Plenum, 1990, pp. 63–66.Google Scholar
  180. 180.
    Simionescu M, Simionescu N, Palade GE. Differentiated microdomains on the luminal surface of capillary endothelium: distribution of lectin receptors. J Cell Biol 1982; 94: 406–413.PubMedCrossRefGoogle Scholar
  181. 181.
    Schneeberger EE, Hamelin M. Interactions of serum proteins with lung endothelial glycocalyx: its effect on endothelial permeability. Am J Physiol 1984; 247: H206–H217.PubMedGoogle Scholar
  182. 182.
    Bundgaard M, Frokjaer-Jensen J. Functional aspects of the ultrastructure of terminal blood vessels: a quantitative study on consecutive segments of the frog mesenteric microvasculature. Microvasc Res 1982; 23: 1–30.PubMedCrossRefGoogle Scholar
  183. 183.
    Palade GE. Transport in quanta across the endothelium of blood capillaries. Anat Rec 1960; 116: 254.Google Scholar
  184. 184.
    Milici AJ, L’Hernault N, Palade GE. Surface densities of diaphragmed fenestrae and transendothelial channels in different murine capillary beds. Circ Res 1985; 56: 709–717.PubMedGoogle Scholar
  185. 185.
    Lombardi T, Montesano R, Furie MB, Silverstein SC, Orci L. In-vitro modulation of endothelial fenestrae: opposing effects of retinoic acid and transforming growth factor beta. J Cell Sci 1988; 91: 313–318.PubMedGoogle Scholar
  186. 186.
    Kitchens CS, Weiss L. Ultrastructural changes of endothelium associated with thrombocytopenia. Blood 1975; 46: 567–578.PubMedGoogle Scholar
  187. 187.
    Horiuchi T, Weller PF. Expression of vascular endothelial growth factor by human eosinophils: upregulation by granulocyte macrophage colony-stimulating factor and interleukin-5. Am J Respir Cell Mol Biol 1997; 17: 70–77.PubMedGoogle Scholar
  188. 188.
    Collins PD, Connolly DT, Williams TJ. Characterization of the increase in vascular permeability induced by vascular permeability factor in vivo. Br J Pharmacol 1993; 109: 195–199.PubMedGoogle Scholar
  189. 189.
    Yeo KT, Wang HH, Nagy JA, Sioussat TM et al. Vascular permeability factor (vascular endothelial growth factor) in guinea pig and human tumor inflammatory effusions. Cancer Res 1993; 53: 2912–2918.PubMedGoogle Scholar
  190. 190.
    Taichman NS, Young S, Cruchley AT, Taylor P, Paleolog E. Human neutrophils secrete vascular endothelial growth factor. J Leukoc Biol 1997; 62: 397–400.PubMedGoogle Scholar
  191. 191.
    Roberts WG, Palade GE. Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J Cell Sci 1995; 108: 2369–2370.PubMedGoogle Scholar
  192. 192.
    Roberts WG, Palade GE. Neovasculature induced by vascular endothelial growth factor is fenestrated. Cancer Res 1997; 57: 765–772.PubMedGoogle Scholar
  193. 193.
    Simionescu M, Simionescu N, Palade GE. Sulfated glycosaminoglycans are major components of the anionic sites of fenestral diaphragms in capillary endothelium. J Cell Biol 1979; 83: 78a.Google Scholar
  194. 194.
    Milici AJ, L’Hernault N. Variation in the number of fenestrations and channels between fenestrated capillary beds. J Cell Biol 1983; 97: 336.Google Scholar
  195. 195.
    Peters KR, Milici AJ. High resolution scanning electron microscopy of the luminal surface of a fenestrated capillary endothelium. J Cell Biol 1983; 97: 336a.Google Scholar
  196. 196.
    Bankston PW, Milici AJ. A survey of the binding of polycationic ferritin in several fenestrated capillary beds: indication of heterogeneity in the luminal glycocalyx of fenestral diaphragms. Microvasc Res 1983; 26: 36–49.PubMedCrossRefGoogle Scholar
  197. 197.
    Levick JR, Smaje LH. An analysis of the permeability of a fenestra. Microvasc Res 1987; 33: 233–256.PubMedCrossRefGoogle Scholar
  198. 198.
    Wayland H, Silberberg A. Blood to lymph transport. Microvasc Res 1978; 15: 367–374.PubMedCrossRefGoogle Scholar
  199. 199.
    Bearer EL, Orci L. Endothelial fenestral diaphragms: a quick freeze, deep-etch study. J Cell Biol 1985; 100: 418–428.PubMedCrossRefGoogle Scholar
  200. 200.
    Simionescu M, Simionescu N, Palade GE. Preferential distribution of anionic sites on the basement membrane and the abluminal aspect of the endothelium in fenestrated capillaries. J Cell Biol 1982; 95: 425–434.PubMedCrossRefGoogle Scholar
  201. 201.
    Deen WN, Satvat B. Determinants of the glomerular filtration of proteins. Am J Physiol 1981; 241: F162–F170.PubMedGoogle Scholar
  202. 202.
    Deen WM, Bohrer MP, Robertson CR, Brenner BM. Determinants of the transglomerular passage of macromolecules. Fed Proc 1977; 36: 2614–2618.PubMedGoogle Scholar
  203. 203.
    Kanwar YS, Linker A, Farquhar MG. Characterization of anionic sites in the glomerular basement membrane: in vitro and in vivo localization to the lamina rarae by cationic probes. J Cell Biol 1980; 86: 688–693.PubMedCrossRefGoogle Scholar
  204. 204.
    Renkin EM. Multiple pathways of capillary permeability. Circ Res 1977; 41: 735–743.PubMedGoogle Scholar
  205. 205.
    Charonis AS, Wissig SL. Anionic sites in basement membranes. Differences in their electrostatic properties in continuous and fenestrated capillaries. Microvasc Res 1983; 25: 265–285.PubMedCrossRefGoogle Scholar
  206. 206.
    Renkin EM. Cellular and intercellular transport pathways in exchange vessels. Am Rev Respir Dis 1992; 146: S28–S31.PubMedGoogle Scholar
  207. 207.
    Farquhar MG, Palade GE. Junctional complexes in various epithelia. J Cell Biol 1963; 17: 375–442.PubMedCrossRefGoogle Scholar
  208. 208.
    Simionescu M, Simionescu N, Palade GE. Segmental differentiations of cell junctions in the vascular endothelium. J Cell Biol 1975; 67: 863–885.PubMedCrossRefGoogle Scholar
  209. 209.
    Thorgeirsson G, Robertson AL Jr. The vascular endothelium. Pathobiologic significance. Am J Pathol 1978; 95: 801–848.Google Scholar
  210. 210.
    Gumbiner B. Breaking through the tight junction barrier. J Cell Biol 1993; 123: 1631–1633.PubMedCrossRefGoogle Scholar
  211. 211.
    Gumbiner B. Structure, biochemistry, and assembly of epithelial tight junctions. Am J Physiol 1987; 253: C749–C758.PubMedGoogle Scholar
  212. 212.
    Furuse M, Hirase T, Itoh M et al. Occludin: a novel integral membrane protein localized at tight junctions. J Cell Biol 1993; 123: 1777–1788.PubMedCrossRefGoogle Scholar
  213. 213.
    Furuse M, Itoh M, Hirase T et al. Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J Cell Biol 1994; 127: 1617–1626.PubMedCrossRefGoogle Scholar
  214. 214.
    Hirase T, Staddon JM, Saitou M et al. Occludin as a possible determinant of tight junction permeability in endothelial cells. J Cell Sci 1997; 110: 1603–1613.PubMedGoogle Scholar
  215. 215.
    Balda MS, Anderson JM. Two classes of tight junctions are revealed by ZO-1 isoforms. Am J Physiol 1993; 264: C918–C924.PubMedGoogle Scholar
  216. 216.
    Mitic LL, Anderson JM. Molecular architecture of tight junctions. Annu Rev Physiol 1998; 60: 121–142.PubMedCrossRefGoogle Scholar
  217. 217.
    Navarro P, Caveda L, Breviario F, Mandoteanu I, Lampugnani MG, Dejana E. Catenin-dependent and independent functions of vascular endothelial cadherin. J Biol Chem 1995; 270: 30965–30972.PubMedCrossRefGoogle Scholar
  218. 218.
    Leach L, Firth JA. Structure and permeability of human placental microvasculature. Microsc Res Tech 1997; 38: 137–44.PubMedCrossRefGoogle Scholar
  219. 219.
    Alexander JS, Blaschuk OW, Haselton FR. An N-cadherinlike protein contributes to solute barrier maintenance in cultured endothelium. J Cell Physiol 1993; 156: 610–618.PubMedCrossRefGoogle Scholar
  220. 220.
    Bundgaard M. The three dimensional organization of tight junctions in capillary endothelium revealed by serial-section electron microscopy. J Ultrastrucl Res 1984; 88: 1–17.CrossRefGoogle Scholar
  221. 221.
    Zand T, Underwood JM, Nunnari JJ, Majno G, Joris I. Endothelium and ‘silver lines’. An electron microscopic study. Virchows Arch Pathol Anat 1982; 395: 133–144.PubMedCrossRefGoogle Scholar
  222. 222.
    Anderson JM, Van-Itallie CM. Tight junctions and the molecular basis for regulation of paracellular permeability. Am J Physiol 1995; 269: G467–G475.PubMedGoogle Scholar
  223. 223.
    Robinson PJ, Rapoport SI. Size selectivity of blood–brain barrier permeability at various times after osmotic opening. Am J Physiol 1987; 253: R459–R466.PubMedGoogle Scholar
  224. 224.
    Blum MS, Toninelli E, Anderson JM et al. Cytoskeletal rearrangement mediates human microvascular endothelial tight junction modulation by cytokines. Am J Physiol 1997; 273: H286–H294.PubMedGoogle Scholar
  225. 225.
    Schneeberger EE, Lynch RD. Structure, function and regulation of cellular tight junctions. Am J Physiol 1992; 262: L647–L661.PubMedGoogle Scholar
  226. 226.
    Burns AR, Walker DC, Brown ES et al. Neutrophil transendothelial migration is independent of tight junctions and occurs preferentially at tricellular corners. J Immunol 1997; 159: 2893–2903.PubMedGoogle Scholar
  227. 227.
    Rohrbach DH, Hassell JR, Klechman HK, Martin GR. Alterations in basement membrane (heparan sulfate) proteoglycan in diabetic mice. Diabetes 1982; 31: 185–188.PubMedCrossRefGoogle Scholar
  228. 228.
    Chakrabarti S, Ma N, Sima AAF. Anionic sites in diabetic basement membranes and their possible role in diffusion barrier abnormalities in the BB-rat. Diabetologia 1991; 34: 301–306.PubMedCrossRefGoogle Scholar
  229. 229.
    Shimomura H, Spiro RG. Studies on macromolecular components of human glomerular basement membrane and alterations in diabetes. Decreased levels of heparan sulfate, proteoglycan and laminin. Diabetes 1987; 36: 374–381.PubMedCrossRefGoogle Scholar
  230. 230.
    Abrahamson DR. Recent studies on the structure and pathology of basement membranes. J Pathol 1986; 149: 257–278.PubMedCrossRefGoogle Scholar
  231. 231.
    Hasslacher G, Reichenbacher R, Getcher F, Timpl R. Glomerular basement membrane synthesis and serum concentration of type IV collagen in streptozotocin-diabetic rats. Diabetologia 1984; 26: 150–154.PubMedCrossRefGoogle Scholar
  232. 232.
    Li W, Shen S, Khatami M, Rockey JH. Stimulation of retinal capillary pericyte protein and collagen synthesis in culture by high glucose concentration. Diabetes 1984; 33: 785–789.PubMedCrossRefGoogle Scholar
  233. 233.
    Cagliero E, Maiello M, Boeri D, Roy S, Lorenzi M. Increased expression of basement membrane components in human endothelial cells cultured in high glucose. J Clin Invest 1988; 82: 735–738.PubMedCrossRefGoogle Scholar
  234. 234.
    Ashworth CT, Erdmann RR, Arnold NJ. Age changes in the renal basement membrane of rats. Am J Pathol 1960; 36: 165–179.PubMedGoogle Scholar
  235. 235.
    Pino RM, Essner E, Pino LC. Location and chemical composition of anionic sites in Bruch’s membrane of the rat. J Histochem Cytochem 1982; 30: 245–252.PubMedGoogle Scholar
  236. 236.
    Kanwar YS, Rosenzweig LJ, Kerjaschki DI. Glycosaminoglycans of the glomerular basement membrane in normal and nephrotic states. Ren Physiol 1981; 4: 121–130.PubMedGoogle Scholar
  237. 237.
    Kitano Y, Yoshikawa N, Nakamura H. Glomerular anionic sites in minimal change nephrotic syndrome and focal segmental glomerulosclerosis. Clin Nephrol 1993; 40: 199–204.PubMedGoogle Scholar
  238. 238.
    Torihara K, Suganuma T, Ide S, Morimitsu T. Anionic sites in blood capillaries of the mouse cochlear duct. Hear Res 1994; 77: 69–74.PubMedCrossRefGoogle Scholar
  239. 239.
    Lawrenson JG, Reid AR, Allt G. Molecular characterization of anionic sites on the luminal front of endoneural capillaries in sciatic nerve. J Neurocytol 1994; 23: 29–37.PubMedCrossRefGoogle Scholar
  240. 240.
    Lawrenson JG, Reid AR, Allt G. Molecular characteristics of pial microvessels of the rat optic nerve. Can pial microvessels be used as a model for the blood–brain barrier? Cell Tissue Res 1997; 288: 259–265.PubMedCrossRefGoogle Scholar
  241. 241.
    Vorbrodt AW. Ultracytochemical characterization of anionic sites in the wall of brain capillaries. J Neurocytol 1989; 18: 359–368.PubMedCrossRefGoogle Scholar
  242. 242.
    Dos-Santos WL, Rahman J, Klein N, Male DK. Distribution and analysis of surface charge on brain endothelium in vitro and in situ. Acta Neuropathol (Berl) 1995; 90: 305–311.CrossRefGoogle Scholar
  243. 243.
    Ohtsuka A, Yamana S, Murakami T. Localization of membrane associated sialomucin on the free surface of mesothelial cells of the pleura, pericardium, and peritoneum. Histochem Cell Biol 1997; 107: 441–447.PubMedCrossRefGoogle Scholar
  244. 244.
    Meirelles MN, Souto-Padron T, De-Souza W. Participation of cell surface anionic sites in the interaction between Trypanosoma cruzi and macrophages. J Submicrosc Cytol 1984; 16: 533–545.PubMedGoogle Scholar
  245. 245.
    Danon D, Marikovsky Y. The aging of the red blood cell. A multifactor process. Blood Cells 1988; 14: 7–18.PubMedGoogle Scholar
  246. 246.
    Lupu G, Calb M. Changes in the platelet surface charge in rabbits with experimental hypercholesterolemia. Atherosclerosis 1988; 72: 77–82.PubMedCrossRefGoogle Scholar
  247. 247.
    Curry FE. Determinants of capillary permeability: a review of mechanisms based on single capillary studies in the frog. Circ Res 1986; 59: 367–380.PubMedGoogle Scholar
  248. 248.
    Haraldsson B. Physiological studies of macromolecular transport across capillary walls. Acta Physiol Scand 1986; 128 (suppl. 553): 1–40.Google Scholar
  249. 249.
    Hardebo JE, Kahrstrom J. Endothelial negative surface charge areas and blood–brain barrier function. Acta Physiol Scand 1985; 125: 495–499.PubMedCrossRefGoogle Scholar
  250. 250.
    Brenner BM, Hostelter TH, Humes HD. Glomerular permeability: barrier function based on discrimination of molecular size and charge. Am J Physiol 1978; 234: F455–F460.PubMedGoogle Scholar
  251. 251.
    Bray J, Robinson GB. Influence of charge on filtration across renal basement membrane films in vitro. Kidney Int 1984; 25: 527–533.PubMedCrossRefGoogle Scholar
  252. 252.
    Skutelsky E, Danon D. Redistribution of surface anionic sites on the luminal front of blood vessel endothelium after interaction with polycationic ligand. J Cell Biol 1976; 71: 232–241.PubMedCrossRefGoogle Scholar
  253. 253.
    Reeves WH, Kanwar YS, Farquhar MG. Assembly of the glomerular filtration surface. Differentiation of anionic sites in glomerular capillaries of newborn rat kidney. J Cell Biol 1980; 85: 735–753.PubMedCrossRefGoogle Scholar
  254. 254.
    Adamson RH, Huxley VH, Curry FE. Single capillary permeability to proteins having similar size but different charge. Am J Physiol 1988; 254: H304–H312.PubMedGoogle Scholar
  255. 255.
    Nakao T, Ogura M, Takahashi H, Okada T. Charge-affected transperitoneal movement of amino acids in CAPD. Perit Dial Int 1996; 16 (suppl. 1): S88–S90.PubMedGoogle Scholar
  256. 256.
    Leypoldt JK, Henderson LW. Molecular charge influences transperitoneal macromolecule transport. Kidney Int 1933; 43: 837–844.CrossRefGoogle Scholar
  257. 257.
    Myers BD, Guasch A. Selectivity of the glomerular filtration barrier in healthy and nephrotic humans. Am J Nephrol 1993; 13: 311–317.PubMedCrossRefGoogle Scholar
  258. 258.
    Krediet RT, Koomen GC, Koopman MG et al. The peritoneal transport of serum proteins and neutral dextran in CAPD patients. Kidney Int 1989; 35: 1064–1072.PubMedCrossRefGoogle Scholar
  259. 259.
    Vernier RL, Steffes MW, Sisson-Ross S, Mauer SM. Heparan sulfate proteoglycan in the glomerular basement membrane in type 1 diabetes mellitus. Kidney Int 1992; 41: 1070–1080.PubMedCrossRefGoogle Scholar
  260. 260.
    Vernier RL, Klein DJ, Sisson SP, Mahan JD, Oegema TR, Brown DM. Heparan sulfate-rich anionic sites in the human glomerular basement membrane. N Engl J Med 1983; 309: 1001–1009.PubMedCrossRefGoogle Scholar
  261. 261.
    Van-den-Heuvel LP, Van-den-Born J, Jalanko H et al. The glycosaminoglycan content of renal basement membranes in the congenital nephrotic syndrome of the Finnish type. Pediatr Nephrol 1992; 6: 10–15.PubMedCrossRefGoogle Scholar
  262. 262.
    Washizawa K, Kasai S, Mori T, Komiyama A, Shigematsu H. Ultrastructural alteration of glomerular anionic sites in nephrotic patients. Pediatr Nephrol 1993; 7: 1–5.PubMedCrossRefGoogle Scholar
  263. 263.
    Ramjee G, Coovadia HM, Adhikari M. Direct and indirect tests of pore size and charge selectivity in nephrotic syndrome. J Lab Clin Med 1996; 127: 195–199.PubMedCrossRefGoogle Scholar
  264. 264.
    Rosenzweig LJ, Kanwar YS. Removal of sulfated (heparan sulfate) or nonsulfated (hyaluronic acid) glycosaminoglycans results in increased permeability of the glomerular basement membrane to 125I–bovine serum albumin. Lab Invest 1982; 47: 177–184.PubMedGoogle Scholar
  265. 265.
    Wu VY, Wilson B, Cohen MP. Disturbances in glomerular basement membrane glycosaminoglycans in experimental diabetes. Diabetes 1987; 36: 679–683.PubMedCrossRefGoogle Scholar
  266. 266.
    Van-den-Born J, Van-Kraats AA, Bakker MA et al. Reduction of heparan sulphate-associated anionic sites in the glomerular basement membrane of rats with streptozotocin induced diabetic nephropathy. Diabetologia 1995; 38: 1169–1175.PubMedCrossRefGoogle Scholar
  267. 267.
    Galdi P, Shostak A, Jaichenko J, Fudin R, Gotloib L. Protamine sulfate induces enhanced peritoneal permeability to proteins. Nephron 1991; 57: 45–51.PubMedCrossRefGoogle Scholar
  268. 268.
    Arfors KE, Rutili G, Svensjo E. Microvascular transport of macromolecules in normal and inflammatory conditions. Acta Physiol Scand Suppl 1979; 463: 93–103.PubMedGoogle Scholar
  269. 269.
    Gotloib L, Shostak A, Jaichenko J, Galdi P. Decreased density distribution of mesenteric and diaphragmatic microvascular anionic charges during murine abdominal sepsis. Resuscitation 1988; 16: 179–192.PubMedCrossRefGoogle Scholar
  270. 270.
    Gotloib L, Shostak A, Galdi P, Jaichenko J, Fudin R. Loss of microvascular negative charges accompanied by interstitial edema in septic rats' heart. Circ Shock 1992; 36: 45–46.PubMedGoogle Scholar
  271. 271.
    Golloib L, Shostak A. Lessons from peritoneal ultrastructure: from an inert dialyzing sheet to a living membrane. Contrib Nephrol 1992; 100: 207–235.Google Scholar
  272. 272.
    Shostak A, Gotloib L. Increased mesenteric, diaphragmatic, and pancreatic interstitial albumin content in rats with acute abdominal sepsis. Shock 1998; 9: 135–137.PubMedCrossRefGoogle Scholar
  273. 273.
    Gotloib L, Barzilay E, Shostak A, Lev A. Sequential hemofiltration in monoliguric high capillary permeability pulmonary edema of severe sepsis: preliminary report. Crit Care Med 1984; 12: 997–1000.PubMedCrossRefGoogle Scholar
  274. 274.
    Gotloib L, Barzilay E, Shostak A, Wais Z, Jaichenko J, Lev A. Hemofiltration in septic ARDS. The artificial kidney as an artificial endocrine lung. Resuscitation 1986; 13: 123–132.PubMedCrossRefGoogle Scholar
  275. 275.
    Klein NJ, Shennan GI, Heyderman RS, Levin M. Alteration in glycosaminoglycan metabolism and surface charge on human umbilical vein endothelial cells induced by cytokines, endotoxin and neutrophils. J Cell Sci 1992; 102: 821–832.PubMedGoogle Scholar
  276. 276.
    Bone RC. The pathogenesis of sepsis. Ann Intern Med 1991; 115: 457–469.PubMedGoogle Scholar
  277. 277.
    Bone RS. Immunologic dissonance: a continuing evolution in our understanding of the systemic inflammatory response syndrome (SIRS) and the multiple organ dysfunction syndrome (MODS). Ann Intern Med 1996; 125: 680–687.PubMedGoogle Scholar
  278. 278.
    Gotloib L, Wajsbrot V, Shostak A, Kushnier R. Population analysis of mesothelium in situ and in vivo exposed to bicarbonate-buffered peritoneal dialysis fluid. Nephron 1996; 73: 219–227.PubMedCrossRefGoogle Scholar
  279. 279.
    Sirois MG, Edelman ER. VEGF effect on vascular permeability is mediated by synthesis of platelet-activating factor. Am J Physiol 1997; 272: H2746–H2756.PubMedGoogle Scholar
  280. 280.
    Ryan GB, Grobety J, Majno G. Mesothelial injury and recovery. Am J Pathol 1973; 71: 93–112.PubMedGoogle Scholar
  281. 281.
    Gabbiani G, Badonnel MC, Majno G. Intra-arterial injections of histamine, serotonin, or bradykinin: a topographic study of vascular leakage. Proc Soc Exp Biol Med 1970; 135: 447–452.PubMedGoogle Scholar
  282. 282.
    Ryan GB, Majno G. Acute inflammation. A review. Am J Pathol 1977; 86: 183–276.Google Scholar
  283. 283.
    Joris I, Majno G, Corey EJ, Lewis RA. The mechanism of vascular leakage induced by leukotriene E4. Endothelial contraction. Am J Pathol 1987; 126: 19–24.PubMedGoogle Scholar
  284. 284.
    Gardner TW, Lesher T, Khin S, Vu G, Barber AJ, Brennan WA Jr. Histamine reduces ZO-1 tight-junction protein expression in cultured retinal microvascular endothelial cells. Biochem J 1996; 320: 717–721.PubMedGoogle Scholar
  285. 285.
    Kevil CG, Payne DK, Mire E, Alexander JS. Vascular permeability factor/vascular endothelial cell growth factor mediated permeability occurs through disorganization of endothelial junctional proteins. J Biol Chem 1998; 273: 15099–15103.PubMedCrossRefGoogle Scholar
  286. 286.
    Predescu D, Palade GE. Plasmalemmal vesicles represent the large pore system of continuous microvascular endothelium. Am J Physiol 1993; 265: H725–H733.PubMedGoogle Scholar
  287. 287.
    Esser S, Wolburg K, Wolburg H, Breier G, Kurzchalia T, Risau W. Vascular endothelial growth factor induces endothelial fenestrations in vitro. J Cell Biol 1998; 140: 947–959.PubMedCrossRefGoogle Scholar
  288. 288.
    Feng D, Nagy JA, Hipp J, Pyne K, Dvorak AM. Reinterpretation of endothelial cell gaps induced by vasoactive mediators in guinea-pig, mouse and rat: many are transcellular pores. J Physiol (Lond) 1997; 504: 747–761.CrossRefGoogle Scholar
  289. 289.
    Carlsson O, Nielsen S, Zakaria-el R, Rippe B. In vivo inhibition of transcellular water channels (aquaporin-1) during acute peritoneal dialysis in rats. Am J Physiol 1996; 271: H2254–H2262.PubMedGoogle Scholar
  290. 290.
    Panekeet MM, Mulder JB, Weening JJ, Struijk DG, Zweers MM, Krediet RT. Demonstration of aquaporin-CHIP in peritoneal tissue of uremic and CAPD patients. Perit Dial Int 1996; 16 (suppl. 1): S54–S57.Google Scholar
  291. 291.
    Schnitzer JE, Oh P. Aquaporin-1 in plasma membrane and caveolae provides mercury-sensitive water channels across lung endothelium. Am J Physiol 1996; 270: H416–H422.PubMedGoogle Scholar
  292. 292.
    Nielsen S, Smith BL, Christensen EL, Agre P. Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc Natl Acad Sci U S A 1993; 90: 7275–7279.PubMedCrossRefGoogle Scholar
  293. 293.
    Wintour EM. Water channels and urea transporters. Clin Exp Pharmacol Physiol 1997; 24: 1–9.PubMedCrossRefGoogle Scholar
  294. 294.
    Ikomi F, Hunt J, Hanna G, Schmid-Schonbein GW. Interstitial fluid, plasma protein, colloid, and leukocyte uptake into initial lymphatics. J Appl Physiol 1996; 81: 2060–2067.PubMedGoogle Scholar
  295. 295.
    Rutili G, Parker JC, Taylor AE. Fluid balance in ANTU-injured lungs during crystalloid and colloid infusions. J Appl Physiol 1984; 56: 993–998.PubMedCrossRefGoogle Scholar
  296. 296.
    Drake RE, Gabel JC. Abdominal lymph flow response to intraperitoneal fluid in awake sheep. Lymphology 1991; 24: 77–81.PubMedGoogle Scholar
  297. 297.
    Ottaviani G, Azzali G. Ultrastructure of lymphatic vessels in some functional conditions. In: Comel M, Laszt L, eds. Morphology and Histochemistry of the Vascular Wall. Basel: Karger, 1966, pp. 325.Google Scholar
  298. 298.
    Foldi M, Csanda E, Simon M et al. Lymphogenic haemangiopathy. ‘Prelymphatic' pathways in the wall of cerebral and cervical blood vessels. Angiologica 1968; 5: 250–262.PubMedGoogle Scholar
  299. 299.
    Hauck G. The connective tissue space in view of the lymphology. Experientia 1982; 38: 1121–1122.PubMedCrossRefGoogle Scholar
  300. 300.
    Crone G. Exchange of molecules between plasma, interstitial tissue and lymph. Pflugers Arch 1972; (suppl.): 65–79.Google Scholar
  301. 301.
    Casley-Smith JR. Lymph and lymphatics. In: Kaley G, Altura BM, eds. Microcirculation, Vol. 4. Baltimore, MD: University Park Press, 1981, pp. 423.Google Scholar
  302. 302.
    Schmid-Schonbein GW. Mechanisms causing initial lymphatics to expand and compress to promote lymph flow. Arch Histol Cytol 1990; 53 (suppl. 1): 107–114.PubMedCrossRefGoogle Scholar
  303. 303.
    Rhodin JA, Sue SL. Combined intravital microscopy and electron microscopy of the blind beginnings of the mesenteric lymphatic capillaries of the rat mesentery. A preliminary report. Acta Physiol Scand Suppl 1979; 463: 51–58.PubMedGoogle Scholar
  304. 304.
    Jones WR, O’Morchoe CC, Jarosz HM, O’Morchoe PJ. Distribution of charged sites on lymphatic endothelium. Lymphology 1986; 19: 5–14.PubMedGoogle Scholar
  305. 305.
    Schmid-Schonbein GW. Microlymphatics and lymph flow. Physiol Rev 1990; 70: 987–1028.PubMedGoogle Scholar
  306. 306.
    Leak LV, Burke JF. Fine structure of the lymphatic capillary and the adjoining connective tissue area. Am J Anat 1966; 118: 785–809.PubMedCrossRefGoogle Scholar
  307. 307.
    Leak LV, Burke JF. Electron microscopic study of lymphatic capillaries in the removal of connective tissue fluids and particulate substances. Lymphology 1968; 1: 39–52.PubMedGoogle Scholar
  308. 308.
    Gerli R, Ibba L, Fruschelli G. Ultrastructural cytochemistry of anchoring filaments of human lymphatic capillaries and their relation to elastic fibers. Lymphology 1991; 24: 105–112.PubMedGoogle Scholar
  309. 309.
    Taylor AE. The lymphatic edema safety factor: the role of edema dependent lymphatic factors (EDLF). Lymphology 1990; 23: 111–123.PubMedGoogle Scholar
  310. 310.
    Hogan RD, Unthank JL. The initial lymphatics as sensors of interstitial fluid volume. Microvasc Res 1986; 31: 317–324.PubMedCrossRefGoogle Scholar
  311. 311.
    Leak V. Electron microscopic observations on lymphatic capillaries and the structural components of the connective tissue–lymph interface. Microvasc Res 1970; 2: 361–391.PubMedCrossRefGoogle Scholar
  312. 312.
    Leak LV. The structure of lymphatic capillaries in lymph formation. Fed Proc 1976; 35: 1863–1871.PubMedGoogle Scholar
  313. 313.
    Shinohara H, Nakatani T, Matsuda T. Postnatal development of the ovarian bursa of the golden hamster (Mesocricetus auratus): its complete closure and morphogenesis of lymphatic stomata. Am J Anat 1987; 179: 385–402.PubMedCrossRefGoogle Scholar
  314. 314.
    Hauck G. Capillary permeability and micro-lymph drainage. Vasa 1994; 23: 93–97.PubMedGoogle Scholar
  315. 315.
    McCallum WG. On the mechanisms of absorption of granular material from the peritoneum. Bull Johns Hopkins Hosp 1903; 14: 105–115.Google Scholar
  316. 316.
    Tsilibary EC, Wissig SL. Absorption from the peritoneal cavity. SEM study of the mesothelium covering the peritoneal surface of the muscular portion of the diaphragm. Am J Anat 1977; 149: 127–133.PubMedCrossRefGoogle Scholar
  317. 317.
    Leak LV, Rahil K. Permeability of the diaphragmatic mesothelium. The ultrastructural basis for stomata. Am J Anat 1978; 151: 557–592.PubMedCrossRefGoogle Scholar
  318. 318.
    Leak LV. Lymphatic endothelial–interstitial interface. Lymphology 1987; 20: 196–204.PubMedGoogle Scholar
  319. 319.
    Simer PM. Omental lymphatics in man. Anat Rec 1935; 63: 253–262.CrossRefGoogle Scholar
  320. 320.
    Vajda J. Innervation of lymph vessels. Acta Morphol Acad Sci Hung 1966; 14: 197–208.PubMedGoogle Scholar
  321. 321.
    Hargens AR, Zweifach BW. Contractile stimuli in collecting lymph vessels. Am J Physiol 1977; 233: H57–H65.PubMedGoogle Scholar
  322. 322.
    Gnepp DR, Green FH. Scanning electron microscopic study of canine lymphatic vessels and their valves. Lymphology 1980; 13: 91–99.PubMedGoogle Scholar
  323. 323.
    Ohtani O. Structure of lymphatics in rat cecum with special reference to submucosal collecting lymphatics endowed with smooth muscle cells and valves. I. A scanning electron microscopic study. Arch Histol Cytol 1992; 55: 429–436.PubMedCrossRefGoogle Scholar
  324. 324.
    Moller R. Arrangement and fine structure of lymphatic vessels in the human spermatic cord. Andrologia 1980; 12: 564–576.PubMedCrossRefGoogle Scholar
  325. 325.
    Zweifach BW, Prather JW. Micromanipulation of pressure in terminal lymphatics in the mesentery. Am J Physiol 1975; 228: 1326–1335.PubMedGoogle Scholar
  326. 326.
    Horstmann E. Anatomie und Physiologie des lymphgefa B systems im bauchraum. In: Bartelheimer H, Heising N, eds. Actuelle Gastroenterologie. Stuttgart: Verh, Thieme, 1968, p. 1.Google Scholar
  327. 327.
    Ohhashi T, Azuma T, Sakaguchi M. Active and passive mechanical characteristics of bovine mesenteric lymphatics. Am J Physiol 1980; 239: H88–H95.PubMedGoogle Scholar
  328. 328.
    Watanabe N, Kawai Y, Ohhashi T. Demonstration of both B1 and B2 adrenoreceptors mediating negative chronotropic effects on spontaneous activity in isolated bovine mesenteric lymphatics. Microvasc Res 1990; 39: 50–59.PubMedCrossRefGoogle Scholar
  329. 329.
    Ohhashi T, Azuma T. Sympathetic effects on spontaneous activity in bovine mesenteric lymphatics (retracted by Ohhashi T, Azuma T. In: Am J Physiol 1986; 251: H226). Am J Physiol 1984; 247: H610–H615.PubMedGoogle Scholar
  330. 330.
    Ohhashi T, Azuma T. Pre and postjunctional alpha-adrenoceptors at the sympathetic neuroeffector junction in bovine mesenteric lymphatics. Microvac Res 1986; 31: 31–40.CrossRefGoogle Scholar
  331. 331.
    Watanabe N, Kawai Y, Ohhashi T. Dual effects of histamine on spontaneous activity in isolated bovine mesenteric lymphatics. Microvasc Res 1988; 36: 239–249.PubMedCrossRefGoogle Scholar
  332. 332.
    Ferguson MK, Shahinian HK, Michelassi F. Lymphatic smooth muscle responses to leukotrienes, histamine and platelet activating factor. J Surg Res 1988; 44: 172–177.PubMedCrossRefGoogle Scholar
  333. 333.
    Ohhashi T, Kawai Y, Azuma T. The response of lymphatic smooth muscles to vasoactive substances. Pflugers Arch 1978; 375: 183–188.PubMedCrossRefGoogle Scholar
  334. 334.
    Azuma T, Ohhashi T, Roddie IC. Bradykinin-induced contractions of bovine mesenteric lymphatics. J Physiol (Lond) 1983; 342: 217–227.Google Scholar
  335. 335.
    Ohhashi T, Olschowka JA, Jacobowitz DM. Vasoactive intestinal peptide inhibitory innervation in bovine mesenteric lymphatics. A histochemical and pharmacological study. Circ Res 1983; 53: 535–538.PubMedGoogle Scholar
  336. 336.
    Abu-Hiljeh MF, Habbai OA, Moqattash ST. The role of the diaphragm in lymphatic absorption from the peritoneal cavity. J Anat 1995; 186: 453–467.Google Scholar
  337. 337.
    Fruschelli G, Gerli R, Alessandrini G, Sacchi G. II controllo neurohumorale dalla contratilita dei vasi linfatici. In: Atti dalla Societa Italiana di Anatomia. 39th Convegno Nazaionale, 19/21 September. Firenze: I Sedicesimo, 1983, p. 2.Google Scholar
  338. 338.
    Starling EH, Tubby A. On absorption from and secretion into the serous cavities. J Physiol (Lond) 1894; 16: 140–155.Google Scholar
  339. 339.
    Starling EH. On the absorption of fluid from the connective tissue spaces. J Physiol (Lond) 1896; 19: 312–321.Google Scholar
  340. 340.
    Drinker CF, Field ME. The protein of mammalian lymph and the relation of lymph to tissue fluid. Am J Physiol 1931; 97: 32–45.Google Scholar
  341. 341.
    Allen L, Vogt E. Mechanisms of lymphatic absorption from serous cavities. Am J Physiol 1937; 119: 776–782.Google Scholar
  342. 342.
    Brace RA, Guyton AC. Interstitial fluid pressure: capsule, free fluid, gel fluid and gel absorption pressure in subcutaneous tissue. Microvasc Res 1979; 18: 217–228.PubMedCrossRefGoogle Scholar
  343. 343.
    Guyton AC, Granger HJ, Taylor AE. Interstitial fluid pressure. Physiol Rev 1971; 51: 527–563.PubMedGoogle Scholar
  344. 344.
    Guyton AC, Taylor AE, Granger HJ, Gibson WH. Regulation of interstitial fluid volume and pressure. Adv Exp Med Biol 1972; 33: 111–118.PubMedGoogle Scholar
  345. 345.
    Guyton AC, Taylor AE, Brace RA. A synthesis of interstitial fluid regulation and lymph formation. Fed Proc 1976; 35: 1881–1885.PubMedGoogle Scholar
  346. 346.
    Zink J, Greenway CV. Intraperitoneal pressure in formation and reabsorption of ascites in cats. Am J Physiol 1977; 233: H185–H190.PubMedGoogle Scholar
  347. 347.
    Zink J, Greenway CV. Control of ascites absorption in anesthetized cats: effects of intraperitoneal pressure, protein, and furosemide diuresis. Gastroenterology 1977; 73: 119–124.Google Scholar
  348. 348.
    Imholz AL, Koomen GC, Struijk DG, Arisz L, Krediet RT. Effect of an increased intraperitoneal pressure on fluid and solute transport during CAPD. Kidney Int 1993; 44: 1078–1085.PubMedCrossRefGoogle Scholar
  349. 349.
    Durand PY, Chanliau J, Gamberoni J, Hestin D, Kessler M. Intraperitoneal pressure, peritoneal permeability and volume of ultrafiltration in CAPD. Adv Perit Dial 1992; 8: 22–25.PubMedGoogle Scholar
  350. 350.
    Gotloib L, Garmizo AL, Varka I, Mines M. Reduction of vital capacity due to increased intra-abdominal pressure during peritoneal dialysis. Perit Dial Bull 1981; 1: 63–64.Google Scholar
  351. 351.
    Flessner MF. Net ultrafiltration in peritoneal dialysis: role of direct fluid absorption into peritoneal tissue. Blood Purif 1992; 10: 136–147.PubMedCrossRefGoogle Scholar
  352. 352.
    Flessner MF, Parker RJ, Sieber SM. Peritoneal lymphatic uptake of fibrinogen and erythrocytes in the rat. Am J Physiol 1983; 244: H89–H96.PubMedGoogle Scholar
  353. 353.
    Silk YN, Goumas WM, Douglass HO Jr, Huben RP. Chylous ascites and lymphocyst management by peritoneovenous shunt. Surgery 1991; 110: 561–565.PubMedGoogle Scholar
  354. 354.
    Casley Smith JR. A fine structural study of variations in protein concentration in lacteals during compression and relaxation. Lymphology 1979; 12: 59–65.PubMedGoogle Scholar
  355. 355.
    O’Morchoe CC, Jones WR 3d, Jarosz HM, O’Morchoe PJ, Fox LM. Temperature dependence of protein transport across lymphatic endothelium in vitro. J Cell Biol 1984; 98: 629–640.PubMedCrossRefGoogle Scholar
  356. 356.
    Dobbins WO, Rollins EL. Intestinal mucosal lymphatic permeability: an electron microscopic study of endothelial vesicles and cell junctions. J Ultrastruct Res 1970; 33: 29–59.PubMedCrossRefGoogle Scholar
  357. 357.
    Shasby DM, Peterson MW. Effects of albumin concentration on endothelial albumin transport in vitro. Am J Physiol 1987; 253: H654–H661.PubMedGoogle Scholar
  358. 358.
    Albertini KH, O’Morchoe CC. Renal lymphatic ultrastructure and translymphatic transport. Microvasc Res 1980; 19: 338–351.CrossRefGoogle Scholar
  359. 359.
    Von Recklinghausen F. Über Eiter-Bindegewebskörperchen. Virchows Arch Pathol Anat 1863; 28: 157–166.CrossRefGoogle Scholar
  360. 360.
    Seifert E. Zur Biologie des menschlichen grossen Netzes. Arch Klin Chir 1921; 116: 510–517.Google Scholar
  361. 361.
    Koten JW, Den Otter W. Are omental milky spots an intestinal thymus? Lancet 1991; 338: 1189–1190.PubMedCrossRefGoogle Scholar
  362. 362.
    Garosi G, Di Paolo N. Recent advances in peritoneal morphology: the milky spots in peritoneal dialysis. Adv Perit Dial 2001; 17: 25–28.PubMedGoogle Scholar
  363. 363.
    Di Paolo N, Sacchi G, Garosi G, Sansoni E, Bargagli L, Ponzo P, Tanganelli P, Gaggiotti E. Omental milky spots. Review and personal experience. Perit Dial Int 2005; 25: 48–57.PubMedGoogle Scholar
  364. 364.
    Haller A. Primae linae physiologiae in usum Praelectionum Academicarum avetae et emendato. Gottingae, Capit 25, 1751, p. 41.Google Scholar
  365. 365.
    Furness JB. Arrangement of blood vessels and their relation with adrenergic nerves in the rat mesentery. J Anat 1973; 115: 347–364.PubMedGoogle Scholar
  366. 366.
    Beattie JM. The cells of inflammatory exudations: an experimental research as to their function and density, and also as to the origin of the mononucleated cells. J Pathol Bacteriol 1903; 8: 130–177.CrossRefGoogle Scholar
  367. 367.
    Durham HE. The mechanism of reaction to peritoneal infection. J Pathol Bacteriol 1897; 4: 338–382.CrossRefGoogle Scholar
  368. 368.
    Josey AL. Studies in the physiology of the eosinophil. V. The role of the eosinophil in inflammation. Folia Haematol 1934; 51: 80–95.Google Scholar
  369. 369.
    Webb RL. Changes in the number of cells within the peritoneal fluid of the white rat, between birth and sexual maturity. Folia Haematol 1934; 51: 445–451.Google Scholar
  370. 370.
    Padawer J, Gordon AS. Cellular elements in the peritoneal fluid of some mammals. Anat Rec 1956; 124: 209–222.PubMedCrossRefGoogle Scholar
  371. 371.
    Fruhman GJ. Neutrophil mobilization into peritoneal fluid. Blood 1960; 16: 1753–1761.PubMedGoogle Scholar
  372. 372.
    Seeley SF, Higgins GM, Mann FC. The cytologic response of the peritoneal fluid to certain substances. Surgery 1937; 2: 862–876.Google Scholar
  373. 373.
    Bercovici B, Gallily R. The cytology of the human peritoneal fluid. Cytology 1978; 22: 124.Google Scholar
  374. 374.
    Becker S, Halme J, Haskill S. Heterogeneity of human peritoneal macrophages: cytochemical and flow cytometric studies. J Reticuloendothel Soc 1983; (ES) 33: 127–138.PubMedGoogle Scholar
  375. 375.
    De Brux JA, Dupre-Froment J, Mintz M. Cytology of the peritoneal fluids sampled by coelioscopy or by cul de sac puncture. Its value in gynecology. Acta Cytol 1968; 12: 395–403.PubMedGoogle Scholar
  376. 376.
    Mahoney CA, Sherwood N, Yap EH, Singleton TP, Whitney DJ, Cornbleet PJ. Ciliated cell remnants in peritoneal dialysis fluid. Arch Pathol Lab Med 1993; 117: 211–213.PubMedGoogle Scholar
  377. 377.
    Fruhmann GJ. Adrenal steroids and neutrophil mobilization. Blood 1962; 20: 335–363.Google Scholar
  378. 378.
    Spriggs AI, Boddington MM. The Cytology of Effusions, 2nd edn. New York: Grune & Straton, 1968, pp. 5–17.Google Scholar
  379. 379.
    Domagala W, Woyke S. Transmission and scanning electron microscopic studies of cells in effusions. Acta Cytol 1975; 19: 214–224.PubMedGoogle Scholar
  380. 380.
    Efrati P, Nir E. Morphological and cytochemical investigation of human mesothelial cells from pleural and peritoneal effusions. A light and electron microscopy study. Isr J Med Sci 1976; 12: 662–673.PubMedGoogle Scholar
  381. 381.
    Bewtra Ch, Greer KP. Ultrastructural studies of cells in body cavity effusions. Acta Cytol 1985; 29: 226–238.PubMedGoogle Scholar
  382. 382.
    Chapman JS, Reynolds RC. Eosinophilic response to intraperitoneal blood. J Lab Clin Med 1958; 51: 516–520.PubMedGoogle Scholar
  383. 383.
    Northover BJ. The effect of various anti-inflammatory drugs on the accumulation of leucocytes in the peritoneal cavity of mice. J Pathol Bacteriol 1964; 88: 332–335.PubMedCrossRefGoogle Scholar
  384. 384.
    Hurley JV, Ryan GB, Friedman A. The mononuclear response to intrapleural injection in the rat. J Pathol Bacteriol 1966; 91: 575–587.PubMedCrossRefGoogle Scholar
  385. 385.
    Rubin J, Rogers WA, Taylor HM et al. Peritonitis during continuous ambulatory peritoneal dialysis. Ann Intern Med 1980; 92: 7–13.PubMedGoogle Scholar
  386. 386.
    Cichoki T, Hanicki Z, Sulowicz W, Smolenski O, Kopec J, Zembala M. Output of peritoneal cells into peritoneal dialysate. Cytochemical and functional studies. Nephron 1983; 35: 175–182.CrossRefGoogle Scholar
  387. 387.
    Strippoli P, Coviello F, Orbello G et al. First exchange neutrophilia is not always an index of peritonitis during CAPD. Adv Perit Dial 1989; 4: 121–123.Google Scholar
  388. 388.
    Kubicka U, Olszewski WL, Maldyk J, Wierzbicki Z, Orkiszewska A. Normal human immune peritoneal cells: phenotypic characteristics. Immunobiology 1989; 180: 80–92.PubMedGoogle Scholar
  389. 389.
    Gotloib L, Mines M, Garmizo AL, Rodoy Y. Peritoneal dialysis using the subcutaneous intraperitoneal prosthesis. Dial Transplant 1979; 8: 217–220.Google Scholar
  390. 390.
    Hoeltermann W, Schlotmann-Hoelledr E, Winkelmann M, Pfitzer P. Lavage fluid from continuous ambulatory peritoneal dialysis. A model for mesothelial cell changes. Acta Cytol 1989; 33: 591–594.PubMedGoogle Scholar
  391. 391.
    Chan MK, Chow L, Lam SS, Jones B. Peritoneal eosinophilia in patients on continuous ambulatory peritoneal dialysis: a prospective study. Am J Kidney Dis 1988; 11: 180–183.PubMedGoogle Scholar
  392. 392.
    Gokal R, Ramos JM, Ward MK, Kerr DN. ‘Eosinophilic' peritonitis in continuous ambulatory peritoneal dialysis (CAPD). Clin Nephrol 1981; 15: 328–330.PubMedGoogle Scholar
  393. 393.
    Leak LV. Interaction of mesothelium to intraperitoneal stimulation. Lab Invest 1983; 48: 479–490.PubMedGoogle Scholar
  394. 394.
    Raftery AT. Regeneration of parietal and visceral peritoneum: an electron microscopical study. J Anat 1973; 115: 375–392.PubMedGoogle Scholar
  395. 395.
    Raftery AT. Mesothelial cells in peritoneal fluid. J Anat 1973; 115: 237–253.PubMedGoogle Scholar
  396. 396.
    Koss LG. Diagnostic Cytology and Its Histopathologic Bases, 3rd edn. Philadelphia, PA: Lippincot, 1979, chs 16–25.Google Scholar
  397. 397.
    Whitaker D, Papadimitriou J. Mesothelial healing: morphological and kinetic investigations. J Pathol Bacteriol 1957; 73: 1–10.CrossRefGoogle Scholar
  398. 398.
    Gotloib L, Shostak A, Wajsbrot V, Kushnier R. High glucose induces a hypertrophic, senescent mesothelial cell phenotype after long in-vivo exposure. Nephron 1999; 82: 164/173.PubMedCrossRefGoogle Scholar
  399. 399.
    Shostak A, Wajsbrot V, Gotloib L. High glucose accelerates the life cycle of the in-vivo exposed mesothelium”. Kidney Int 2000; 58: 2044–2052. PubMedCrossRefGoogle Scholar
  400. 400.
    Renvall SY. Peritoneal metabolism and intrabdominal adhesion formation during experimental peritonitis. Acta Chir Scand Suppl 1980; 503: 1–48.PubMedGoogle Scholar
  401. 401.
    Ellis H, Harrison W, Hugh TB. The healing of peritoneum under normal and pathological conditions. Br J Surg 1965; 52: 471–476.PubMedCrossRefGoogle Scholar
  402. 402.
    Ellis H. The cause and prevention of postoperative intraperitoneal adhesions. Surg Gynecol Obstet 1971; 133: 497–511.PubMedGoogle Scholar
  403. 403.
    Whitaker D, Papadimitriou J. Mesothelial healing: morphological and kinetic investigations. J Pathol 1985; 145: 159–175.PubMedCrossRefGoogle Scholar
  404. 404.
    Ryan GB, Grobety J, Majno G. Postoperative peritoneal adhesions: a study of the mechanisms. Am J Pathol 1971; 65: 117–148.PubMedGoogle Scholar
  405. 405.
    Walters WB, Buck RC. Mitotic activity of peritoneum in contact with a regenerative area of peritoneum. Virchows Arch B Zellpathol 1973; 13: 48–52.Google Scholar
  406. 406.
    Johnson FR, Whitting HW. Repair of parietal peritoneum. Br J Surg 1962; 49: 653–660.PubMedCrossRefGoogle Scholar
  407. 407.
    Watters WB, Buck RC. Scanning electron microscopy of mesothelial regeneration in the rat. Lab Invest 1972; 26: 604–609.PubMedGoogle Scholar
  408. 408.
    Cameron GR, Hassan SM, De SN. Repair of Glisson’s capsule after tangential wounds on the liver. J Pathol Bacteriol 1957; 73: 1–10.CrossRefGoogle Scholar
  409. 409.
    Eskeland G. Regeneration of parietal peritoneum in rats. A light microscopical study. Acta Pathol Microbiol Scand 1966; 68: 355–378.PubMedGoogle Scholar
  410. 410.
    Di Paolo N, Vanni L, Sacchi G. Autologous implant of peritoneal mesothelium in rabbits and man. Clin Nephrol 1991; 57: 323–331.Google Scholar
  411. 411.
    Foley-Comer AJ, Herrick SA, Al-Mishlab T, Prele CM, Laurent GJ, Mutsaers SE. Evidence for incorporation of free-floating mesothelial cells as a mechanism of serosal healing. J Cell Sci 2002; 115: 1383–1389.PubMedGoogle Scholar
  412. 412.
    Williams DC. The peritoneum. A plea for a change in attitude towards this membrane. Br J Surg 1955; 42: 401–405.PubMedCrossRefGoogle Scholar
  413. 413.
    Shaldon S. Peritoneal macrophage: the first line of defense. In: La Greca G, Chiaramonte S, Fabris A, Feriani M, Ronco G, eds. Peritoneal Dialysis. Milan: Wichtig. Ed, 1986, p. 201.Google Scholar
  414. 414.
    Eskeland G, Kjaerheim A. Regeneration of parietal peritoneum in rats. 2. An electron microscopical study. Acta Pathol Microbiol Scand 1966; 68: 379–395.PubMedGoogle Scholar
  415. 415.
    Raftery AT. Regeneration of parietal and visceral peritoneum. A light microscopical study. Br J Surg 1973; 60: 293–299.PubMedCrossRefGoogle Scholar
  416. 416.
    Yung S, Thomas GJ, Davies M. Induction of hyaluronan metabolism after mechanical injury of peritoneal cells in vitro. Kidney Int 2000; 58: 1953–1962.PubMedCrossRefGoogle Scholar
  417. 417.
    Yung S, Davies M. Response of human peritoneal cell to injury: an in vitro model of peritoneal wound healing. Kidney Int 1998; 54: 2160–2169.PubMedCrossRefGoogle Scholar
  418. 418.
    Horiuchi T, Miyamoto K, Miyamoto S, Fujita M, Sano N et al. Image analysis of remesothelialization following chemical wounding of cultured human peritoneal cells: the role of hyaluronan synthesis. Kidney Int 2003; 64: 2280–2290.PubMedCrossRefGoogle Scholar
  419. 419.
    Gotloib l, Wajsbrot V, Shostak A, Khrizman V. Repopulation of the mesothelial monolayer during long-term experimental peritoneal dialysis. Contrib Nephrol 2006; 150: 54–61.PubMedCrossRefGoogle Scholar
  420. 420.
    Gotloib L, Wajsbrot V, Shostak A. Acute oxidative stress induces peritoneal hypermeability, mesothelial loss and fibrosis. Perit Dial Int 2002; 22 (suppl. 1): S9.Google Scholar
  421. 421.
    Gotloib L, Shostak A, Bar Sella P, Kohen R. Continuous mesothelial injury and regeneration during long-term peritoneal dialysis. Perit Dial Bull 1987; 7: 148–155.Google Scholar
  422. 422.
    Kawamoto K, Okada T, Kannan Y, Ushio H, Matsumoto M, Matsuda H. Nerve growth factor prevents apoptosis of rat peritoneal masts cells through the trk proto-oncogene receptor. Blood 1995; 15: 4638–4644.Google Scholar
  423. 423.
    Gotloib L, Shostak A, Wajsbrot V. Detrimental effects of peritoneal dialysis solutions upon in vitro and in situ exposed mesothelium. Perit Dial Int 1997; 17 (suppl. 2): S13–S16.PubMedGoogle Scholar
  424. 424.
    Gotloib L, Wajsbrot V, Shostak A, Kushnier R. Effects of hyperosmolarity upon the mesothelial monolayer exposed in-vivo and in-situ to a mannitol enriched dialysis solution. Nephron 1999; 81: 301–309.PubMedCrossRefGoogle Scholar
  425. 425.
    Gotloib L, Wajsbrot V, Shostak A. Ecology of the peritoneum: a substantial role for the osmotic agents resulting in apoptosis of mesothelial cells. Contrib Nephrol 2003; 140: 10–17.PubMedCrossRefGoogle Scholar
  426. 426.
    Schneble F, Bonzel KE, Waldherr R, Bachman S, Roth H, Scharer K. Peritoneal morphology in children treated by continuous ambulatory peritoneal dialysis. Pediatr Nephrol 1992; 6: 542–546.PubMedCrossRefGoogle Scholar
  427. 427.
    Garossi G, Di Paolo N. Pathophysiology and morphological clinical correlation in experimental and peritoneal dialysis-induced peritoneal sclerosis. Adv Perit Dial 2000; 16: 204–207.Google Scholar
  428. 428.
    Garossi G, Di Paolo N. Morphological aspects of peritoneal sclerosis. J Nephrol 2001; 14 (suppl. 4): 30–38.Google Scholar
  429. 429.
    Mactier RA. The spectrum of peritoneal fibrosing syndromes in peritoneal dialysis. Adv Perit Dial 2000; 16: 223–228.PubMedGoogle Scholar
  430. 430.
    Flessner MF. The effect of fibrosis on peritoneal transport. Contrib Nephrol 2006; 150: 174–180.PubMedCrossRefGoogle Scholar
  431. 431.
    Gotloib L, Wajsbrot V, Shostak A. A short review of experimental peritoneal sclerosis: from mice to men”. Int J Artif Organs 2005; 28: 97–104.PubMedGoogle Scholar
  432. 432.
    Yung S, Li FK, Chan TM. Peritoneal mesothelial cell culture and biology. Perit Dial Int 2006; 26: 162–173.PubMedGoogle Scholar
  433. 433.
    Aroeira LS, Aguilera A, Sanchez-Tomero JA, Bajo MA, Del Peso G, Jimenez-Heffernan JA, Selgas R, Lopez-Cabrera M. Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: pathologic significance and potential therapeutic interventions. J Am Soc Nephrol 2007; 18: 2004–2013.PubMedCrossRefGoogle Scholar
  434. 434.
    Garosi G, Di Paolo N. Peritoneal sclerosis. An overview. Adv Perit Dial 1999; 15: 85–192.Google Scholar
  435. 435.
    Mateijsen MAM, Van der Wal AC, Hendricks PMEM, Zweers MM, Mulder J, Strujik DG, Krediet RT. Vascular and interstitial changes in the peritoneum of CAPD patients with peritoneal sclerosis. Perit Dial Int 1999; 19: 517–525.PubMedGoogle Scholar
  436. 436.
    Williams JD, Craig KJ, Topley N, Von Ruhland C, Fallon M, Newman GR, Mackenzie RK, Williams GT. Morphological changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol 2002; 13: 470–479.PubMedGoogle Scholar
  437. 437.
    Bladier G, Wolvetang EJ, Mutchinson P, de-Haan JB, Kola I. Response of a primary human fibroblast cell line to H2O2: senescence-like growth arrest or apoptosis? Cell Growth Differ 1997; 8: 588–598.Google Scholar
  438. 438.
    Dypbuki JM, Ankarcrona M, Burkitt M, Sjoholm A, Strom K, Orrenius S, Nicotera P. Different pro-oxidant levels stimulate growth, trigger apoptosis or produce necrosis of insulin-secreting RINm5F cells. The role of intracellular polyamines. J Biol Chem 1994; 269: 30553–30560.Google Scholar
  439. 439.
    Ryter SW, Kim HP, Hoetzel A, Park JW, Nakahira K, Wang X, Choi AMK. Mechanisms of cell death in oxidative stress. Antioxid Redox Signal 2007; 9: 49–89.PubMedCrossRefGoogle Scholar
  440. 440.
    Nilsson-Thorell CB, Nuscalu N, Andren AH, Kjellstrand PT, Wieslander AP. Heat sterilization of fluids for peritoneal dialysis gives rise to aldehydes. Perit Dial Int 1993; 13: 208–213.PubMedGoogle Scholar
  441. 441.
    Miyata T, Horie K, Ueda Y, Fujita Y, Izuhara Y, Hirano H, Uchida K, Saito A, Van Ypersele de Strihou C, Kurokawa K. Advanced glycation and lipoxidation of the peritoneal membrane: respective roles of serum and peritoneal fluid reactive carbonyl compounds. Kidney Int 2000; 58: 425–435.PubMedCrossRefGoogle Scholar
  442. 442.
    Santini SA, Cotroneo P, Marra G, Manto A, Giardina B, Mordent A, Greco AV, Martorana GE, Magnani P, Ghirlanda G. Na/K ATPase impairement and experimental glycation: the role of autoxidation. Free Radic Res 1996; 24: 381–389.PubMedCrossRefGoogle Scholar
  443. 443.
    Ishibashi Y, Sugimoto T, Ichikawa Y, Akatsuka A, Miyata T, Nangaku M, Tagawa H, Kurokawa K. Glucose dialysate induces mitochondrial DNA damage in peritoneal mesothelial cells. Perit Dial Int 2002; 22: 11–21.PubMedGoogle Scholar
  444. 444.
    Gotloib L, Wajsbrot V, Shostak A. Mesothelial dysplastic changes and lipid peroxidation induced by 7.5% Icodextrin. Nephron 2002; 92: 142–155.PubMedCrossRefGoogle Scholar
  445. 445.
    Gotloib L, Wajsbrot V, Shostak A. Icodextrin induced lipid peroxidation disrupts the mesothelial cell cycle engine. Free Radic Biol Med 2003; 34: 419–428.PubMedCrossRefGoogle Scholar
  446. 446.
    Ueda Y, Miyata T, Goffin E, Yoshino A, Inagi R, Ishibashi Y, Izuhara Y, Saito A, Kurokawa K, Van Ypersele de Strihou C. Effect of dwell time on carbonyl stress using Icodextrin and aminoacid peritoneal dialysis fluids. Kidney Int 2000; 58: 2529–2534.CrossRefGoogle Scholar
  447. 447.
    Shostak A, Pivnik C, Gotloib L. Cultured rat mesothelial cells generate hydrogen peroxide: a new player in peritoneal defense?” J Am Soc Nephrol 1996; 7: 2371–2378.PubMedGoogle Scholar
  448. 448.
    Gotloib L, Wajsbrot V, Cuperman Y, Shostak A. Acute oxidative stress induces peritoneal hyperpermeability, mesothelial loss and fibrosis. J Lab Clin Med 2004; 143: 31–40.PubMedCrossRefGoogle Scholar
  449. 449.
    Friemann J, Muller KM, Pott F. Mesothelial proliferation due to asbestos and man-made fibres. Experimental studies on rat omentum. Pathol Res Pract 1990; 186: 117–123.PubMedGoogle Scholar
  450. 450.
    Imai H, Nakamoto H, Ishida Y, Inone T, Kanno Y, Okada H, Suzuki S, Okano H, Suzuki H. Glucocorticoid restores the deterioration of water transport in the peritoneum through increment in aquaporin. Adv Perit Dial 2000; 16: 297–302.PubMedGoogle Scholar
  451. 451.
    Park SE, Twardowski ZJ, Moore HL, Khanna R, Nolph KD. Chronic administration of iron dextran into the peritoneal cavity of rats. Perit Dial Int 1997; 17: 179–185.PubMedGoogle Scholar
  452. 452.
    Zareie M, Hekking LHP, Welten AGA, Driesprong BAJ, Schadee-Eestermans IL, Faret D, Leyssens A, Schalkwijk CG, Beelen RMJ, Ter Wee PM, Van den Born J. Contribution of lactate buffer, glucose and glucose degradation products to peritoneal injury in vivo. Nephrol Dial Transplant 2003; 8: 2629–2637.CrossRefGoogle Scholar
  453. 453.
    Combet S, Ferrier ML, Van Landschoot M, Stoenoiu M, Moulin P, Miyata T, Lameire N, Devuyst O. Chronic uremia induces permeability changes, increased mitric oxidative synthase expression and structural modifications of the peritoneum. J Am Soc Nephrol 2001; 12: 2146–2157.PubMedGoogle Scholar
  454. 454.
    Levine S, Saltzman A. Repeated toxic injury of the peritoneum: accumulation of toxicity and adaptation to injury. J Appl Toxicol 2000; 20: 431–434.PubMedCrossRefGoogle Scholar
  455. 455.
    Margetts PJ, Kolb M, Yu L, Hoff CM, Gaultie J. A chronic inflammatory infusion of peritoneal dialysis in rats. Perit Dial Int 2001; 21 (suppl. 3): S368–S372.PubMedGoogle Scholar
  456. 456.
    Nakamoto H, Imai H, Ishida Y, Yamanouchi Y, Inoue T, Okada H, Suzuki H. New animal models for encapsulating peritoneal sclerosis. Role of acidic solution. Perit Dial Int 2001; 21 (suppl. 3): S349–S353.PubMedGoogle Scholar
  457. 457.
    Levine S, Saltzman A. Peritoneal toxicity to water: a model of chemical peritonitis caused by osmotic disequilibrium in rats. J Appl Toxicol 2001; 21: 303–306.PubMedCrossRefGoogle Scholar
  458. 458.
    Fang CC, Lai MN, Chien CT, Hung KY, Tsai CC, Tsai TJ, Hsien BS. Effects of pentoxyfilline on peritoneal fibroblasts and silica-induced peritoneal fibrosis. Perit Dial Int 2003; 23: 228–236.PubMedGoogle Scholar
  459. 459.
    Van der Vliet A, Van der Poel KI, Bast A. Intestinal smooth muscle dysfunction after intraperitoneal injection of zymosan in the rat: are oxygen radicals involved? Gut 1992; 33: 336–341.PubMedCrossRefGoogle Scholar
  460. 460.
    Panduri V, Weitzman SA, Chandel NS, Kamp DW. Mitochondrial-derived free radicals mediate asbestos-induced alveolar epithelial cell apoptosis. Am J Physiol Lung Cell Mol Physiol 2004; 286: L1220–L1127.PubMedCrossRefGoogle Scholar
  461. 461.
    Oyama Y, Sakai H, Arata T, Okano Y, Akaide N, Sakal K, Noda K. Cytotoxic effects of methanol, formaldehyde and formate on dissociated rat thymocytes: a possibility of aspartame toxicity. Cell Biol Toxicol 2002; 18: 43–50.PubMedCrossRefGoogle Scholar
  462. 462.
    Shangari N, O’Brien PJ. The cytotoxic mechanism of glyoxal involves oxidative stress. Biochem Pharmacol 2004; 68: 1433–1442.PubMedCrossRefGoogle Scholar
  463. 463.
    Zavodnik IB, Lapshina EA, Zavodnik LB, Labieniec C, Bryszewska M, Reiter RJ. Hypochlorous acid-induced oxidative stress in Chinese hamster B14 cells: viability, DNA and protein damage and the protective effect of melatonin. Mutat Res 2004; 559: 39–48.PubMedGoogle Scholar
  464. 464.
    Galleano M, Aimo L, Puntarulo S. Ascorbyl radical/ascorbate ratio in plasma from iron overloaded rats as oxidative stress indicator. Toxicol Lett 2002; 133: 193–201.PubMedCrossRefGoogle Scholar
  465. 465.
    Sulliman HB, Welty-Wolf KE, Carraway M, Tatro L, Piantadosi CA. Lipopolysaccharide induces oxidative cardiac mitochondrial damage and biogenesis. Cardiovasc Res 2004; 64: 279–288.CrossRefGoogle Scholar
  466. 466.
    Fubini B, Hubbard A. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free Radic Biol Med 2003; 34: 1507–1516.PubMedCrossRefGoogle Scholar
  467. 467.
    Aoshiba K, Yasuda K, Yasui S, Tamaoki J, Nagai A. Serine proteases increase oxidative stress in lung cells. Am J Physiol Lung Cell Mol Physiol 2001; 281: L556–L564.PubMedGoogle Scholar
  468. 468.
    Zhang Z, Dimitrieva NI, Park JH, Levine RL, Curg MB. High urea and NaCl carbonylate proteins in renal cells in culture and in vivo, and high urea causes 8-oxoguananine lesions in their DNA. Proc Natl Acad Sci U S A 2004; 101: 9491–9496.PubMedCrossRefGoogle Scholar
  469. 469.
    Antolini F, Valente F, Ricciardi D, Fagugli RM. Normalization of oxidative stress parameters after kidney transplant is secondary to full recovery of renal function. Clin Nephrol 2004; 62: 131–137.PubMedGoogle Scholar
  470. 470.
    Sama R 2nd, Blaydes B, Warbritton A, Lomax LD, Bucci T, Delclos KB. Differences in the response to oxidative stress and mutant frequency in CD (Sprague-Dawley) and Fisher 344 rats due to an induced inflammatory response. Environ Mol Mutagen2000; 35: 336–342.CrossRefGoogle Scholar
  471. 471.
    Tan RJ, Fattman CL, Watkins SC, Oury TD. Redistribution of pulmonary EC-SOD after exposure to asbestos. J Appl Physiol 2004; 97: 2006–2013.PubMedCrossRefGoogle Scholar
  472. 472.
    Shostak A, Gotloib L, Kushnier R, Wajsbrot V. Protective effect of pyruvate upon cultured mesothelial cells exposed to 2 mM hydrogen peroxide. Nephron 2000; 84: 362–366.PubMedCrossRefGoogle Scholar
  473. 473.
    Diaz-Buxo JA, Gotloib L. Agents that modulate peritoneal membrane structure and function. Perit Dial Int 2007; 27: 16–30.PubMedGoogle Scholar
  474. 474.
    Dobbie JW. Pathogenesis of peritoneal fibrosing syndromes (sclerosing peritonitis) in peritoneal dialysis. Perit Dial Int 1992; 12: 14–27.PubMedGoogle Scholar
  475. 475.
    Verger G, Celicout B, Larpent L, Goupil A. Encapsulating peritonitis during continuous ambulatory peritoneal dialysis. A physiopathologic hypothesis. Presse Med 1986; 15: 1311–1314.PubMedGoogle Scholar
  476. 476.
    Gandhi VC, Humayun HM, Ing TS et al. Sclerotic thickening of the peritoneal membrane in maintenance peritoneal dialysis patients. Arch Intern Med 1980; 140: 1201–1203.PubMedCrossRefGoogle Scholar
  477. 477.
    Slingeneyer A, Mion G, Mourad G, Canaud B, Faller B, Beraud JJ. Progressive sclerosing peritonitis: a late and severe complication of maintenance peritoneal dialysis. Trans Am Soc Artif Intern Organs 1983; 29: 633–640.PubMedGoogle Scholar
  478. 478.
    Di Paolo N, Garossi G. Peritoneal sclerosis. J Nephrol 1999; 12: 347–361.PubMedGoogle Scholar
  479. 479.
    Garosi G, Di Paolo N. Peritoneal sclerosis: one or two nosological entities? Semin Dial 2000; 13: 297–308.PubMedCrossRefGoogle Scholar
  480. 480.
    Garosi G. Different aspects of peritoneal sclerosis. Contrib Nephrol 2006; 140: 18–29.CrossRefGoogle Scholar
  481. 481.
    Di Paolo N, Sacchi G, Lorenzoni P, Sansoni E, Gaggiotti E. Ossification of the peritoneal membrane. Perit Dial Int 2004; 24: 471–477.PubMedGoogle Scholar
  482. 482.
    Di Paolo N, Di Paolo M, Tanganelli P, Brardi S, Bruci A. Technique Nefrologiche e Dialitici. Perugia: Bios Editore, 1988, p. 5.Google Scholar
  483. 483.
    Mc Laughling K, Butt G, Madi A, Mc Millan R, Mactier R. Sclerosing peritonitis occurring in a hemodialysis patient. Am J Kidney Dis 1996; 27: 729–732.CrossRefGoogle Scholar
  484. 484.
    Foo KT, Ng-Kc, Rauff A, Foong WC, Sinniah R. Unusual small intestinal obstruction in adolescent girls: the abdominal cocoon. Br J Surg 1978; 65: 427–430.PubMedCrossRefGoogle Scholar
  485. 485.
    Narayanan R, Kabra SG, Bhargava BN, Sangal BC. Idiopathic sclerosing encapsulating peritonitis. Lancet 1989; ii: 127–129.CrossRefGoogle Scholar
  486. 486.
    Lee RE, Baddeley H, Marshall AJ, Read AE. Practolol peritonitis. Clin Radiol 1977; 28: 119–128.PubMedCrossRefGoogle Scholar
  487. 487.
    Harty RF. Sclerosing peritonitis and propranolol. Arch Intern Med 1978; 138: 1424–1426.PubMedCrossRefGoogle Scholar
  488. 488.
    Baxter-Smith DC, Monypenny IJ, Dorricott NJ. Sclerosing peritonitis in patient on timolol. Lancet 1978; 2: 149.PubMedCrossRefGoogle Scholar
  489. 489.
    Clarck CV, Terris R. Sclerosing peritonitis associated with metoprolol. Lancet 1983; 1: 937.CrossRefGoogle Scholar
  490. 490.
    Marigold JH, Pounder RE, Penberton J, Thompson RP. Propanolol, oxprenolol and sclerosing peritonitis. Brit Med J 1982; 284: 870.CrossRefGoogle Scholar
  491. 491.
    Phillips RK, Dudley HA. The effect of tetracycline lavage and trauma on visceral and parietal peritoneal ultrastructure and adhesion formation. Br J Surg 1984; 71: 537–539.PubMedCrossRefGoogle Scholar
  492. 492.
    Vorhauer W, Biere J, Passa PH, Charleux H, Chelloul N. Encapsulating peritonitis symptomatic of gastric carcinoma. Sem Hop 1976; 52: 1715–1718.PubMedGoogle Scholar
  493. 493.
    Marusawa H, Katsurada A, Takaya H, Kumegawa Y, Kajimura K, Yamashita Y. A case of encapsulating peritonitis associated with pancreatic ascites induced by carcinoma of pancreas. Lutheinized thecoma with sclerosing peritonitis. Arch Pathol Lab Med 1996; 120: 303–306.Google Scholar
  494. 494.
    Gold RS, Mucha SJ. Unique case of mesenteric fibrosis in multiple polyposis. Am J Surg 1975; 130: 366–369.PubMedCrossRefGoogle Scholar
  495. 495.
    Sufrin G, Chason S, Golio A, Murphy J. Paraneoplastic and serologic syndrome of renal carcinoma. Semin Urol 1989; 7: 158–171.PubMedGoogle Scholar
  496. 496.
    Werness BA, Hansen RM, Komaki R, Hanson GA, Schleuter DP, Anderson T. Indolent diffuse histiocytic lymphoma with sclerosis and chylous effusions. Cancer 1983; 51: 2144–2146.CrossRefGoogle Scholar
  497. 497.
    Stenram U. Sclerosing peritonitis in a case of benign ovarian teratoma: a case report. APMIS 1997; 105: 414–416.PubMedCrossRefGoogle Scholar
  498. 498.
    Lin CH, Yu JC, Chen TW, Chan DC, Chen CJ, Hsieh CB. Sclerosing encapsulating peritonitis in a liver transplant patient: a case report. World J Gastroenterol 2005; 11: 5412–5413.PubMedGoogle Scholar
  499. 499.
    Cohen O, Abrahamson J, Ben-Ari J, Frajewicky V, Eldar S. Sclerosing encapsulating peritonitis. J Clin Gastroenterol 1996; 22: 45–47.CrossRefGoogle Scholar
  500. 500.
    Greenlee HB, Stanley MM, Reinhardt GF, Chejfec G. Small bowel obstruction (SBO) from compression and kinking of intestine by thickened peritoneum in cirrhotics with ascites treated with Le Veen shunt (abstract). Gastroenterology 1979; 76: 1282.Google Scholar
  501. 501.
    Buhac I, Jarmolych J. Histology of the intestinal peritoneum in patients with cirrhosis of the liver and ascites. Dig Dis 1978; 23: 417–422.CrossRefGoogle Scholar
  502. 502.
    Abul S, Al-Oazweni H, Zalat S, Al-Sumait B, Asfar S. Cocoon abdomen in a liver transplant transplant patient. J R Coll Surg Edinb 2002; 47: 579–581.PubMedGoogle Scholar
  503. 503.
    Raftery AT. Regeneration of parietal and visceral peritoneum: an electron microscopic study. Br J Surg 1973; 115: 375–392.Google Scholar
  504. 504.
    Herrick SE, Mutsaers SE. Mesothelial progenitor cells and their potential in tissue engineering. Int J Biochem Cell Biol 2004; 36: 621–642.PubMedCrossRefGoogle Scholar
  505. 505.
    Gotloib L, Gotloib LC, Khrizman V. The use of peritoneal mesothelium as a potential source of adult stem cells. Int J Artif Organs 2007; 30: 501–512.PubMedGoogle Scholar
  506. 506.
    Donna A, Beteta PG. Differentiation towards cartilage and bone in a primary tumor of pleura. Further evidence in support of the concept of mesodermoma. Histopathology 1986; 10: 101–108.PubMedCrossRefGoogle Scholar
  507. 507.
    Kyozuka Y, Miyazaki H, Yoshizawa K, Senzaki H, Yamamoto D, Inoue K. An autopsy case of malignant mesothelioma with osseous and cartilaginous differentiation: bone morphogenetic protein-2 in mesothelial cells and its tumor. Dig Dis Sci 1999; 44: 1626–1631.CrossRefGoogle Scholar
  508. 508.
    Rittinghausen S, Ernst H, Muhle H, Mohr V. Atypical malignant mesotheliomas with osseous and cartilaginous differentiation after intraperitoneal injection of various types of mineral fibres in rats. Exp Toxicol Pathol 1992; 44: 55–58.PubMedGoogle Scholar
  509. 509.
    De Bari C, Dell’Accio F, Tylzanowski P, Luyten FP. Multipotent mesenchymal stem cells from adult humal synovial membrane. Arthritis Rheum 2001; 44: 1928–1942.PubMedCrossRefGoogle Scholar
  510. 510.
    Vandenabeele F, De Basi C, Moreels M, Lambrichts I, Dell’Accio F, Lippens L, Luyten FP. Morphological and immunocytochemical characterization of cultured fibroblast-like cells derived from adult human synovial membrane. Arch Histol Cytol 2003; 66: 145–153.PubMedCrossRefGoogle Scholar
  511. 511.
    Dobbie JW. Serositis: comparative analysis of histological findings and pathogenetic mechanisms in non bacterial serosal inflammation. Perit dial Int 1993; 13: 256–269.PubMedGoogle Scholar
  512. 512.
    Yang AH, Chen JY, Lin JK. Myofibroblastic conversion of mesothelial cells. Kidney Int 2003; 63: 1530–1539.PubMedCrossRefGoogle Scholar
  513. 513.
    Lopez-Cabrera M, Aguilera A, Aroeira LS, Ramirez-Huesca M, Perez-Lozano ML, Jimenez-Heffernan JA, Bajo MA, Del Peso G, Sanchez-TomeroJA, Selgas R. Ex vivo analysis of dialysis effluent-derived mesothelial cells as an approach to unveiling the mechanism of peritoneal membrane failure. Perit Dial Int 2006; 26: 26–34.PubMedGoogle Scholar
  514. 514.
    Munoz-Chapuli R, Perez-Pomares JM, Macias D, Garcia-Garrido L, Carmona R, Gonzalez M. Differentiation of hemangioblasts from embryonic mesothelial cells. A model on the origin of the vertebrate cardiovascular system. Differentiation 1999; 64: 133–141.PubMedGoogle Scholar
  515. 515.
    Perez-Pomares JM, Macias-Lopez F, Garcia-Carrido M, Munoz-Chaguli R. Immunohistochemical evidence for a mesothelial contribution to ventral wall of the avian aorta. Histochem J 1999; 31: 771–779.PubMedCrossRefGoogle Scholar
  516. 516.
    Donna A, Ribotta M, Betta PG, Libener R, Bellingeri D. The in-vitro hematopoietic capacity of the adult human mesothelial cell: a model of cell differentiation induced by the structure of the microenvironment. Ital J Anat Embryol 1993; 98: 269–275.PubMedGoogle Scholar
  517. 517.
    Campbell JH, Efendy JL, Campbell GR. Novel vascular graft grown within recipient’s own peritoneal cavity. Circ Res 1999; 85: 1173–1178.PubMedGoogle Scholar
  518. 518.
    Moldovan NI, Haveman K. Transdifferentiation: a potential mechanism for covering vascular grafts grown within recipient’s peritoneal cavity with endothelial-like cells. Circ Res 2002; 191: e1.CrossRefGoogle Scholar
  519. 519.
    Leypoldt JK. Evaluation of peritoneal membrane pore models. Blood Purif 1992; 10: 227–238.PubMedCrossRefGoogle Scholar
  520. 520.
    Gotloib L, Oreopoulos DG. Transfer across the peritoneum: passive or active? Nephron 1981; 29: 201–202.PubMedCrossRefGoogle Scholar
  521. 521.
    Gotloib L. Large mesothelial cells in peritoneal dialysis: a sign of degeneration or adaptation? Perit Dial Int 1996; 16: 118–120.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Ha’Emek Medical CenterDepartment of NephrologyIsrael

Personalised recommendations