Intraperitoneal Chemotherapy

  • Michael F. Flessner

For the nephrologist, the major therapeutic use of the peritoneal cavity is dialysis, but the peritoneum is a portal of entry for a wide variety of local and systemic therapies. Because of intravenous access problems in neonates, transfusion of packed red blood cells was one of the earliest uses of intraperitoneal (i.p.) therapy [1, 2]. Insulin is often placed in the dialysate in order to treat glucose intolerance during peritoneal dialysis [3], and i.p. insulin delivery is currently undergoing investigation as a means of long-term therapy in diabetes [4–6]. Erythropoietin, prescribed as replacement therapy for the anemia related to end-stage renal disease (ESRD), has been administered intraperitoneally [7, 8]. In contrast to these forms of i.p. therapy, which are designed to treat systemic illnesses, antibacterial agents are injected intraperitoneally in order to treat peritonitis [9]. In the past 20 years, i.p. chemotherapy has increasingly been evaluated for treatment of malignancies localized to the peritoneal cavity [10–29].


Peritoneal Cavity Peritoneal Carcinomatosis Thoracic Duct Continuous Ambulatory Peritoneal Dialysis Blood Flow Limitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cole W, Montgomery J. Intraperitoneal blood transfusion. Am J Dis Child 1929; 37: 497–510.Google Scholar
  2. 2.
    Clausen J. Studies on the effects of intraperitoneal blood transfusion. Acta Paediatr 1940; 27: 24–31.Google Scholar
  3. 3.
    Rubin J, Reed V, Adair C, Bower J, Klein E. Effect of intraperitoneal insulin on solute kinetics in CAPD: insulin kinetics in CAPD. Am J Med Sci 1986; 291: 81–87.PubMedGoogle Scholar
  4. 4.
    Catargi B. Current status and future of implantable insulin pumps for the treatment of diabetes. Expert Rev Med Devices 2004; 1: 181–185.PubMedGoogle Scholar
  5. 5.
    Gin H, Renard E, Melki V, EVADIAC Study Group. Combined improvements in implantable pump technology and insulin stability allow safe and effective long term intraperitoneal insulin delivery in type 1 diabetic patients: the EVADIAC experience. Diabetes Metab 2003; 29: 602–607.Google Scholar
  6. 6.
    Hovorka R. Continuous glucose monitoring and closed-loop systems. Diabet Med 2006; 23: 1–12.PubMedGoogle Scholar
  7. 7.
    Bargman J, Jones J, Petro J. The pharmacokinetics of intraperitoneal erythropoietin administered undiluted and diluted in dialysate. Perit Dial Int 1992; 12: 369–372.PubMedGoogle Scholar
  8. 8.
    Reddingius R, deBoer A, Schroder C, Willems J, Monnens L. Increase of the bioavailability of intraperitoneal erythropoietin in children on peritoneal dialysis by administration in small dialysis bags. Perit Dial Int 1997; 17: 467–470.PubMedGoogle Scholar
  9. 9.
    Piraino B, Bailie G, Bernardini J, Boeschoten E et al. Peritoneal dialysis-related infections recommendations: 2005 Update. Perit Dial Int 2005; 25: 107–131.PubMedGoogle Scholar
  10. 10.
    Jones RB, Myers CE, Guarino AM, Dedrick RL, Hubbard SM, DeVita VT. High volume intraperitoneal chemotherapy (‘belly bath’) for ovarian cancer. Cancer Chemother Pharmacol 1978; 1: 161.PubMedGoogle Scholar
  11. 11.
    Speyer JL, Collins JM, Dedrick RL, Brennan MF, Buckpitt AR, Londer H et al. Phase I and pharmacological studies of 5-fluorouracil administered intraperitoneally. Cancer Res 1980; 40: 567.PubMedGoogle Scholar
  12. 12.
    Speyer JL, Sugarbaker PH, Collins JM, Dedrick RL, Klecker RW, Myers CE. Portal levels and hepatic clearance of 5-fluorouracil after intraperitoneal administration in humans. Cancer Res 1981; 41: 1916.PubMedGoogle Scholar
  13. 13.
    Markman M. Intraperitoneal therapy of ovarian carcinoma. Semin Oncol 1998; 25: 356–360.PubMedGoogle Scholar
  14. 14.
    Markman M. Intraperitoneal chemotherapy in the management of colon cancer. Semin Oncol 1999; 26: 536–539.PubMedGoogle Scholar
  15. 15.
    Barakat RR, Sabbatini P, Bhaskaran D, Revzin M, Smith A, Venkatraman E et al. Intraperitoneal chemotherapy for ovarian carcinoma: results of long-term follow-up. J Clin Oncol 2002; 20: 694–698.PubMedGoogle Scholar
  16. 16.
    Ozols RF, Young RC, Speyer JL, Waltz M, Collins JM, Dedrick RL et al. Intraperitoneal (IP) adriamycin (ADR) in ovarian carcinoma (OC). Proc Am Soc Clin Oncol 1980; 21: 425.Google Scholar
  17. 17.
    Ozols RF, Young RC, Speyer JL. Phase I and pharmacological studies of adriamycin administered intraperitoneally to patients with ovarian cancer. Cancer Res 1982; 42: 4265–4269.PubMedGoogle Scholar
  18. 18.
    Gianni L, Jenkins J, Greene R, Lichter A, Myers C, Collins J. Pharmacokinetics of the hypoxic radiosensitizers misonidazole and demethylmisonidazole after intraperitoneal administration in humans. Cancer Res 1983; 43: 913–916.PubMedGoogle Scholar
  19. 19.
    Arbuck S, Trave F, Douglas H, Nava H, Zakrzewkski S, Rustum Y. Phase I and pharmacologic studies of intraperitoneal leucovorin and 5-fluorouracil in patients with advanced cancer. J Clin Oncol 1986; 4: 1510–1517.PubMedGoogle Scholar
  20. 20.
    Urba W, Clark J, Steis R. Intraperitoneal lymphokine-activated killer cell/interleukin-2 therapy in patients with intra-abdominal cancer: immunologic considerations. J Nat Cancer Inst 1989; 81: 602–611.PubMedGoogle Scholar
  21. 21.
    Markman M, Hakes T, Reichmann B, Hoskins W, Rubin S, Lewis J. Intraperitoneal versus intravenous cisplatin-based therapy in small-volume residual refractory ovarian cancer: evidence supporting an advantage for local drug delivery. Reg Cancer Treat 1990; 3: 10–12.Google Scholar
  22. 22.
    Alberts DS, Liu PY, Hannigan EV, O'Toole R, Williams SD, Young JA et al. Intraperitoneal cisplatin plus intravenous cyclophosphamide versus intravenous cisplatin plus intravenous cyclophosphamide for stage III ovarian cancer. N Engl J Med 1996; 335: 1950–1955.PubMedGoogle Scholar
  23. 23.
    Markman M, Rowinsky E, Hakes T. Phase I trial of intraperitoneal taxol: a Gynecologic Oncology Group Study. J Clin Oncol 1992; 10: 1485–1491.PubMedGoogle Scholar
  24. 24.
    Markman M, Brady M, Spirtos N, Hanjani P, Rubin S. Phase II trial of intraperitoneal paclitaxel in carcinoma of the ovary, tube, and peritoneum: a Gynecologic Oncology Group study. J Clin Oncol 1998; 16: 2620–2624.PubMedGoogle Scholar
  25. 25.
    Muggia F, Liu P, Alberts D. Intraperitoneal mitoxantrone or floxuridine: effects on time-to-failure and survival in patients with minimal residual ovarian cancer after second-look laparotomy – a randomized phase II study by the Southwest Oncology Group. Gynecol Oncol 1996; 61: 395–402.PubMedGoogle Scholar
  26. 26.
    Goel R, Cleary S, Horton C, Howell S. Effect sodium thiosulfate on the pharmacokinetics and toxicity of cisplatin. J Nat Cancer Inst 1989; 81: 1552–1560.PubMedGoogle Scholar
  27. 27.
    Markman M, Walker J. Intraperitoneal chemotherapy of ovarian cancer: a review, with a focus on practical aspects of treatment. J Clin Oncol 2006; 24: 988–993.PubMedGoogle Scholar
  28. 28.
    Ozols RF. Systemic therapy for ovarian cancer: current status and new treatments. Semin Oncol 2006; 33: S3–S11.PubMedGoogle Scholar
  29. 29.
    Yan T, Black D, Savady R, Sugarbaker P. Systematic review on the efficacy of cytoreductive surgery combined with perioperative intraperitoneal chemotherapy for peritoneal carcinomatosis from colorectal carcinoma. J Clin Oncol 2006; 24: 4011–4019.PubMedGoogle Scholar
  30. 30.
    Dedrick RL. Interspecies scaling of regional drug delivery. J Pharm Sci 1986; 75: 1047–1052.PubMedGoogle Scholar
  31. 31.
    Leak LV, Rahil K. Permeability of the diaphragmatic mesothelium: the ultrastructural basis for 'stomata'. Am J Anat 1978; 151: 557–594.PubMedGoogle Scholar
  32. 32.
    Bettendorf U. Lymph flow mechanism of the subperitoneal diaphragmatic lymphatics. Lymphology 1978; 11: 111–116.PubMedGoogle Scholar
  33. 33.
    Allen L. On the penetrability of the lymphatics of the diaphragm. Anat Rec 1956; 124: 639–658.PubMedGoogle Scholar
  34. 34.
    Yoffey JM, Courtice FC. Lymphatics, Lymph, and the Lymphomyeloid Complex. London, UK: Academic, 1970.Google Scholar
  35. 35.
    Flessner MF, Parker RJ, Sieber SM. Peritoneal lymphatic uptake of fibrinogen and erythrocytes in the rat. Am J Physiol 1983; 244: H89–H96.PubMedGoogle Scholar
  36. 36.
    Abernathy N, Chin W, Hay J, Rodela H, Oreopoulos D, Johnston M. Lymphatic drainage of the peritoneal cavity in sheep. Am J Physiol 1991; 260: F353–F358.Google Scholar
  37. 37.
    Flessner MF, Lofthouse J, Zakaria EL. Improving contact area between the peritoneum and intraperitoneal therapeutic solutions. J Am Soc Nephrol 2001; 12: 807–813.PubMedGoogle Scholar
  38. 38.
    Flessner MF, Dedrick RL, Reynolds JC. Bidirectional peritoneal transport of immunoglobulin in rats: compartmental kinetics. Am J Physiol 1992; 262: F275–F287.PubMedGoogle Scholar
  39. 39.
    Flessner MF, Schwab A. Pressure threshold for fluid loss from the peritoneal cavity. Am J Physiol 1996; 270: F377–F390.PubMedGoogle Scholar
  40. 40.
    Pearson CM. Blood Vessels and Lymphatics. New York: Academic, 1962.Google Scholar
  41. 41.
    Flessner MF, Dedrick RL, Schultz JS. A distributed model of peritoneal-plasma transport: analysis of experimental data in the rat. Am J Physiol 1985; 248: F413–F424.PubMedGoogle Scholar
  42. 42.
    Flessner MF, Dedrick RL, Schultz JS. Exchange of macromolecules between peritoneal cavity and plasma. Am J Physiol 1985; 248: H15–H25.PubMedGoogle Scholar
  43. 43.
    Rubin J, Clawson M, Planch A, Jones Q. Measurements of peritoneal surface area in man and rat. Am J Med Sci 1988; 295: 453–458.PubMedGoogle Scholar
  44. 44.
    Esperanca MJ, Collins DL. Peritoneal dialysis efficiency in relation to body weight. J Pediatr Surg 1966; 1: 162–169.Google Scholar
  45. 45.
    Ludwig J. Current Methods of Autopsy Practice. Philadelphia: WB Saunders, 1972.Google Scholar
  46. 46.
    Rhodin JA. Histology: A Text and Atlas. New York: Oxford Univ. Press, 1974.Google Scholar
  47. 47.
    DiFiore MSH. Atlas of Human Histology. Philadelphia: Lea & Febiger, 1974.Google Scholar
  48. 48.
    Rubin J, Jones Q, Planch A, Stanak K. Systems of membranes involved in peritoneal dialysis. J Lab Clin Med 1987; 110: 448–453.PubMedGoogle Scholar
  49. 49.
    Vetterlein F, Schmidt G. Functional capillary density in skeletal muscle during vasodilation induced by isoprenaline and muscular exercise. Microvasc Res 1980; 20: 156–164.PubMedGoogle Scholar
  50. 50.
    Guyton AC. Textbook of Medical Physiology. 6th ed. Philadelphia: WB Saunders, 1981.Google Scholar
  51. 51.
    Mapleson W. An electric analogue for uptake and exchange of inert gases and other agents. J Appl Physiol 1963; 18: 197–204.PubMedGoogle Scholar
  52. 52.
    Bonaccorsi A, Dejana E, Quintana A. Organ blood flow measured with microspheres in the unanesthetized rat: effects of three room temperatures. J Pharmacol Methods 1978; 1: 321–328.Google Scholar
  53. 53.
    Grim E. Handbook of Physiology. Washington: American Physiological Society, 1963.Google Scholar
  54. 54.
    Chou CC, Grassmick B. Motility and blood flow distribution within the wall of the gastrointestinal tract. Am J Physiol 1978; 235: H34–H39.PubMedGoogle Scholar
  55. 55.
    Crandall L, Barker S, Graham D. A study of the lymph flow from a patient with thoracic duct fistula. Gastroenterology 1943; 1: 1040.Google Scholar
  56. 56.
    Courtice FC, Simonds W, Steinbeck AW. Some investigations on lymph from a thoracic duct fistula in man. Aust J Exp Biol Med Sci 1951; 29: 201.PubMedGoogle Scholar
  57. 57.
    Morris B. The exchange of protein between the plasma and the liver and intestinal lymph. Q J Exp Physiol 1956; 41: 326–340.Google Scholar
  58. 58.
    O'Morchoe C, O'Morchoe D, Holmes M, Jarosz H. Flow of renal hilar lymph during volume expansion and saline diuresis. Lymphology 1978; 11: 27–31.PubMedGoogle Scholar
  59. 59.
    Shad H, Brechtelsbauer H. Thoracic duct lymph in conscious dog at rest and during changes of physical activity. Pfluegers Arch 1978; 367: 235–240.Google Scholar
  60. 60.
    Tran L, Rodela H, Abernathy N, Johnston M. Lymphatic drainage of hypertonic solution from peritoneal cavity of anesthetized and conscious sheep. J Appl Physiol 1993; 74: 859–867.PubMedGoogle Scholar
  61. 61.
    Aune S. Transperitoneal exchange: II. Peritoneal blood flow estimated by hydrogen gas clearance. Scand J Gastroenterol 1970; 5: 99.PubMedGoogle Scholar
  62. 62.
    Flessner MF. Transport of Water-Soluble Solutes Between the Peritoneal Cavity and Plasma in the Rat. Ann Arbor, MI: Univ. of Michigan, 1981.Google Scholar
  63. 63.
    Grzegorzewska AE, Moore HL, Nolph KD, Chen TW. Ultrafiltration and effective peritoneal blood flow during peritoneal dialysis in the rat. Kidney Int 1991; 39: 608–617.PubMedGoogle Scholar
  64. 64.
    Collins JM. Inert gas exchange of subcutaneous and intraperitoneal gas pockets in piglets. Respir Physiol 1981; 46: 391.PubMedGoogle Scholar
  65. 65.
    Kim M, Lofthouse J, Flessner MF. A method to test blood flow limitation of peritoneal-blood solute transport. J Am Soc Nephrol 1997; 8: 471–474.PubMedGoogle Scholar
  66. 66.
    Demissachew H, Lofthouse J, Flessner MF. Tissue sources and blood flow limitations of osmotic water transport across the peritoneum. J Am Soc Nephrol 1999; 10: 347–353.PubMedGoogle Scholar
  67. 67.
    Zakaria EL, Carlsson O, Rippe B. Limitation of small solute exchange across the visceral peritoneum: effects of vibration. Perit Dial Int 1997; 17 (1): 72–79.Google Scholar
  68. 68.
    Erb R, Greene J, Weller J. Peritoneal dialysis during hemorrhagic shock. J Appl Physiol 1967; 22: 131–135.Google Scholar
  69. 69.
    Rosengren BI, Rippe B. Blood flow limitation in vivo of small solute transfer during peritoneal dialysis in rats. J Am Soc Nephrol 2003; 14: 1599–2003.PubMedGoogle Scholar
  70. 70.
    Flessner MF, Lofthouse J, Williams A. Increasing peritoneal contact area during dialysis improves mass transfer. J Am Soc Nephrol 2001; 12: 2139–2145.PubMedGoogle Scholar
  71. 71.
    Chagnac A, Herskovitz P, Weinstein T, Elyashiv S, Hirsh J, Hamel I et al. The peritoneal membrane in peritoneal dialysis patients: estimation of its functional surface area by applying stereologic methods to computerized tomography scans. J Am Soc Nephrol 1999; 10: 342–346.PubMedGoogle Scholar
  72. 72.
    Chagnac A, Herskovitz P, Ori Y, Weinstein T, Hirsh J, Katz M et al. Effect of increased dialysate volume on peritoneal surface area among peritoneal dialysis patients. J Am Soc Nephrol 2002; 13: 2554–2559.PubMedGoogle Scholar
  73. 73.
    Hosie KB, Gilbert J, Kerr DJ, Brown C, Peers E. Fluid dynamics in man of an intraperitoneal drug delivery solution: 4% icodextrin. Drug Deliv 2001; 8: 9–12.PubMedGoogle Scholar
  74. 74.
    Hosie KB, Kerr DJ, Gilbert JA, Downes M, Lakin G, Pemberton G et al. A pilot study of adjuvant intraperitoneal 5-fluorouracil using 4% icodextrin as a novel carrier solution. Eur J Surg Oncol 2003; 29: 254–260.PubMedGoogle Scholar
  75. 75.
    Flessner MF. Small-solute transport across specific peritoneal tissue surfaces in the rat. J Am Soc Nephrol 1996; 7: 225–233.PubMedGoogle Scholar
  76. 76.
    Dedrick RL, Myers CE, Bungay PM, DeVita VT. Pharmacokinetic rationale for peritoneal drug administration in the treatment of ovarian cancer. Cancer Treat Rep 1978; 62: 1.PubMedGoogle Scholar
  77. 77.
    Krediet RT. Physiology of peritoneal solute transport and ultrafiltration. In: Gokal R, Khanna R, Krediet RT, Nolph K, editors. Textbook of Peritoneal Dialysis. Dordrecht: Kluwer Academic Publishers, 2000: 135–172.Google Scholar
  78. 78.
    Babb AL, Johansen PJ, Strand MJ, Tenckhoff H, Scribner BH. Bidirectional permeability of the human peritoneum to middle molecules. Proc Eur Dial Transplant Assoc 1973; 10: 247.PubMedGoogle Scholar
  79. 79.
    Jacquet P, Averbach A, Stephens A, Stuart O, Chang D, Sugarbaker P. Heated intraoperative intraperitoneal mitomycin C and early postoperative intraperitoneal 5-fluorouracil: pharmacokinetic studies. Oncology 1998; 55: 130–138.PubMedGoogle Scholar
  80. 80.
    Elias D, Bonnay M, Puizillou J, Antoun S, Demirdjian S, ElOtmany A et al. Heated intra-operative intraperitoneal oxaliplatin after complete resection of peritoneal carcinomatosis: pharmacokinetics and tissue distribution. Ann Oncol 2002; 13: 267–272.PubMedGoogle Scholar
  81. 81.
    Steller M, Egorin MJ, Trimble E, Bartlett D, Suhowski E, Alexander H et al. A pilot phase I trial of continuous hyperthermic peritoneal perfusion with high-dose carboplatin as primary treatment of patients with small-volume residual ovarian cancer. Cancer Chemother Pharmacol 1999; 43: 106–114.PubMedGoogle Scholar
  82. 82.
    Keshaviah P, Emerson PF, Vonesh EF, Brandes JC. Relationship between body size, fill volume, and mass transfer area coefficient in peritoneal dialysis. J Am Soc Nephrol 1994; 4: 1820–1826.PubMedGoogle Scholar
  83. 83.
    Torres IJ, Litterst CI, Guarino AM. Transport of model compounds across the peritoneal membrane in the rat. Pharmacology 1978; 17: 161–166.Google Scholar
  84. 84.
    Lewis C, Lawson N, Rankin E et al. Phase I and pharmacokinetic study of intraperitoneal thioTEPA in patients with ovarian cancer. Cancer Chemother Pharmacol 1990; 26: 283–287.PubMedGoogle Scholar
  85. 85.
    Wikes A, Howell S. Pharmacokinetics of hexamethylmelamine administered via the ip route in and oil emulsion vehicle. Cancer Treat Rep 1985; 69: 657–662.Google Scholar
  86. 86.
    Pitts R. Physiology of the Kidney and Body Fluids. Chicago: Year Book Medical Pub, 1963.Google Scholar
  87. 87.
    Lukas G, Brindle S, Greongard P. The route of absorption of intraperitoneally administered compounds. J Pharmacol Exp Ther 1971; 178: 562–566.PubMedGoogle Scholar
  88. 88.
    Moellering R. Pharmacokinetics of vancomycin. J Antimicrob Chemother 1984; 14 (suppl D): 43–52.PubMedGoogle Scholar
  89. 89.
    Matzke G, McGory R, Halstenson C, Keane W. Pharmacokinetics of vancomycin in patients with various degrees of renal function. Antimicrob Agents Chemother 1984; 25: 433–437.PubMedGoogle Scholar
  90. 90.
    Cutler N, Narang P, Lesko L, Ninos M, Power M. Vancomycin disposition: the importance of age. Clin Pharmacol Ther 1984; 36: 803–810.PubMedGoogle Scholar
  91. 91.
    Rotschafer J, Crossley K, Zaske D, Mead K, Sawcuk R, Solem L. Pharmacokinetics of vancomycin: observations in 28 patients and dosage recommendations. Antimicrob Agents Chemother 1982; 22: 391–394.PubMedGoogle Scholar
  92. 92.
    Nielsen H, Hansen H, Korsager B, Skov P. Renal Excretion of vancomycin in kidney disease. Acta Med Scand 1975; 197: 261–264.PubMedGoogle Scholar
  93. 93.
    Cunha B, Ristuccia A. Clinical usefulness of vancomycin. Clin Pharmacol 1983; 2: 417–424.Google Scholar
  94. 94.
    Bunke C, Aronoff G, Brier M, Sloan R, Luft F. Vancomycin kinetics during continuous ambulatory peritoneal dialysis. Clin Pharmacol Ther 1983; 34: 621–637.Google Scholar
  95. 95.
    Larner J. Insulin and oral hypoglycemic drugs and glucagon. In: Gilman A, Goodman L, Rail T, Murad F, editors. Goodman and Gilman's The Pharmacological Basis of Therapeutics. New York: Macmillan, 1985: 1490–1503.Google Scholar
  96. 96.
    Duckworth W. Insulin degradation: mechanisms, products, and significance. Endocr Rev 1988; 9: 319–345.PubMedGoogle Scholar
  97. 97.
    Duckworth W, Saudek C, Henry R. Why intraperitoneal delivery of insulin with implantable pumps in NIDDM? Diabetes 1992; 41: 657–661.PubMedGoogle Scholar
  98. 98.
    Shapiro D, Blumenkrantz M, Levin S, Coburn J. Absorption and action of insulin added to peritoneal dialysate in dogs. Nephron 1979; 23: 174–180.PubMedGoogle Scholar
  99. 99.
    Scarpioni L, Ballocchi S, Castelli A, Scarpioni R. Insulin therapy in uremic diabetic patients on continuous ambulatory peritoneal dialysis; comparison of intraperitoneal and subcutaneous administration. Perit Dial Int 1994; 14: 127–131.PubMedGoogle Scholar
  100. 100.
    Fuss M, Bergans A, Brauman H. I-125-insulin metabolism in chronic renal failure treated by renal transplantation. Kidney Int 1974; 5: 372–377.PubMedGoogle Scholar
  101. 101.
    Navalesi R, Pilo A, Lenzi S, Donato L. Insulin metabolism in chronic uremia and in the anephric state: effect of the dialytic treatment. J Clin Endocrinol Metab 1975; 40: 70–85.PubMedGoogle Scholar
  102. 102.
    Wideroe T-E, Smeby L, Berg K, Jorstad S, Svart T. Intraperitoneal insulin absorption during intermittent and continuous peritoneal dialysis. Kidney Int 1983; 23: 22–28.PubMedGoogle Scholar
  103. 103.
    Micossi P, Cristallo M, Librenti M. Free-insulin profiles after intraperitoneal, intramuscular, and subcutaneous insulin administration. Diabetes Care 1986; 9: 575–578.PubMedGoogle Scholar
  104. 104.
    Williams G, Pickup J, Clark A, Bowcock S, Cooke E, Keen H. Changes in blood flow close to subcutaneous insulin injection site in stable and brittle diabetics. Diabetes 1983; 32: 466–473.PubMedGoogle Scholar
  105. 105.
    Zingg W, Rappaprot A, Leibel B. Studies on transhepatic absorption. Can J Physiol Pharmacol 1986; 64: 231–234.PubMedGoogle Scholar
  106. 106.
    Selam J-L, Bergman R, Raccah D, Jean-Didier N, Lozano J, Charles M. Determination of portal insulin absorption from peritoneum via novel non-isotopic method. Diabetes 1990; 39: 1361–1365.PubMedGoogle Scholar
  107. 107.
    Tournigand C. Intraperitoneal chemotherapy in ovarian cancer: who and when? Curr Opin Obstet Gynecol 2005; 17: 83–86.PubMedGoogle Scholar
  108. 108.
    Markman M, Reichmann B, Hakes T. Impact on survival of surgically defined favorable responses to salvage intraperitoneal chemotherapy in small-volume residual ovarian cancer. J Clin Oncol 1992; 10: 1479–1484.PubMedGoogle Scholar
  109. 109.
    Sugarbaker P, Graves T, DeBruijn E, et al. Early postoperative intraperitoneal chemotherapy as an adjuvant therapy to surgery for peritoneal carcinomatosis from gastrointestinal cancer: pharmacological studies. Cancer Res 1990; 50: 5790–5794.PubMedGoogle Scholar
  110. 110.
    Kyrgiou M, Salanti G, Pavlidis N, Paraskevaidis E, Ioannidis J. Survival benefits with diverse chemotherapy regimens for ovarian cancer: meta-analysis of multiple treatments. J Natl Cancer Inst 2006; 98: 1655–1663.PubMedGoogle Scholar
  111. 111.
    Farris F, King F, Dedrick R, Litterst CI. Physiological model for the pharmacokinetics of cis-dichlorodiammineplatinum (II) (DDP) in the tumored rat. J Pharmacokinet Biopharm 1985; 13: 13–39.PubMedGoogle Scholar
  112. 112.
    King F, Dedrick R, Farris F. Physiological pharmacokinetic modeling of cis-dichlorodiammineplatinum (II) (DDP) in several species. J Pharmacokinet Biopharm 1986; 14: 131–135.PubMedGoogle Scholar
  113. 113.
    King F, Dedrick R. Physiological pharmacokinetic parameters for cis-dichlorodiammineplatinum (II) (DDP) in the mouse. J Pharmacokinet Biopharm 1992; 20: 95–99.PubMedGoogle Scholar
  114. 114.
    Piccart M, Abrams J, Dodian P, et al. Intraperitoneal chemotherapy with cisplatin and melphalan. J Natl Cancer Inst 1988; 80: 1118–1124.PubMedGoogle Scholar
  115. 115.
    Los G, Mutsaers PHA, van der Vijgh WJF, Baldera GS, de Graag PW, McVie JG. Direct diffusion of cis-diaminedichloroplatinum (II) in intraperitoneal rat tumors after intraperitoneal chemotherapy: a comparison with systemic chemotherapy. Cancer Res 1989; 49: 3380–3384.PubMedGoogle Scholar
  116. 116.
    Dedrick RL, Flessner MF, Collins JM, Schultz JS. Is the peritoneum a membrane? Am Soc Artif Intern Organs J 1982; 5: 1–5.Google Scholar
  117. 117.
    Flessner MF, Fenstermacher JD, Dedrick RL, Blasberg RG. A distributed model of peritoneal-plasma transport: tissue concentration gradients. Am J Physiol 1985; 248: F425–F435.PubMedGoogle Scholar
  118. 118.
    Morrison PF, Dedrick R. Transport of cisplatin in rat brain following microinfusion: an analysis. J Pharm Sci 1986; 75: 120–128.PubMedGoogle Scholar
  119. 119.
    Pretorius R, Petrilli E, Kean C, Ford L, Hoeschele J, Lagasse L. Comparison of the iv and ip routes of cisplatin in dogs. Cancer Treat Rep 1981; 65: 1055–1062.PubMedGoogle Scholar
  120. 120.
    Chabner B. Fluorinated pyrimidines. In: Chabner B, editor. Pharmacologic Principles of Cancer Treatment. Philadelphia: WB Saunders, 1982: 183–212.Google Scholar
  121. 121.
    Collins JM, Dedrick RL, King F, Speyer JL, Myers CE. Nonlinear pharmacokinetic models for 5-fluorouracil in man: intravenous and intraperitoneal routes. Clin Pharmacol Ther 1980; 28: 235–246.PubMedGoogle Scholar
  122. 122.
    Archer S, McCulloch R, Gray B. A comparative study of the pharmacokinetics of continuous portal vein infusion versus intraperitoneal infusion of 5-fluorouracil. Reg Cancer Treat 1989; 2: 105–111.Google Scholar
  123. 123.
    Gianola F, Sugarbaker P, Barofsky I, White D, Myers CE. Toxicity studies of adjuvant intravenous versus intraperitoneal 5-FU in patients with advanced primary colon or rectal cancer. Am J Clin Oncol 1986; 9: 403–410.PubMedGoogle Scholar
  124. 124.
    Penzotti SC, Mattocks AM. Acceleration of peritoneal dialysis by surface active agents. J Pharm Sci 1968; 57: 1192–1195.PubMedGoogle Scholar
  125. 125.
    vanRuth S, Mathot R, Sparidans R, Beijnen J, Verwaal V, Zoetmulder F. Population pharmacokinetics and pharmacodynamics of mitomycin during intraoperative hyperthermic intraperitoneal chemotherapy. Clin Pharmacokinet 2004; 43: 131–143.Google Scholar
  126. 126.
    Witkamp A, deBree E, VanGoethem R, Zoetmulder F. Rationale and techniques of intra-operative hyperthermic intraperitoneal chemotherapy. Cancer Treat Rev 2001; 27: 365–374.PubMedGoogle Scholar
  127. 127.
    Collins JM, Dedrick RL, Flessner MF, Guarino AM. Concentration-dependent disappearance of 5-fluorouracil from peritoneal fluid in the rat: experimental observations and distributed modeling. J Pharm Sci 1982; 71: 735.PubMedGoogle Scholar
  128. 128.
    Flessner MF, Dedrick RL, Schultz JS. A distributed model of peritoneal-plasma transport: theoretical considerations. Am J Physiol 1984; 246: R597–R607.PubMedGoogle Scholar
  129. 129.
    Flessner M.F., Lofthouse J, Zakaria ER. In vivo diffusion of immunoglobulin G in muscle: effects of binding, solute exclusion, and lymphatic removal. Am J Physiol 1997; 273: H2783–H2793.PubMedGoogle Scholar
  130. 130.
    Flessner M.F. Transport of protein in the abdominal wall during intraperitoneal therapy I. Theoretical approach. Am J Physiol Gastrointest Liver Physiol 2001; 281: G424–G437.PubMedGoogle Scholar
  131. 131.
    Baron MA. Structure of the intestinal peritoneum in man. Am J Anat 1941; 69: 439–497.Google Scholar
  132. 132.
    Flessner MF. Net ultrafiltration in peritoneal dialysis: role of direct fluid absorption into peritoneal tissue. Blood Purif 1992; 10: 136–147.PubMedGoogle Scholar
  133. 133.
    Rippe B, Stelin G, Ahlmen J. Frontiers in Peritoneal Dialysis. New York: Field, Rich, 1986.Google Scholar
  134. 134.
    Heimburger O, Waniewski J, Werynski A, Park MS, Lindholm B. Lymphatic absorption in CAPD patients with loss of ultrafiltration capacity. In: Heimburger O, editor. PhD Thesis. Stockholm: Konogl Carolinska Medico Chirurgiska Institute, 1994: 1–21.Google Scholar
  135. 135.
    Daugirdas JT, Ing TS, Gandhi VC, Hano JE, Chen WT, Yuan L. Kinetics of peritoneal fluid absorption in patients with chronic renal failure. J Lab Clin Med 1980; 85: 351–361.Google Scholar
  136. 136.
    Flessner MF. Peritoneal transport physiology: insights from basic research. J Am Soc Nephrol 1991; 2: 122–135.PubMedGoogle Scholar
  137. 137.
    Granger DN, Parker RE, Quillen EW, Brace RA, Taylor AE. Lymphology. Stuttgart, FRG: Thieme, 1979.Google Scholar
  138. 138.
    Courtice FC, Steinbeck AW. Absorption of protein from the peritoneal cavity. J Physiol 1951; 114: 336–355.PubMedGoogle Scholar
  139. 139.
    Flessner M.F., Henegar J, Bigler S, Genous L. Is the peritoneum a significant transport barrier in peritoneal dialysis? Perit Dial Int 2003; 23: 542–549.PubMedGoogle Scholar
  140. 140.
    Vazquez VdL, Stuart OA, Mohamed F, Sugarbaker P. Extent of parietal peritonectomy does not change intraperitoneal chemotherapy pharmacokinetics. Cancer Chemother Rep 2003; 52: 108–112.Google Scholar
  141. 141.
    Hekking LHP, Harvey VS, Havenith CEG, van den Born J, Beelen RHJ, Jackman RW et al. Mesothelial cell transplantation in models of acute inflammation and chronic peritoneal dialysis. Perit Dial Int 2003; 23: 323–330.PubMedGoogle Scholar
  142. 142.
    Margetts PJ, Kolb M, Galt T, Hoff CM, Shockley TR, Gauldie J. Gene transfer of transforming growth factor-Beta1 to the rat peritoneum: effects on membrane function. J Am Soc Nephrol 2001; 12: 2029–2039.PubMedGoogle Scholar
  143. 143.
    Margetts PJ, Gyorffy S, Kolb M, Yu L, Hoff CM, Holmes CJ et al. Antiangiogenic and antifibrotic gene therapy in a chronic infusion model of peritoneal dialysis in rats. J Am Soc Nephrol 2002; 13: 721–728.PubMedGoogle Scholar
  144. 144.
    Jackman RW, Hoff CM, Shockley TR, Nagy JA. Adenovirus-mediated transfer of rat catalase cDNA into rat primary mesothelial cells confers increased resistance to oxidant-induced injury in vitro. J Am Soc Nephrol 1999; 10: 446A–447A.Google Scholar
  145. 145.
    Hoff CM, Piscopo D, Inman K, Shockley TR. Adenovirus-mediated gene transfer to the peritoneal cavity. Perit Dial Int 2000; 20: 128–136.Google Scholar
  146. 146.
    Alvarez RD, Curiel D. A phase I study of recombinant adenovirus vector-mediated intraperitoneal delivery of herpes simplex virus thymidine kinase (HSV-TK) gene and intravenous ganciclovir for previously treated ovarian and extraovarian cancer patients. Hum Gene Ther 1997; 8: 597–613.PubMedGoogle Scholar
  147. 147.
    Mujoo K, Maneval D, Anderson S, Gutterman J. Adenoviral-mediated p53 tumor suppressor gene therapy of human ovarian carcinoma. Oncogene 1996; 12: 1617–1623.PubMedGoogle Scholar
  148. 148.
    Tong X-W, Block A, Chen S-H, Contact C, Agoulnik I, Blankenburg K et al. In vivo gene therapy of ovarian cancer by adenovirus-mediated thymidine kinase gene transduction and ganciclovir administration. Gynecol Oncol 1996; 61: 175–179.PubMedGoogle Scholar
  149. 149.
    deForni M, Boneu A, Otal P, Martel P, Shubinski R, Bugat R et al. Anatomic changes in the abdominal cavity during intraperitoneal chemotherapy: prospective study using scintigraphic peritoneography. Bull Cancer 1993; 80: 345–350.Google Scholar
  150. 150.
    Reed RK, Rubin K, Wiig H, Rodt SA. Blockade of β1-integrins in skin causes edema through lowering of interstitial fluid pressure. Circ Res 1992; 71: 978–983.PubMedGoogle Scholar
  151. 151.
    Rubin K, Sundberq C, Ahlen K, Reed RK. Integrins: transmembrane links between the extracellular matrix and the cell interior. In: Reed RK, Mattale NG, Bert JL, Winlove CP, Laine GA, editors. Interstitium, Connective Tissue, and Lymphatics. London: Portland Press Ltd, 1995: 29–40.Google Scholar
  152. 152.
    Rubin K, Gullberg D, Tomasini-Johansson B, Reed RK, Ryden C, Borg TK. Molecular recognition of the extracellular matrix by cell surface receptors. In: Comper WD, editor. Extracellular Matrix. Amsterdam: Harwood Academic Publishers, 1996: 262–309.Google Scholar
  153. 153.
    Laurent TC. Structure of the extracellular matrix and the biology of hyaluronan. In: Reed RK, McHale NG, Bert JL, Winlove CP, Laine GA, editors. Interstitium, Connective Tissue, and Lymphatics. London: Portland Press, 1995: 1–12.Google Scholar
  154. 154.
    Fraser JRE, Laurent TC. Hyaluronan. In: Comper WD, editor. Extracellular Matrix. Amsterdam: Harwood Academic Publishers, 1996: 141–199.Google Scholar
  155. 155.
    Wiig H, DeCarlo M, Sibley L, Renkin EM. Interstitial exclusion of albumin in rat tissues measured by a continuous infusion method. Am J Physiol 1992; 263: H1222–H1233.PubMedGoogle Scholar
  156. 156.
    Wiig H, Kaysen GA, Al-Bander HA, DeCarlo M, Sibley L, Renkin EM. Interstitial exclusion of IgG in rat tissues estimated by continuous infusion. Am J Physiol 1994; 266: H212–H219.PubMedGoogle Scholar
  157. 157.
    Zakaria ER, Lofthouse J, Flessner MF. In vivo effects of hydrostatic pressure on interstitium of abdominal wall muscle. Am J Physiol 1999; 276: H517–H529.PubMedGoogle Scholar
  158. 158.
    Zakaria ER, Lofthouse J, Flessner MF. Effect of intraperitoneal pressures on tissue water of the abdominal muscle. Am J Physiol Renal Physiol 2000; 278: F875–F885.PubMedGoogle Scholar
  159. 159.
    Zakaria ER, Lofthouse J, Flessner MF. In vivo hydraulic conductivity of muscle: effects of hydrostatic pressure. Am J Physiol 1997; 273: H2774–H2782.Google Scholar
  160. 160.
    Twardowski ZJ, Prowant BF, Nolph KD. High volume, low frequency continuous ambulatory peritoneal dialysis. Kidney Int 1983; 23: 64–70.PubMedGoogle Scholar
  161. 161.
    Gotloib L, Mines M, Garmizo L, Varka I. Hemodynamic effects of increasing intra-abdominal pressure in peritoneal dialysis. Perit Dial Bull 1981; 1: 41–43.Google Scholar
  162. 162.
    Flessner MF. Osmotic barrier of the parietal peritoneum. Am J Physiol 1994; 267: F861–F870.PubMedGoogle Scholar
  163. 163.
    Flessner MF, Choi J, Credit K, Deverkadra R, Henderson K. Resistance of tumor interstitial pressure to the penetration of intraperitoneally delivered antibodies into metastatic ovarian tumors. Clin Cancer Res 2005; 11: 3117–3125.PubMedGoogle Scholar
  164. 164.
    Flessner MF, Dedrick RL, Reynolds JC. Bidirectional peritoneal transport of immunoglobulin in rats: tissue concentration profiles. Am J Physiol 1992; 263: F15–F23.PubMedGoogle Scholar
  165. 165.
    Flessner MF. Changes in the peritoneal interstitium and their effect on peritoneal transport. Perit Dial Int 1999; 19 Suppl 2: S77–S82.PubMedGoogle Scholar
  166. 166.
    Flessner MF. The transport barrier in intraperitoneal therapy. Am J Physiol 2005; 288: F433–F442.Google Scholar
  167. 167.
    Wiig H, Reed RK, Aukland K. Micropuncture measurement of interstitial fluid pressure in rat subcutis and skeletal muscle: comparison to the wick-in-needle technique. Microvasc Res 1981; 21: 308–319.PubMedGoogle Scholar
  168. 168.
    Wiig H, Reed RK. Interstitial compliance and transcapillary Starling pressures in cat skin and skeletal muscle. Am J Physiol 1985; 248: H666–H673.PubMedGoogle Scholar
  169. 169.
    Flessner MF, Choi J, He Z, Credit K. Physiological characterization of human ovarian cancer cells in a rat model of intraperitoneal antineoplastic therapy. J Appl Physiol 2004; 97: 1518–1526.PubMedGoogle Scholar
  170. 170.
    Boucher Y, Baxter LT, Jain RK. Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res 1990; 50: 4478–4484.PubMedGoogle Scholar
  171. 171.
    Boucher Y, Kirkwood JM, Opacic D, Desantis M, Jain RK. Interstitial hypertension in superficial metastatic melanomas in humans. Cancer Res 1991; 51: 6691–6694.PubMedGoogle Scholar
  172. 172.
    Roh HD, Boucher Y, Kalnicki S, Buchsbaum R, Bloomer WD, Jain RK. Interstitial hypertension in carcinoma of uterine cervix in patients: possible correlation with tumor oxygenation and radiation exposure. Cancer Res 1991; 51: 6695–6698.PubMedGoogle Scholar
  173. 173.
    Gullino PM, Grantham FH, Smith SH. The interstitial water space of tumors. Cancer Res 1965; 25: 727–731.PubMedGoogle Scholar
  174. 174.
    Boucher Y, Jain R.K. Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse. Cancer Res 1992; 52: 5110–5114.PubMedGoogle Scholar
  175. 175.
    Jain RK. Transport of molecules in the tumor interstitium: a review. Cancer Res 1987; 47: 3039–3051.PubMedGoogle Scholar
  176. 176.
    Netti PA, Berk DA, Swartz MA, Grodzinsky AJ, Jain RK. Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res 2000; 60: 2497–2503.PubMedGoogle Scholar
  177. 177.
    Choi J, Credit K, Henderson K, Deverkadra R, He Z, Wiig H et al. Intraperitoneal immunotherapy for metastatic ovarian carcinoma: resistance of intratumoral collagen to antibody penetration. Clin Cancer Res 2006; 12: 1906–1912.PubMedGoogle Scholar
  178. 178.
    Vink H, Duling BR. Identification of distinct luminal domains for macromolecules, erythrocytes, and leucocytes within mammalian capillaries. Circ Res 1996; 79: 581–589.PubMedGoogle Scholar
  179. 179.
    Vink H, Duling BR. Capillary endothelial surface layer selectively reduces plasma solute distribution volume. Am J Physiol 2000; 278: H285–H289.Google Scholar
  180. 180.
    Fu B, Curry FE, Adamson RH, Weinbaum S. A model for interpreting the tracer labeling of interendothelial clefts. Ann Biomed Eng 1997; 25: 375–397.PubMedGoogle Scholar
  181. 181.
    Fu BM, Curry FE, Weinbaum S. A diffusion wake model for tracer ultrastructure-permeability studies in microvessels. Am J Physiol 1995; 269: H2124–H2140.PubMedGoogle Scholar
  182. 182.
    Platts SH, Duling BR. Adenosine A3 receptor activation modulates the capillary endothelial glycocalyx. Circ Res 2004; 94: 77–82.PubMedGoogle Scholar
  183. 183.
    Matsuki T, Duling B. TNF-alpha increases entry of macromolecules into luminal endothelial cell glycocalyx. Microcirculation 2000; 7: 411–418.PubMedGoogle Scholar
  184. 184.
    Leunig M, Yuan F, Menger MD, Boucher Y, Goetz AE, Messmer K et al. Angiogenesis, microvascular architecture, microhemodynamics, and interstitial fluid pressure during early growth of human adenocarcinoma LS174T in SCID mice. Cancer Res 1992; 52: 6553–6560.PubMedGoogle Scholar
  185. 185.
    Nugent LJ, Jain RK. Plasma pharmacokinetics and interstitial diffusion of macromolecules in a capillary bed. Am J Physiol 1984; 246: H129–H137.PubMedGoogle Scholar
  186. 186.
    Yuan F, Leunig M, Berk DA, Jain RK. Microvascular permeability of albumin, vascular surface area, and vascular volume measured in human adenocarcinoma LS174T using dorsal chamber in SCID mice. Microvasc Res 1993; 45: 269–289.PubMedGoogle Scholar
  187. 187.
    Gerlowski LE, Jain RK. Microvascular permeability of normal and neoplastic tissues. Microvasc Res 1986; 31: 288–305.PubMedGoogle Scholar
  188. 188.
    Henry CBS, Duling BR. TNF-alpha increases entry of macromolecules into luminal endothelial cell glycocalyx. Am J Physiol 2000; 279: H2815–H2823.Google Scholar
  189. 189.
    Bettendorf U. Electronmicroscopic studies on the peritoneal resorption of intraperitoneally injected latex particles via the diaphragmatic lymphatics. Lymphology 1979; 12: 66–70.PubMedGoogle Scholar
  190. 190.
    Courtice FC, Steinbeck AW. The effects of lymphatic obstruction and of posture on absorption of protein from the peritoneal cavity. Aust J Exp Biol Med Sci 1951; 29: 451–458.PubMedGoogle Scholar
  191. 191.
    Dykes PW, Jones JH. Albumin exchange between plasma and ascites fluid. Clin Sci 1964; 34: 185–197.Google Scholar
  192. 192.
    Rusznysk I, et al. Lymphatics and Lymph Circulation. London: Pergamon Press, 1967.Google Scholar
  193. 193.
    Baxter LT, Jain RK. Transport of fluid and macromolecules in tumor. I. Role of interstitial pressure and convection. Microvasc Res 1989; 37: 77–104.PubMedGoogle Scholar
  194. 194.
    Flessner MF, Deverkadra R, Smitherman J, Li X, Credit K. In vivo determination of diffusive transport parameters in a superfused tissue. Am J Physiol Renal Physiol 2006; 291: F1096–F1103.PubMedGoogle Scholar
  195. 195.
    Ward BG, Mather SJ, Hawkins LR, Crowther ME, Shepherd JH, Granowska M et al. Localization of radioiodine conjugated to the monoclonal antibody HMFG2 in human ovarian carcinoma: assessment of intravenous and intraperitoneal routes of administration. Cancer Res 1987; 47: 4719–4723.PubMedGoogle Scholar
  196. 196.
    Dedrick RL, Flessner MF. Pharmacokinetic considerations on monoclonal antibodies. In: M. Mitchell (ed.). Immunity to Cancer II. Proc. of 2nd conference on Immunity to Cancer. Williamsburg, VA, 1989; II: 429–438.Google Scholar
  197. 197.
    Krediet RT, Struijk DG, Koomen GCM. Peritoneal transport of macromolecules in patients on CAPD. Contrib Nephrol 1991; 89: 161–174.PubMedGoogle Scholar
  198. 198.
    Griffin T, Collins JA, Bokhari F. Intraperitoneal immunoconjugates. Cancer Res 1990; 50: 1031–1038.Google Scholar
  199. 199.
    Clauss MA, Jain RK. Interstitial transport of rabbit and sheep antibodies in normal and neoplastic tissues. Cancer Res 1990; 30: 3487–3492.Google Scholar
  200. 200.
    Berk DA, Yuan F, Leunig M, Jain RK. Direct in vivo measurement of targeted binding in a human tumor xenograft. Proc Natl Acad Sci U S A 1997; 94 (5): 1785–1790.PubMedGoogle Scholar
  201. 201.
    Fujimori K, Covell DG, Fletcher JE, Weinstein JN. Modeling analysis of the global and microscopic distribution of immunoglobulin G, F(ab')2 and Fab in tumors. Cancer Res 1989; 49: 5656–5663.PubMedGoogle Scholar
  202. 202.
    Fujimori K, Covell DG, Fletcher J, Weinstein J. A modeling analysis of monoclonal antibody percolation through tumors: a binding-site barrier. J Nucl Med 1990; 31: 1191–1198.PubMedGoogle Scholar
  203. 203.
    van Osdol W, Fujimori K, Weinstein JN. An analysis of monoclonal antibody distribution in microscopic tumor nodules: consequences of a 'binding site barrier'. Cancer Res 1991; 51: 4776–4784.PubMedGoogle Scholar
  204. 204.
    Flessner MF, Dedrick RL. Tissue-level transport mechanisms of intraperitoneally-administered monoclonal antibodies. J Control Release 1998; 53: 69–75.PubMedGoogle Scholar
  205. 205.
    Rippe B, Haraldsson B. Fluid and protein fluxes across small and large pores in the microvasculature. Application of two-pore equations. Acta Physiol Scand 1987; 131: 411–428.PubMedGoogle Scholar
  206. 206.
    Flessner MF, Dedrick RL. Monoclonal antibody delivery to intraperitoneal tumors in rats: effects of route of administration and intraperitoneal solution osmolality. Cancer Res 1994; 54: 4376–4384.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.University of Mississippi Medical CenterJackson

Personalised recommendations