The Peritoneal Microcirculation in Peritoneal Dialysis

  • A. S. De Vriese
  • R. White
  • D.N. Granger
  • N.H. Lameire

The peritoneal microcirculation is an intricate microvascular network through which physiological interactions occur between the systemic vasculature and the peritoneal cavity. In peritoneal dialysis these dynamic interactions are of paramount importance in maintaining effective dialysis. The peritoneal microcirculation participates in numerous physiological functions including solute transfer and exchange, regulation of fluid dynamics and ultrafiltration, delivery of nutrients and hormones, delivery of leukocytes to areas of inflammation, and distribution of drugs. Physiological and pathophysiological changes, as well as the process of peritoneal dialysis, may affect many of these microvascular functions. The emphasis of this chapter will be to review available information regarding the peritoneal microcirculation and to integrate this information into a general functional knowledge as it relates to peritoneal dialysis. The chapter will examine: 1) the functional anatomy and blood supply of the peritoneum, 2) components of the peritoneal microvascular network, 3) peritoneal microvascular hemodynamics and the effects of vasoactive agents on the microcirculation, and 4) inflammation in the peritoneal microcirculation with emphasis on leukocyte-endothelial interactions.


Nitric Oxide Synthases Peritoneal Dialysis Leukocyte Recruitment Microvascular Permeability Parietal Peritoneum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Williams PL, Warwick R, eds. Gray’s Textbook of Anatomy. Philadelphia, PA: WB Saunders, 1980, pp. 1319–1389. Google Scholar
  2. 2.
    Nance FC. Diseases of the peritoneum, retroperitoneum, mesentery and omentum. In: Haubrichus, Schaffner F, Berk JE, eds. Gastroenterology. Philadelphia, PA: WB Saunders, 1995, pp. 3061–3063.Google Scholar
  3. 3.
    Nolph KD, Twardowski Z. The peritoneal dialysis system. In: Nolph KD, ed. Peritoneal Dialysis. Boston, MA: Martinus Nijhoff, 1985, pp. 23–50.Google Scholar
  4. 4.
    Verger C. Peritoneal ultrastructure. In: Nolph KD, ed. Peritoneal Dialysis. Boston, MA: Martinus Nijhoff, 1985, pp. 95–113.Google Scholar
  5. 5.
    Henderson LW. The problem of peritoneal membrane area and permeability. Kidney Int 1973; 3: 409–410.PubMedCrossRefGoogle Scholar
  6. 6.
    Mion CM, Boen ST. Analysis of factors responsible for the formation of adhesions during chronic peritoneal dialysis. Am J Med Sci 1965; 250: 675–679.PubMedCrossRefGoogle Scholar
  7. 7.
    Knapowski J, Feder E, Simon M, Zabel M. Evaluation of the participation of parietal peritoneum in dialysis: physiological morphological and pharmacological data. Proc Eur Dial Transplant Assoc 1979; 16: 155–164.PubMedGoogle Scholar
  8. 8.
    Rubin J, Clawson M, Planch A, Jones Q. Measurements of peritoneal surface area in man and rats. Am J Med Sci 1988; 295: 453–458.PubMedCrossRefGoogle Scholar
  9. 9.
    Rubin J, Jones Q, Planch A, Stanek K. Systems of membranes involved in peritoneal dialysis. J Lab Clin Med 1987; 110: 448–453.PubMedGoogle Scholar
  10. 10.
    Rubin J, Jones Q, Andrew M. An analysis of ultrafiltration during acute peritoneal dialysis in rats. Am J Med Sci 1989; 298: 383–389.PubMedCrossRefGoogle Scholar
  11. 11.
    Rubin J, Jones Q, Planch A, Rushton F, Bower J. The importance of the abdominal viscera to peritoneal transport during peritoneal dialysis in the dog. Am J Med Sci 1986; 292: 203–208.PubMedCrossRefGoogle Scholar
  12. 12.
    Rubin J, Jones Q, Planch A, Bower J. The minimal importance of the hollow viscera to peritoneal transport during peritoneal dialysis in the rat. Trans Am Soc Artif Intern Organs 1988; 34: 912–915.Google Scholar
  13. 13.
    Albert A, Takamatsu H, Fonkalsrud EW. Absorption of glucose solutions from the peritoneal cavity in rabbits. Arch Surg 1984; 119: 1247–1251.PubMedGoogle Scholar
  14. 14.
    Zakaria ER, Carlsson O, Sjunnesson H, Rippe B. Liver is not essential for solute transport during peritoneal diaysis. Kidney Int 1996; 50: 298–303.PubMedCrossRefGoogle Scholar
  15. 15.
    Zakaria ER, Carlsson O, Rippe B. Limitation of small solute exchange across the visceral peritoneum: effects of vibration. Perit Dial Int 1997; 17: 72–79.Google Scholar
  16. 16.
    Lukus G, Brindle SD, Greengard P. The route of absorption of intraperitoneally administered compounds. J Pharmacol ExpTher 1971; 178: 562–566.Google Scholar
  17. 17.
    Nolph KD, Ghods AJ, Stone JV, Brown PA. The effects of intraperitoneally vasodilators on peritoneal clearances. Trans Am Soc Artif Intern Organs 1976; 22: 586–594.PubMedGoogle Scholar
  18. 18.
    Hirszel P, Lameire N, Bogaert M. Pharmacologic alterations of peritoneal transport rates and pharmacokinetics of the peritoneum. In: Gokal R, Nolph K, eds. The Textbook of Peritoneal Dialysis. Dordrecht: Kluwer, 1994, pp. 161–232.Google Scholar
  19. 19.
    Wideroe TE, Dahl KJ, Smeby LC, et al. Pharmacokinetics of transperitoneal insulin transport. Nephron 1996; 74: 283–290.PubMedCrossRefGoogle Scholar
  20. 20.
    Chambers R, Zwiefach BW. Functional activity of the blood capillary bed, with special reference to visceral tissue. Ann N Y Acad Sci 1946; 46: 683–694.CrossRefGoogle Scholar
  21. 21.
    Zweifach BW. The microcirculation of the blood. Sci Am 1959; 200: 54–60.Google Scholar
  22. 22.
    Richardson D. Basic Circulatory Physiology. Boston, MA: Little, Brown, 1976, pp. 101–136.Google Scholar
  23. 23.
    Johnson PC, Wayland H. Regulation of blood flow in single capillaries. Am J Physiol 1967; 212: 1405–1415.PubMedGoogle Scholar
  24. 24.
    Mortier S, De Vriese AS, Van De Voorde J, Schaub TP, Passlick-Deetjen J, Lameire NH. Hemodynamic effects of peritoneal dialysis solutions on the rat peritoneal membrane: role of acidity, buffer choice, glucose concentration, and glucose degradation products. J Am Soc Nephrol 2002; 13: 480–489.PubMedGoogle Scholar
  25. 25.
    Miller FN. The peritoneal microcirculation. In: Nolph K, ed. Peritoneal Dialysis. Boston, MA: Martinus Nijhoff, 1985, pp. 51–93.Google Scholar
  26. 26.
    Buez S. An open cremaster muscle preparation for the study of blood vessels by in vivo microscopy. Microvasc Res 1973; 5: 384–394.CrossRefGoogle Scholar
  27. 27.
    Smuje L, Zweifach BW, Intaglietta M. Micropressure and capillary filtration coefficients in single vessels of the cremaster muscle in the rat. Microvasc Res 1970; 2: 96–110.CrossRefGoogle Scholar
  28. 28.
    Gabella G (section ed.) Cardiovascular. In: Williams PL, Bannister L, Berry M, Collins P, Dyson M, Dussek J, Ferguson M, eds. Gray’s Anatomy. New York: Churchill Livingstone, 1995, p. 1465.Google Scholar
  29. 29.
    Renkin EM. Microcirculation and exchange. In: Patton HD, Fuchs AF, Hille B, Scher AM, Steiner R, eds. Textbook of Physiology. Philadelphia, PA: WB Saunders, 1989, pp. 860–878.Google Scholar
  30. 30.
    Chambers R, Zweifach BW. Topography and function of the mesenteric capillary circulation. Am J Anat 1944; 75: 173–182.CrossRefGoogle Scholar
  31. 31.
    Taylor AE, Granger DN. Exchange of macromolecules across the circulation. In: Renkin EM, Michel CC, eds. Handbook of Physiology, Microcirculation, Section, Chapter 11. Baltimore, MD: American Physiological Society, 1984, pp. 467–500.Google Scholar
  32. 32.
    Gabella G (section ed.) Cardiovascular. In: Williams PL, Bannister L, Berry M, Collins P, Dyson M, Dussek J, Ferguson M, eds. Gray’s Anatomy. New York: Churchill Livingstone, 1995, p. 1466.Google Scholar
  33. 33.
    Granger DN, Richardson PDI, Taylor AE. The effects of iso-prenaline and bradykinin on capillary filtration in the cat small intestine. Br J Pharmacol 1979; 67: 361–366.PubMedGoogle Scholar
  34. 34.
    Granger DN, Kvietys PR, Wilborn WH, Mortillaro NA, Taylor AE. Mechanisms of glucagon-induced intestinal secretion. Am J Physiol 1980; 239: G30–G38.Google Scholar
  35. 35.
    Mortillaro NA, Granger DN, Kvietys PR, Rutili G, Taylor AE. Effects of histamine and histamine antagonists on intestinal capillary permeability. Am J Physiol 1981; 240: G381–G386.PubMedGoogle Scholar
  36. 36.
    Bjork J, Lindbom L, Gerdin B, Smedegard G, Arfors KE, Benveniste J. PAF (platelet activating factor) increases microvascular permeability and affects endothelium–granulocyte interactions in microvascular beds. Acta Physiol Scand 1983; 119: 305–308.PubMedCrossRefGoogle Scholar
  37. 37.
    Dahlen SE, Bjork J, Hedqvist P, et al. Leukotrienes promote plasma leakage and leukocyte adhesion in postcapillary venules: in vivo effects with relevance to the acute inflammatory response. Proc Natl Acad Sci U S A 1981; 78: 3887–3891.PubMedCrossRefGoogle Scholar
  38. 38.
    Bjork J, Hagli TE, Smedegard G. Microvascular effects of anaphylatoxin C3a and C5a. J Immunol 1985; 134: 1115–1119.PubMedGoogle Scholar
  39. 39.
    Miller FN, Joshua IG, Anderson GL. Quantitation of vasodilator-induced macromolecular leakage by in vivo fluorescent microscopy. Microvasc Res 1982; 24: 56–57.PubMedCrossRefGoogle Scholar
  40. 40.
    Roberts WG, Palade GE. Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J Cell Sci 1995; 108: 2369–2379.PubMedGoogle Scholar
  41. 41.
    Atherton A, Born GVR. Relationship between the velocity of rolling granulocytes and that of blood flow in venules. J Physiol 1973; 233: 157–165.PubMedGoogle Scholar
  42. 42.
    Granger DN, Benoit JN, Suzuki M, Grisham MB. Leukocyte adherence to venular endothelium during ischemia-rep Am J Physiol 1989; 257: G683–G688.PubMedGoogle Scholar
  43. 43.
    Perry MA, Granger DN. Role of CD11/CD18 in shear rate dependent leukocyte-endothelial cell interactions in cat mesenteric venules. J Clin Invest 1991; 87: 1798–1804.PubMedCrossRefGoogle Scholar
  44. 44.
    Ley K, Gaehtyens P. Endothelial, not hemodynamic differences are responsible for preferential leukocyte rolling in rat mesenteric venules. Circ Res 1991; 69: 1034–1041.PubMedGoogle Scholar
  45. 45.
    De Vriese AS, Lameire NH. Intravital microscopy: an integrated evaluation of peritoneal function and structure. Nephrol Dial Transplant 2001; 16: 657–660.PubMedCrossRefGoogle Scholar
  46. 46.
    Luscher TF, Barton M. Biology of the endothelium. Clin Cardiol 1997; 20 (suppl. 2): II–10.PubMedGoogle Scholar
  47. 47.
    Pepine CJ. Clinical implications of endothelial dysfunction. Clin Cardiol 1998; 21: 795–799.PubMedCrossRefGoogle Scholar
  48. 48.
    Vallance P. Endothelial regulation of vascular tone. Postgrad Med J 1992; 68: 697–701.PubMedCrossRefGoogle Scholar
  49. 49.
    Villar IC, Francis S, Webb A, Hobbs AJ, Ahluwalia A. Novel aspects of endothelium-dependent regulation of vascular tone. Kidney Int 2006; 70: 840–853.PubMedCrossRefGoogle Scholar
  50. 50.
    Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 299: 373–376.CrossRefGoogle Scholar
  51. 51.
    Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from l-arginine. Nature 1988; 333: 664–666.PubMedCrossRefGoogle Scholar
  52. 52.
    Marietta MA. Nitric oxide synthase: aspects concerning structure and catalyst. Cell 1994; 78: 927–930.CrossRefGoogle Scholar
  53. 53.
    Moncada S, Higgs A. The l-arginine–nitric oxide pathway. N Engl J Med 1993; 329: 2002–2012.PubMedCrossRefGoogle Scholar
  54. 54.
    Devuyst O, Combet S, Cnops Y, Stoenoiu MS. Regulation of NO synthase isoforms in the peritoneum: implications for ultrafultration failure in peritoneal dialysis. Nephrol Dial Transplant 2001; 16: 675–678.PubMedCrossRefGoogle Scholar
  55. 55.
    Rees DD, Palmer RMJ, Schulz R, Hodson HF, Moncada S. Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br J Pharmacol 1990; 101: 746–752.PubMedGoogle Scholar
  56. 56.
    Vallance P, Leone A, Calver A, Collier J, Moncada S. Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 1992; 339: 572–575.PubMedCrossRefGoogle Scholar
  57. 57.
    Vallance P, Leone A, Calver A, Collier J, Moncada S. Endogenous dimethylarginine as an inhibitor of nitric oxide synthesis. J Cardiovasc Pharmacol 1992; 20 (suppl. 12): S60–S62.PubMedGoogle Scholar
  58. 58.
    Morris ST, McMurray JJ, Spiers A, Jardine AG. Impaired endothelial function in isolated human uremic resistance arteries. Kidney Int 2001; 60: 1077–1082.PubMedCrossRefGoogle Scholar
  59. 59.
    Gardiner SM, Kemp PA, Bennett T, Palmer RMJ, Moncada S. Regional and cardiac hemodynamic effects of NG, NG-dimethyl-l-arginine and their reversibility by vasodilators in conscious rats. Br J Pharmacol 1993; 110: 1457–1464.PubMedGoogle Scholar
  60. 60.
    White R, Barefield D, Ram S, Work J. Peritoneal dialysis solutions reverse the hemodynamic effects of nitric oxide synthesis inhibitors. Kidney Int 1995; 48: 1986–1993.PubMedCrossRefGoogle Scholar
  61. 61.
    de Wit C, Wolfle SE. EDHF and gap junctions: important regulators of vascular tone within the microcirculation. Curr Pharm Biotechnol 2007; 8: 11–25.PubMedCrossRefGoogle Scholar
  62. 62.
    Lee RM. Changes in endothelium-derived hyperpolarizing factor and myogenic response in rats with chronic renal failure and their association with hypertension. J Hypertens 2006; 24: 2153–2155.PubMedCrossRefGoogle Scholar
  63. 63.
    Ozkan MH, Uma S. Inhibition of acetylcholine-induced EDHF response by elevated glucose in rat mesenteric artery. Life Sci 2005; 78: 14–21.PubMedCrossRefGoogle Scholar
  64. 64.
    Yanagisawa M. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988; 332: 411–415.PubMedCrossRefGoogle Scholar
  65. 65.
    Inoue A. The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc Natl Acad Sci U S A 1989; 86: 2863–2867.PubMedCrossRefGoogle Scholar
  66. 66.
    Battistini B, D’Orleans-Juste P, Sirois P. Biology of disease, endothelins: circulating plasma levels and presence in other biologic fluids. Lab Invest 1993; 68: 600–628.PubMedGoogle Scholar
  67. 67.
    Hosoda K. Organization, structure, chromosomal assignment, and expression of the gene encoding the human endothelin-A receptor. J Biol Chem 1992; 267: 18797–18804.PubMedGoogle Scholar
  68. 68.
    Sakamoto A. Cloning and functional expression of human cDNA for the ETB endothelin receptor. Biochem Biophys Res Commun 1991; 178: 656–663.PubMedCrossRefGoogle Scholar
  69. 69.
    Luscher TF, Oemar BS, Boulanger CM, Hahn AW. Molecular and cellular biology of endothelin and its receptors, part 1. J Hypertens 1993; 11: 7–11.PubMedCrossRefGoogle Scholar
  70. 70.
    Luscher TF. Endothelin, endothelin receptors and endothelin antagonists. Curr Opin Nephrol Hypertens 1994; 3: 92–98.PubMedCrossRefGoogle Scholar
  71. 71.
    Riezebos J, Watts IS, Vallance P. Endothelin receptors mediating functional responses in human small arteries and veins. Br J Pharmacol 1994; 111: 609–615.PubMedGoogle Scholar
  72. 72.
    Rohmeiss P, Photiadis J, Rohmeiss S, Unger T. Hemodynamic actions of intravenous endothelin in rats: comparison with sodium nitroprusside and methoxamine. Am J Physiol 1990; 258: H337–H346.PubMedGoogle Scholar
  73. 73.
    Gellai M. Physiologic role of endothelin in cardiovascular and renal hemodynamics: studies in animals. Curr Opin Nephrol Hypertens 1997; 6: 64–68.PubMedCrossRefGoogle Scholar
  74. 74.
    Lebel M, Moreau V, Grose JH, Kingma I, Langlois S. Plasma and peritoneal endothelin levels and blood pressure in CAPD patients with or without erythropoietin replacement therapy. Clin Nephrol 1998; 49: 313–318.PubMedGoogle Scholar
  75. 75.
    Kubes P, Suzuki M, Granger DN. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A 1991; 88: 4651–4655.PubMedCrossRefGoogle Scholar
  76. 76.
    Lopez-Farre A, Reisco A, Espinosa G, et al. Effect of endothelin-1 on neutrophil adhesion to endothelial cells and perfused heart. Circulation 1993; 88: 1166–1171.PubMedGoogle Scholar
  77. 77.
    McCarron RM, Wang L, Stanimirovic DB, Spatz M. Endothelin induction of adhesion molecule expression on human brain microvascular endothelial cells. Neurosci Lett 1993: 156: 31–34.PubMedCrossRefGoogle Scholar
  78. 78.
    Markewitz B, Palazzo M, Li Y, White RG. Endothelin-1 increases leukocyte rolling in mesenteric venules. Abstract. Chest 1998; 114: 251S.CrossRefGoogle Scholar
  79. 79.
    Morgera S, Kuchinke S, Budde K, Lun A, Hocher B, Neumayer HH. Volume stress-induced peritoneal endothelin-1 release in continuous ambulatory peritoneal dialysis. J Am Soc Nephrol 1999; 10: 2585–2590.PubMedGoogle Scholar
  80. 80.
    Tsukita S, Furuse M, Itoh M. Molecular dissection of tight junctions. Cell Struct Funct 1996; 21: 381–385.PubMedCrossRefGoogle Scholar
  81. 81.
    Balda MS, Matter K. Tight junctions. J Cell Sci 1998; 111: 541–547.PubMedGoogle Scholar
  82. 82.
    Stevenson BR, Siliciano JD, Mooseker MS, Goodenough DA. Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zona occludens) in a variety of epithelia. J Cell Biol 1986; 103: 755–766.PubMedCrossRefGoogle Scholar
  83. 83.
    Furuse M, Hirase T, Itoh M, et al. OccludIn: a novel integral protein localizing at tight junctions. J Cell Sci 1993; 123: 1777–1788.Google Scholar
  84. 84.
    Anderson JM, Van Itallie CM. Tight junctions and the molecular basis for regulation of paracellular permeability. Am J Physiol 1995; 269: G467–G475.PubMedGoogle Scholar
  85. 85.
    Mitic LL, Anderson JM. Molecular architecture of tight junctions. Annu Rev Physiol 1998; 60: 121–142.PubMedCrossRefGoogle Scholar
  86. 86.
    Denker BM, Nigam SK. Molecular structure and assembly of the tight junction. Am J Physiol 1998; 274: F1–9.PubMedGoogle Scholar
  87. 87.
    Hirase T, Staddon JM, Saitou M, et al. Occludin as a possible determinant of tight junction permeability in endothelial cells. J Cell Sci 1997; 110: 1603–1613.PubMedGoogle Scholar
  88. 88.
    Kevil CG, Okayma N, Trocha SD, et al. Expression of zona occludens and adherens junctional proteins in human venous and arterial endothelial cells: role of occludin in endothelial solute barriers. Microcirculation 1998; 5: 197–210.PubMedGoogle Scholar
  89. 89.
    Martin-Padural, Lostaglio S, Schneemann M, et al. Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol 1998; 142: 117–127.CrossRefGoogle Scholar
  90. 90.
    Kemler R. From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion. Trends Genet 1993; 9: 317–321.PubMedCrossRefGoogle Scholar
  91. 91.
    Klymkowsky MW, Parr B. The body language of the cells: the intimate connection between cell adhesion and behavior. Cell 1995; 83: 5–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Gumbiner BM. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 1996; 84: 345–357.PubMedCrossRefGoogle Scholar
  93. 93.
    Ali J, Liao F, Martiens E, Muller WA. Vascular endothelial cadherin (VE-cadherin): cloning and the role in endothelial cell-cell adhesion. Microcirculation 1997; 4: 267–277.PubMedCrossRefGoogle Scholar
  94. 94.
    Kevil CG, Payne K, Mire E, Alexander JS. Vascular permeability factor/vascular endothelial cell growth factor-mediated permeability occurs through disorganization of endothelial junctional proteins. J Biol Chem 1998; 273: 15099–15103.PubMedCrossRefGoogle Scholar
  95. 95.
    Ferrara N. Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney Int 1999; 56: 794–814.PubMedCrossRefGoogle Scholar
  96. 96.
    De Vriese AS, Tilton RG, Stephan CC, Lameire NH. Vascular endothelial growth factor is essential for hyperglycemia-induced structural and functional alterations of the peritoneal membrane. J Am Soc Nephrol 2001; 12: 1734–41.PubMedGoogle Scholar
  97. 97.
    Bernfield M. Introduction. In: Porter R et al. eds. Basement Membranes and Cell Movement. London: Pitman. Ciba Foundation Symposium 108, 1984, pp. 1–5.Google Scholar
  98. 98.
    Clementi F, Palade GE. Intestinal capillaries. I. Permeability to peroxidases and ferritin. J Cell Biol 1969; 41: 33–58.PubMedCrossRefGoogle Scholar
  99. 99.
    Fox JR, Wayland H. Interstitial diffusion of macro-molecules in the rat mesentery. Microvasc Res 1979; 18: 255–274.PubMedCrossRefGoogle Scholar
  100. 100.
    Johansson BR. Permeability of muscle capillaries to interstitially microinjected ferritin. Microvasc Res 1978; 16: 362–368.PubMedCrossRefGoogle Scholar
  101. 101.
    Laurent TC. Interaction between proteins and glycosamino-glycans. Fed Proc 1977; 36: 24–27.PubMedGoogle Scholar
  102. 102.
    Watson PD, Grodins FS. An analysis of the effects of the interstitial matrix on plasma–lymph transport. Microvasc Res 1978; 16: 19–41.PubMedCrossRefGoogle Scholar
  103. 103.
    Granger DN, Taylor AE. Permeability of intestinal capillaries to endogenous macromolecules. Am J Physiol 1980; 238: H457–H464.PubMedGoogle Scholar
  104. 104.
    Majno G. Ultrastructure of the vascular membrane. In: Williams & Wilkins eds. Handbook of Physiology–Circulation, Section 2, Vol. 3. Baltimore, MD: Williams & Wilkins, 1965, pp. 2293–2376.Google Scholar
  105. 105.
    Majno G, Palade GE. Studies on inflammation. I. The effect of histamine and serotinin on vascular permeability: an electron microscopic study. J Biophys Biochem Cytol 1961; 11: 571–606.PubMedCrossRefGoogle Scholar
  106. 106.
    Nolph KD. Peritoneal anatomy and transport physiology. In: Maher JF, ed. Replacement of Renal Function by Dialysis, 3rd Edition. Boston, MA: Kluwer, 1989, pp. 516–536.Google Scholar
  107. 107.
    Swan KG, Reynolds DG. Adrenergic mechanisms in canine mesenteric circulation. Am J Physiol 1971; 220: 1779–1785.PubMedGoogle Scholar
  108. 108.
    Barton RW, Reynolds DG, Swan KG. Mesenteric circulatory responses to hemorrhagic shock in the baboon. Ann Surg 1972; 175: 204–209.PubMedCrossRefGoogle Scholar
  109. 109.
    Kvietys PR, Granger DN. Physiology and pathophysiology of the colonic circulation. J Clin Gastroenterol 1986; 15: 967–983.Google Scholar
  110. 110.
    Jacobson ED, Pawlik WW. Adenosine mediation of mesenteric blood flow. J Physiol Pharmacol 1992; 43: 3–19.PubMedGoogle Scholar
  111. 111.
    Stephenson RB. Microcirculation and exchange. In: Patton HD, Fuchs AF, Hille B, Scher AM, Steiner R, eds. Textbook of Physiology. Philadelphia, PA: WB Saunders, 1989, pp. 911–23.Google Scholar
  112. 112.
    Wade OL, Combes B, Childes AW, Wheeler HO, Dournand D, Bradley SE. The effect of exercise on the splanchnic blood flow and splanchnic blood volume in normal man. Clin Sci 1956; 15: 457.PubMedGoogle Scholar
  113. 113.
    Korthuis RJ, Granger DN. Role of the peritoneal microcirculation in peritoneal dialysis: In: Nolph KD, ed. Peritoneal Dialysis, 3rd Edition. Boston, MA: Kluwer, 1989.Google Scholar
  114. 114.
    Aune S. Transperitoneal exchange II. Peritoneal blood flow estimated by hydrogen gas clearance. Scand J Gastroenterol 1970; 5: 99–104.PubMedGoogle Scholar
  115. 115.
    Bulkey GB. Washout of intraperitoneal xenon: effective peritoneal perfusion as an estimation of peritoneal blood glow. In: Granger DN, Bulkey GB, eds. Measurement of Blood Flow: Application to the Splanchnic Circulation. Baltimore, MD: Williams & Wilkins, 1981, pp. 441–453.Google Scholar
  116. 116.
    Nolph KD, Popovich RP, Ghods AJ, Twardowski Z. Determinants of low clearances of small solutes during peritoneal dialysis. Kidney Int 1978; 13: 117–123.PubMedCrossRefGoogle Scholar
  117. 117.
    Erb RW, Greene JA Jr, Weller JM. Peritoneal dialysis during hemorrhagic shock. J Appl Physiol 1967; 22: 131–135.Google Scholar
  118. 118.
    Texter E, Clinton JR. Small intestinal blood flow. Am J Dig Dis 1963; 8: 587–613.PubMedCrossRefGoogle Scholar
  119. 119.
    Miller FN, Nolph KD, Harris PD, Rubin J, Wiegman DL, Joshua IG. Effects of peritoneal dialysis solutions on human clearances and rat arterioles. Trans Am Soc Artif Intern Organs 1978; 24: 131–132.PubMedGoogle Scholar
  120. 120.
    Miller FN, Nolph KD, Harris PD, et al. Microvascular and clinical effects of altered peritoneal dialysis solutions. Kidney Int 1979; 15: 630–639.PubMedCrossRefGoogle Scholar
  121. 121.
    Nolph KD. Effects of intraperitoneal vasodilators on peritoneal clearances. Dial Transplant 1978; 7: 812.Google Scholar
  122. 122.
    Nolph KD, Ghods AJ, Brown PA, Twardowski ZJ. Effects of intraperitoneal nitroprusside on peritoneal clearances with variations in dose, frequency of administration, and dwell times. Nephron 1979; 24: 114–20.PubMedCrossRefGoogle Scholar
  123. 123.
    Nolph KD, Ghods AJ, Brown PA, et al. Effects of nitroprusside on peritoneal mass transfer coefficients and microvascular physiology. Trans Am Soc Artif Intern Organs 1977; 23: 210–218.PubMedGoogle Scholar
  124. 124.
    Ronco C, Feriani M, Chiaramonte S, Brendolan A, Milan M, La Greca G. Peritoneal blood flow: does it matter? Perit Dial Int 1996; 16 (suppl. 1): S70–S75.PubMedGoogle Scholar
  125. 125.
    Kim M, Lofthouse J, Flessner MF. A method to test blood flow limitation of peritoneal–blood solute transport. J Am Soc Nephrol 1997; 8: 471–474.PubMedGoogle Scholar
  126. 126.
    Kim M, Lofthouse J, Flessner MF. Blood flow limitations of solute transport across the visceral peritoneum. J Am Soc Nephrol 1997; 8: 1946–1950.PubMedGoogle Scholar
  127. 127.
    Rosengren BI, Rippe B. Blood flow limitation in vivo of small solute transfer during peritoneal dialysis in rats. J Am Soc Nephrol 2003; 14: 1599–1604.PubMedCrossRefGoogle Scholar
  128. 128.
    Grzegorzewska AE, Mariak I. Correlation between effective peritoneal blood flow, blood pressure, and peritoneal transfer rates. Adv Perit Dial 1996; 12: 19–23.PubMedGoogle Scholar
  129. 129.
    Flessner MF, Lofthouse J, Williams A. Increasing peritoneal contact area during dialysis improves mass transfer. J Am Soc Nephrol 2001; 12: 2139–2145.PubMedGoogle Scholar
  130. 130.
    Grzegorzewska AE, Moore HL, Nolph KD, Chen TW. Ultrafiltration and effective peritoneal blood flow during peritoneal dialysis in the rat. Kidney Int 1991; 39: 608–617.PubMedCrossRefGoogle Scholar
  131. 131.
    Demissachew H, Lofthouse J, Flessner MF. Tissue sources and blood flow limitations of osmotic water transport across the peritoneum. J Am Soc Nephrol 1999; 10: 347–353.PubMedGoogle Scholar
  132. 132.
    Granger DN, Perry MA, Kvietys PR, Taylor AE. Permeability of intestinal capillaries: effects of fat absorption and gastrointestinal hormones. Am J Physiol 1982; 242: G194–G201.PubMedGoogle Scholar
  133. 133.
    Douma CE, De Waart DR, Struijk DG, Krediet R. The nitric oxide donor nitroprusside intraperitoneally affects peritoneal permeability in CAPD. Kidney Int 1997; 51: 1885–1892.PubMedCrossRefGoogle Scholar
  134. 134.
    DeSanto NG, Capodicasa G, Capasso G. Development of means to augment peritoneal urea clearances: the synergic effects of combining high dialysate temperature and high dialysate flow rates with dextrose and nitroprusside. Artif Organs 1981; 5: 409–414.CrossRefGoogle Scholar
  135. 135.
    Nolph KD, Rubin J, Wiegman DL, Harris PD, Miller FN. Peritoneal clearances with three types solutions. Nephron 1979; 24: 35–40.CrossRefGoogle Scholar
  136. 136.
    Grzegorzewska A, Barcz M, Kriczi M, Antoniewicz K. Peritoneal blood flow and peritoneal transfer parameters during intermittent peritoneal dialyses performed with administration of sodium nitroprusside or chlorpromazine. Przegl Lek 1996; 53: 412–416.PubMedGoogle Scholar
  137. 137.
    Carlsson O, Rippe B. Enhanced peritoneal diffusion capacity of 51Cr-EDTA during the initial phase of peritoneal dialysis: role of vasodilatation, dialysate ‘stirring’, and of interstitial factors. Blood Purif 1998; 16: 162–170.PubMedCrossRefGoogle Scholar
  138. 138.
    Grzegorewska AE, Antoniewicz K. Peritoneal blood flow and peritoneal transfer parameters during dialysis with administration of drugs. Adv Perit Dial 1995; 11: 28–32.Google Scholar
  139. 139.
    Maher JF, Shea C, Cassetta M, Hohnadel DC. Isoproterenol enhancement of permeability. J Dial 1977; 1: 319–331.PubMedGoogle Scholar
  140. 140.
    Brown ST, Aheran DJ, Nolph KD. Reduced peritoneal clearances in scleroderma increased by intraperitoneal isoproterenol. Ann Intern Med 1973; 78: 891–897.PubMedGoogle Scholar
  141. 141.
    Miller FN, Nolph KD, Joshua IG, Rubin J. Effects of vasodilators and peritoneal dialysis solution on the microcirculation of the rat cecum. Proc Soc Exp Biol Med 1979; 161: 605–608.PubMedGoogle Scholar
  142. 142.
    Miller FN, Nolph KD, Joshua IG, Weigman DL, Harris PD, Anderson DB. Hyperosmolality, acetate and lactate: dilatory factors during peritoneal dialysis. Kidney Int 1981; 20: 397–402.PubMedCrossRefGoogle Scholar
  143. 143.
    Miller FN, Joshua JG, Harris PD, Weigman DL, Jauchem JR. Peritoneal dialysis solutions and the microcirculation. Contrib Nephrol 1977; 17: 51–58.Google Scholar
  144. 144.
    Zakaria el R, Spain DA, Harris PD, Garrison RN. Generalized dilation of the visceral microvasculature by peritoneal dialysis solutions. Perit Dial Int 2002; 22: 593–601.PubMedGoogle Scholar
  145. 145.
    Zakaria el R, Hunt CM, Li N, Harris PD, Garrison RN. Disparity in osmolarity-induced vascular reactivity. J Am Soc Nephrol 2005; 16: 2931–2940.PubMedCrossRefGoogle Scholar
  146. 146.
    Passlick-Deetjen J, Lage C. Lactate-buffered and bicarbonate-buffered solutions with less glucose-degradation products in a two-chamber system. Perit Dial Int 1996; 20 (suppl. 2): S42–S7.Google Scholar
  147. 147.
    Feriani M. Bicarbonate-buffered CAPD solutions: from clinical trials to clinical practice. Perit Dial Int 1997; 17 (suppl. 2): S51–S55.PubMedGoogle Scholar
  148. 148.
    Douma CE, de Waart DR, Struijk DG, Krediet RT. Effect of amino acid based dialysate on peritoneal blood flow and permeability in stable CAPD patients: a potential role for nitric oxide? Clin Nephrol 1996; 45: 295–302.PubMedGoogle Scholar
  149. 149.
    Schmid-Schonbein GW, Usami S, Skalak R, Chien S. The interaction of leukocytes and erythrocytes in capillary and postcapillary vessels. Microvasc Res 1980; 19: 45–70.PubMedCrossRefGoogle Scholar
  150. 150.
    Bienvenu K, Hernandez L, Granger DN. Leukocyte adhesion and emigration in inflammation. Ann NY Acad Sci 1992; 664: 388–399.PubMedCrossRefGoogle Scholar
  151. 151.
    De Vriese AS, Endlich K, Elger M, Lameire NH, Atkins RC, Lan HY, Rupin A, Kriz W, Steinhausen MW. The role of selectins in glomerular leukocyte recruitment in rat anti-glomerular basement membrane glomerulonephritis. J Am Soc Nephrol 1999; 10: 2510–2517.PubMedGoogle Scholar
  152. 152.
    McEver RP, Moore KL, Cummings RD. Leukocyte trafficking mediated by selectin-carbohydrate interactions. J Biol Chem 1995; 270: 11025–11028.PubMedCrossRefGoogle Scholar
  153. 153.
    Tonneson MG. Neutrophil–endothelial cell interactions: mechanisms of neutrophil adherence to vascular endothelium. J Invest Dermatol 1989; 93: 535–585.Google Scholar
  154. 154.
    Kishimoto TK, Jutila MA, Berry EL, Butcher EC. Neutrophil Mac-1 and MEL-14 adhesion proteins are inversely regulated by chemotactic factors. Science 1989; 45: 1238–1241.CrossRefGoogle Scholar
  155. 155.
    Bevilagua MP, Strengelin S, Gimbrone MA, Seed B. Endothelial leukocyte adhesion molecule 1: an inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science 1989; 243: 1160–1165.CrossRefGoogle Scholar
  156. 156.
    McEver RP. Selectins: novel adhesion receptors that mediate leukocyte adhesion during inflammation. Thromb Haemost 1991; 65: 223–228.PubMedGoogle Scholar
  157. 157.
    Smith GW. Molecular determinants of neutrophil–endothelial cell adherence reactions. Am J Respir Cell Mol Biol 1990; 2: 487–499.PubMedGoogle Scholar
  158. 158.
    Springer T, Anderson DC, Rosenthal, Rothelein R. Leukocyte Adhesion Molecules. New York: Springer-Verlag, 1989.Google Scholar
  159. 159.
    Kishimoto TK. A dynamic model for neutrophil localization to inflammatory sites. J NIH Res 1991; 3: 75–77.Google Scholar
  160. 160.
    House SD, Lipowsky JJ. Leukocyte-endothelium adhesion: microhemodynamics in mesentery of the cat. Microvasc Res 1987; 34: 363–379.PubMedCrossRefGoogle Scholar
  161. 161.
    Engler RL, Schmid-Schonbein GW, Pavelec RS. Leukocyte capillary plugging in myocardial ischemia and reperfusion in the dog. Am J Pathol 1983; 3: 98–111.Google Scholar
  162. 162.
    Worthen GS, Schwab B, Elson EL, Downey OP. Cellular mechanics of stimulated neutrophils: stiffening of cells induces retention in pores in vitro and long capillaries in vivo. Science 1989; 245: 183–6.PubMedCrossRefGoogle Scholar
  163. 163.
    Carden DL, Smith JK, Korthuis RJ. Neutrophil mediated microvascular dysfunction in postischemic canine skeletal muscle: role of granulocyte adherence. Circ Res 1990; 66: 1436–1444.PubMedGoogle Scholar
  164. 164.
    Harlan JM. Leukocyte–endothelial cell interactions. Blood 1985; 65: 513–525.PubMedGoogle Scholar
  165. 165.
    Kubes P, Suzuki M, Granger DN. Platelet activating factorinduced microvascular dysfunction: role of adherent leukocytes. Am J Physiol 1990; 258: G158–G163.PubMedGoogle Scholar
  166. 166.
    Kubes P, Grisham MB, Barrowman JA, Gaginella T, Granger DN. Leukocyte-induced vascular protein leakage in cat mesentery. Am J Physiol 1991; 261: H1872–H1879.PubMedGoogle Scholar
  167. 167.
    Weiss S. Oxygen, ischemia and inflammation. Acta Physiol Scand 1986; 126 (suppl. 584): 9–38.Google Scholar
  168. 168.
    Weiss SJ. Tissue destruction by neutrophils. N Engl J Med 1989; 320: 365–376.PubMedCrossRefGoogle Scholar
  169. 169.
    Reilly PM, Schiller HJ, Bulkley GB. Pharmacological approach to tissue injury by free radicals nd other reactive oxygen metabolites. Am J Surg 1991; 161: 488–503.PubMedCrossRefGoogle Scholar
  170. 170.
    Kubes P, Suzuki M, Granger DN. Modulation of PAF-induced leukocyte adherence and increased microvascular permeability. Am J Physiol 1990; 259: G858–G864.Google Scholar
  171. 171.
    Kubes P, Granger DN. Nitric oxide modulates microvascular permeability. Am J Physiol 1992; 262: H611–H615.PubMedGoogle Scholar
  172. 172.
    Del Maschio A, Zanetti A, Corada M, et al. Polymorphonuclear leukocyte adhesion triggers the disorganization of endothelial cell-to-cell adherens junctions. J Cell Biol 1996; 135: 497–510.PubMedCrossRefGoogle Scholar
  173. 173.
    Gotsch U, Borges E, Bosse R, et al. VE-cadherin antibody accelerates neutrophil recruitment in vivo. J Cell Sci 1997; 110: 583–588.PubMedGoogle Scholar
  174. 174.
    Mortier S, Lameire NH, De Vriese AS. The effects of peritoneal dialysis solutions on peritoneal host defense. Perit Dial Int 2004; 24: 123–138.PubMedGoogle Scholar
  175. 175.
    Jonasson P, Bagge U, Wieslander A, Braide M. Heat sterilized PD fluid blocks leukocyte adhesion and increases flow velocity in rat peritoneal venules. Perit Dial Int 1996; 16 (suppl. 1): S137–S140.PubMedGoogle Scholar
  176. 176.
    Mortier S, De Vriese AS, McLoughlin RM, Topley N, Schaub TS, Passlick-Deetjen J, Lameire NH. Effects of conventional and new peritoneal dialysis fluids on leukocyte recruitment in the rat peritoneal membrane. J Am Soc Nephrol 2003; 14: 1296–1306.PubMedCrossRefGoogle Scholar
  177. 177.
    Mortier S, Faict D, Gericke M, Lameire N, De Vriese A. Effects of new peritoneal dialysis solutions on leuckocyte recruitment on the rat peritoneal membrane. Nephron Exp Nephrol 2005; 101: e139–e145.PubMedCrossRefGoogle Scholar
  178. 178.
    Hekking LH, Huijsmans A, Van Gelderop E, Wieslander AP, Havenith CE, van den Born J, Beelen RH. Effect of PD fluid instillation on the peritonitis-induced influx and bacterial clearing capacity of peritoneal cells. Nephrol Dial Transplant 2001; 16: 679–685.PubMedCrossRefGoogle Scholar
  179. 179.
    Schambye HT, Pedersen FB, Christensen HK, Berthelsen H, Wang P. The cytotoxicity of continuous ambulatory peritoneal dialysis solutions with different bicarbonate/lactate ratios. Perit Dial Int 1993; 13 (suppl. 2): S116–S118.PubMedGoogle Scholar
  180. 180.
    Miyata T, Horie K, Ueda Y, Fujita Y, Izuhara Y, Hirano H, Uchida K, Saito A, van Ypersele de Strihou C, Kurokawa K. Advanced glycation and lipidoxidation of the peritoneal membrane: respective roles of serum and peritoneal fluid reactive carbonyl compounds. Kidney Int 2000; 58: 425–435.PubMedCrossRefGoogle Scholar
  181. 181.
    Tauer A, Bender TO, Fleischmann EH, Niwa T, Jorres A, Pischetsrieder M. Fate of the glucose degradation products 3-deoxyglucosone and glyoxal during peritoneal dialysis. Mol Nutr Food Res 2005; 49: 710–715.PubMedCrossRefGoogle Scholar
  182. 182.
    White R, Ram S. Peritoneal dialysis solution attenuates microvascular leukocyte adhesion induced by nitric oxide synthesis inhibition. Adv Perit Dial 1996: 12: 53–56.PubMedGoogle Scholar
  183. 183.
    Kaupke CJ, Zhang J, Rajpoot D, Wang J, Zhou XJ, Vaziri ND. Effects of conventional peritoneal dialysates on leukocyte adhesion and CD11b, CD18 and CD14 expression. Kidney Int 1996; 50: 1676–1683.PubMedCrossRefGoogle Scholar
  184. 184.
    Zareie M, van Lambalgen AA, De Vriese AS, van Gelderop E, Lameire N, ter Wee PM, Beelen RHJ, van den Born J, Tangelder GJ. Increased leukocyte rolling in newly formed mesenteric vessels in the rat during peritoneal dialysis. Perit Dial Int 2002; 22: 655–662.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • A. S. De Vriese
    • 1
  • R. White
    • 2
  • D.N. Granger
    • 3
  • N.H. Lameire
    • 4
  1. 1.AZ Sint-Jan AVDept. of Internal MedicineBelgium
  2. 2.LSU Health Sciences CenterShreveport
  3. 3.Department of Molecular & Cellular PhysiologyLSU Health Sciences CenterShreveport
  4. 4.University Hospital GhentGhentBelgium

Personalised recommendations