Advertisement

Long-Term Peritoneal Dialysis Patients

Changes in Membrane Structure and Function
  • O. Devuyst
  • R. van Westrhenen
  • N. Topley

Peritoneal dialysis (PD) has now been utilized for more than 25 years as a first-line therapy for the treatment of end-stage renal failure. It is now accepted that patient survival on PD is similar to hemodialysis when comparable analyses are made [1, 2]. As we have gathered new knowledge over the past decade, however, about the potential complications associated with long-term therapy, such as structural and functional alterations to the peritoneal membrane and end-stage sclerosing syndromes such as encapsulating peritoneal sclerosis (EPS), there remain legitimate concerns as to whether this mode of therapy can provide adequate treatment for end-stage renal disease in the longer term [3]. Despite advances in treatment guidelines there still remains in PD a considerable dropout rate in the early years of therapy, due mainly to infective episodes and membrane dysfunction [4].

Keywords

Vascular Endothelial Growth Factor Peritoneal Dialysis Patient Dialysis Solution Peritoneal Membrane Encapsulate Peritoneal Sclerosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Burkart J, Piraino B, Kaldas H, et al. Why is the evidence favoring hemodialysis over peritoneal dialysis misleading? Semin Dial 2007; 20 (3): 200–202.PubMedGoogle Scholar
  2. 2.
    Vonesh EF, Snyder JJ, Foley RN, Collins AJ. Mortality studies comparing peritoneal dialysis and hemodialysis: what do they tell us? Kidney Int 2006; 70 (suppl. 103): S3–S11.Google Scholar
  3. 3.
    Giannattasio M, Buemi M, Caputo F, Viglino G, Verrina E. Can peritoneal dialysis be used as a long term therapy for end stage renal disease? Int Urol Nephrol 2003; 35 (4): 569–577.PubMedGoogle Scholar
  4. 4.
    Maiorca R, Cancarini G. Thirty years of progress in peritoneal dialysis. J Nephrol 1999; 12 (suppl. 2): S92–S99.PubMedGoogle Scholar
  5. 5.
    Engel B, Davies SJ. Achieving euvolemia in peritoneal dialysis. Perit Dial Int 2007; 27 (5): 514–517.PubMedGoogle Scholar
  6. 6.
    Davies SJ, Brown EA, Frandsen NE, et al. Longitudinal membrane function in functionally anuric patients treated with APD: data from EAPOS on the effects of glucose and icodextrin prescription. Kidney Int 2005; 67 (4): 1609–1615.PubMedGoogle Scholar
  7. 7.
    Davies SJ. Mitigating peritoneal membrane characteristics in modern peritoneal dialysis therapy. Kidney Int 2006; 70 (suppl. 103): S76–S83.Google Scholar
  8. 8.
    Davies SJ, Phillips L, Griffiths AM, Russell LH, Naish PF, Russell GI. What really happens to people on long-term peritoneal dialysis? Kidney Int 1998; 54 (6): 2207–2217.PubMedGoogle Scholar
  9. 9.
    ter Wee PM, van Ittersum FJ. The new peritoneal dialysis solutions: friends only, or foes in part? Nat Clin Pract Nephrol 2007; 3 (11): 604–612.PubMedGoogle Scholar
  10. 10.
    McIntyre CW. Update on peritoneal dialysis solutions. Kidney Int 2007; 71 (6): 486–490.PubMedGoogle Scholar
  11. 11.
    Diaz-Buxo JA. Clinical use of and experience with neutral-pH solutions. Adv Perit Dial 2006; 22: 167–170.PubMedGoogle Scholar
  12. 12.
    Mortier S, Faict D, Gericke M, Lameire N, De Vriese A. Effects of new peritoneal dialysis solutions on leukocyte recruitment in the rat peritoneal membrane. Nephron 2005; 101 (4): e139–e145.PubMedGoogle Scholar
  13. 13.
    Devuyst O, Topley N, Williams JD. Morphological and functional changes in the dialysed peritoneal cavity: impact of more biocompatible solutions. Nephrol Dial Transplant 2002; 17 (suppl. 3): 12–15.PubMedGoogle Scholar
  14. 14.
    Combet S, Ferrier ML, Van Landschoot M, et al. Chronic uremia induces permeability changes, increased nitric oxide synthase expression, and structural modifications in the peritoneum. J Am Soc Nephrol 2001; 12 (10): 2146–2157.PubMedGoogle Scholar
  15. 15.
    Honda K, Nitta K, Horita H, Yumura W, Nihei H. Morphological changes in the peritoneal vasculature of patients on CAPD with ultrafiltration failure. Nephron 1996; 72: 171–176.PubMedGoogle Scholar
  16. 16.
    Honda K, Nitta K, Horita S, et al. Accumulation of advanced glycation end products in the peritoneal vasculature of continuous ambulatory peritoneal dialysis patients with low ultra-filtration. Nephrol Dial Transplant 1999; 14 (6): 1541–1549.PubMedGoogle Scholar
  17. 17.
    Williams JD, Craig KJ, Topley N, et al. Morphologic changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol 2002; 13 (2): 470–479.PubMedGoogle Scholar
  18. 18.
    Topley N. Biocompatibility of peritoneal dialysis solutions and host defense. Adv Ren Replace Ther 1996; 3 (4): 309–311.PubMedGoogle Scholar
  19. 19.
    Topley N. The host's initial response to peritoneal infection: the pivotal role of the mesothelial cell. Perit Dial Int 1995; 15 (2): 116–117.PubMedGoogle Scholar
  20. 20.
    Topley N. The cytokine network controlling peritoneal inflammation. Perit Dial Int 1995; 15 (7) :S35–S39; discussion S39–S40.PubMedGoogle Scholar
  21. 21.
    McLoughlin RM, Witowski J, Robson RL, et al. Interplay between IFN-gamma and IL-6 signaling governs neutrophil trafficking and apoptosis during acute inflammation. J Clin Invest 2003; 112 (4): 598–607.PubMedGoogle Scholar
  22. 22.
    Hurst SM, Wilkinson TS, McLoughlin RM, et al. IL-6 and its soluble receptor orchestrate a temporal switch in the pattern of leukocyte recruitment seen during acute inflammation. Immunity 2001; 14 (6): 705–714.PubMedGoogle Scholar
  23. 23.
    Leung JC, Chan LY, Tang SC, Chu KM, Lai KN. Leptin induces TGF-beta synthesis through functional leptin receptor expressed by human peritoneal mesothelial cell. Kidney Int 2006; 69 (11): 2078–2086.PubMedGoogle Scholar
  24. 24.
    Yanez-Mo M, Lara-Pezzi E, Selgas R, et al. Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N Engl J Med 2003; 348 (5): 403–413.PubMedGoogle Scholar
  25. 25.
    Selgas R, Bajo A, Jimenez-Heffernan JA, et al. Epithelial-to-mesenchymal transition of the mesothelial cell – its role in the response of the peritoneum to dialysis. Nephrol Dial Transplant 2006; 21 (suppl. 2): ii2–ii7.Google Scholar
  26. 26.
    Aroeira LS, Aguilera A, Sanchez-Tomero JA, et al. Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: pathologic significance and potential therapeutic interventions. J Am Soc Nephrol 2007; 18 (7): 2004–2013.PubMedGoogle Scholar
  27. 27.
    Margetts PJ, Bonniaud P, Liu L, et al. Transient overexpression of TGF-{beta}1 induces epithelial mesenchymal transition in the rodent peritoneum. J Am Soc Nephrol 2005; 16 (2): 425–436.PubMedGoogle Scholar
  28. 28.
    De Vriese AS, Tilton RG, Mortier S, Lameire NH. Myofibroblast transdifferentiation of mesothelial cells is mediated by RAGE and contributes to peritoneal fibrosis in uraemia. Nephrol Dial Transplant 2006; 21 (9): 2549–2555.PubMedGoogle Scholar
  29. 29.
    Dobbie JW, Lloyd JK, Gall CA. Categorization of ultrastructural changes in peritoneal mesothelium, stroma and blood vessels in uremia and CAPD patients. Adv Perit Dial 1990; 6: 3–12.PubMedGoogle Scholar
  30. 30.
    Dobbie JW, Anderson JD, Hind C. Long-term effects of peritoneal dialysis on peritoneal morphology. Perit Dial Int 1994; 14 (suppl. 3): S16–S20.PubMedGoogle Scholar
  31. 31.
    Dobbie JW. Ultrastructure and pathology of the peritoneum in peritoneal dialysis. In: Gokal R, Nolph KD, eds. The Textbook of Peritoneal Dialysis. Dordrecht: Kluwer Academic Publishers; 1994: 17–44.Google Scholar
  32. 32.
    Dobbie JW. The role of peritoneal biopsy in clinical and experimental peritoneal dialysis. Perit Dial Int 1993; 13 (suppl. 2): S23–S26.PubMedGoogle Scholar
  33. 33.
    Dobbie JW. The biopsy registry as a quality control mechanism in the development of continuous ambulatory peritoneal dialysis. Perit Dial Int 1993; 13 (suppl. 2): S583–S584.PubMedGoogle Scholar
  34. 34.
    Dobbie JW. Peritoneal ultrastructure and changes with continuous ambulatory peritoneal dialysis. Perit Dial Int 1993; 13 (suppl. 2): S585–S587.PubMedGoogle Scholar
  35. 35.
    Di Paolo N, Sacchi G, De Mia M, et al. Morphology of the peritoneal membrane during continuous ambulatory peritoneal dialysis. Nephron 1986; 44: 204–211.PubMedGoogle Scholar
  36. 36.
    Di Paolo N, Sacchi G, Buoncristiani V. The morphology of the human peritoneum in CAPD patients. In: Maher J, ed. Frontiers in Peritoneal Dialysis. New York: Field Rich; 1985: 11–19.Google Scholar
  37. 37.
    Di Paolo N, Sacchi G. Peritoneal vascular changes in continuous ambulatory peritoneal dialysis (CAPD): an in vivo model for the study of diabetic microangiopathy. Perit Dial Int 1989; 9 (41): 41–45.PubMedGoogle Scholar
  38. 38.
    Williams JD, Craig KJ, von Ruhland C, Topley N, Williams GT. The natural course of peritoneal membrane biology during peritoneal dialysis. Kidney Int 2003; 64 (suppl. 88): S43–S49.Google Scholar
  39. 39.
    Williams JD, Craig KJ, Topley N, Williams GT. Peritoneal dialysis: Changes to the structure of the peritoneal membrane and potential for biocompatible solutions. Kidney Int 2003; 63 (suppl. 84): 158–161.Google Scholar
  40. 40.
    Rubin J, Herrara GA, Collins D. An autopsy study of the peritoneal cavity from patients on continuous ambulatory peritoneal dialysis. Am J Kidney Dis 1991; 17: 97–102.Google Scholar
  41. 41.
    Verger C, Brunschvicg O, Charpentier YL, Lavergne A, Vantelon J. Structural and ultrastructural peritoneal membrane changes and permeability alterations during continuous ambulatory peritoneal dialysis. Proc Eur Dial Transplant Assoc 1981; 18: 199–205.PubMedGoogle Scholar
  42. 42.
    Verger C, Luger A, Moore HL, Nolph KD. Acute changes in peritoneal morphology and transport properties with infectious peritonitis and mechanical injury. Kidney Int 1983; 23: 823–831.PubMedGoogle Scholar
  43. 43.
    Gotloib L, Shostack A. Ultrastructural morphology of the peritoneum: new findings and speculations on transfer of solutes and water during peritoneal dialysis. Perit Dial Bull 1987; 7: 119–129.Google Scholar
  44. 44.
    Gotloib L, Shostak A. The functional anatomy of the peritoneum as a dialysing membrane. In: Twardowski ZJ, Nolph KD, Khanna R, eds. Peritoneal Dialysis. New York: Churchill Livingstone; 1990: 1–27.Google Scholar
  45. 45.
    Mateijsen MA, van der Wal AC, Hendriks PM, et al. Vascular and interstitial changes in the peritoneum of CAPD patients with peritoneal sclerosis. Perit Dial Int 1999; 19 (6): 517–525.PubMedGoogle Scholar
  46. 46.
    Zareie M, Keuning ED, ter Wee PM, Beelen RH, van den Born J. Peritoneal dialysis fluid-induced changes of the peritoneal membrane are reversible after peritoneal rest in rats. Nephrol Dial Transplant 2005; 20 (1): 189–193.PubMedGoogle Scholar
  47. 47.
    Zareie M, De Vriese AS, Hekking LH, et al. Immunopathological changes in a uraemic rat model for peritoneal dialysis. Nephrol Dial Transplant 2005; 20 (7): 1350–1361.PubMedGoogle Scholar
  48. 48.
    Selgas R, Bajo MA, Castro MJ, et al. Risk factors responsible for ultrafiltration failure in early stages of peritoneal dialysis. Perit Dial Int 2000; 20 (6): 631–636.PubMedGoogle Scholar
  49. 49.
    Davies SJ, Phillips L, Naish PF, Russell GI. Peritoneal glucose exposure and changes in membrane solute transport with time on peritoneal dialysis. J Am Soc Nephrol 2001; 12 (5): 1046–1051.PubMedGoogle Scholar
  50. 50.
    Struijk DG, Krediet RT, Koomen GC, Boeschoten EW, Hoek FJ, Arisz L. A prospective study of peritoneal transport in CAPD patients. Kidney Int 1994; 45 (6): 1739–1744.PubMedGoogle Scholar
  51. 51.
    Selgas R, Fernandez-Reyes MJ, Bosque E, et al. Functional longevity of the human peritoneum: how long is continuous peritoneal dialysis possible? Results of a prospective medium long-term study. Am J Kidney Dis 1994; 23 (1): 64–73.PubMedGoogle Scholar
  52. 52.
    Struijk DG, Krediet RT, Koomen GC, et al. Functional characteristics of the peritoneal membrane in long-term continuous ambulatory peritoneal dialysis. Nephron 1991; 59 (2): 213–220.PubMedGoogle Scholar
  53. 53.
    Davies SJ. Longitudinal relationship between solute transport and ultrafiltration capacity in peritoneal dialysis patients. Kidney Int 2004; 66 (6): 2437–2445.PubMedGoogle Scholar
  54. 54.
    Fussholler A, zur Nieden S, Grabensee B, Plum J. Peritoneal fluid and solute transport: influence of treatment time, peritoneal dialysis modality, and peritonitis incidence. J Am Soc Nephrol 2002; 13 (4): 1055–1060.PubMedGoogle Scholar
  55. 55.
    Clerbaux G, Francart J, Wallemacq P, Robert A, Goffin E. Evaluation of peritoneal transport properties at onset of peritoneal dialysis and longitudinal follow-up. Nephrol Dial Transplant 2006; 21 (4): 1032–1039.PubMedGoogle Scholar
  56. 56.
    Brimble KS, Walker M, Margetts PJ, Kundhal KK, Rabbat CG. Meta-analysis: peritoneal membrane transport, mortality, and technique failure in peritoneal dialysis. J Am Soc Nephrol 2006; 17 (9): 2591–2598.PubMedGoogle Scholar
  57. 57.
    Churchill DN, Thorpe KE, Nolph KD, Keshaviah PR, Oreopoulos DG, Page D. Increased peritoneal membrane transport is associated with decreased patient and technique survival for continuous peritoneal dialysis patients. The Canada-USA (CANUSA) Peritoneal Dialysis Study Group. J Am Soc Nephrol 1998; 9 (7): 1285–1292.PubMedGoogle Scholar
  58. 58.
    Konings CJ, Kooman JP, Schonck M, et al. Assessment of fluid status in peritoneal dialysis patients. Perit Dial Int 2002; 22 (6): 683–692.PubMedGoogle Scholar
  59. 59.
    Ates K, Nergizoglu G, Keven K, et al. Effect of fluid and sodium removal on mortality in peritoneal dialysis patients. Kidney Int 2001; 60 (2): 767–776.PubMedGoogle Scholar
  60. 60.
    Davies SJ, Bryan J, Phillips L, Russell GI. Longitudinal changes in peritoneal kinetics: the effects of peritoneal dialysis and peritonitis. Nephrol Dial Transplant 1996; 11: 498–506.PubMedGoogle Scholar
  61. 61.
    Davies SJ, Brown B, Bryan J, Russell GI. Clinical evaluation of the peritoneal equilibration test: a population- based study. Nephrol Dial Transplant 1993; 8 (1): 64–70.PubMedGoogle Scholar
  62. 62.
    Heimbürger O, Waniewski J, Werynski A, Tranaeus A, Lindholm B. Peritoneal transport in CAPD patients with permanent loss of ultrafiltration capacity. Kidney Int 1990; 38: 495–506.PubMedGoogle Scholar
  63. 63.
    Kawaguchi Y, Hasegawa T, Nakayama M, Kubo H, Shigematu T. Issues affecting the longevity of the continuous peritoneal dialysis therapy. Kidney Int 1997; 62: S105–S107.Google Scholar
  64. 64.
    Parikova A, Smit W, Struijk DG, Krediet RT. Analysis of fluid transport pathways and their determinants in peritoneal dialysis patients with ultrafiltration failure. Kidney Int 2006; 70 (11): 1988–1994.PubMedGoogle Scholar
  65. 65.
    Smit W, Struijk DG, Ho-Dac-Pannekeet MM, Krediet RT. Quantification of free water transport in peritoneal dialysis. Kidney Int 2004; 66 (2): 849–854.PubMedGoogle Scholar
  66. 66.
    Monquil MC, Imholz AL, Struijk DG, Krediet RT. Does impaired transcellular water transport contribute to net ultrafiltration failure during CAPD? Perit Dial Int 1995; 15 (1): 42–48.PubMedGoogle Scholar
  67. 67.
    Ho-dac-Panekeet MM. Assesment of Peritoneal Permeability and Mesothelial Cell Mass in Peritoneal Dialysis Patients : Effects of Non-Glucose Solutions [Ph.D.]. Amsterdam: University of Amsterdam; 1998.Google Scholar
  68. 68.
    Smit W, Schouten N, van den Berg N, Langedijk MJ, Struijk DG, Krediet RT. Analysis of the prevalence and causes of ultrafiltration failure during long-term peritoneal dialysis: a cross-sectional study. Perit Dial Int 2004; 24 (6): 562–570.PubMedGoogle Scholar
  69. 69.
    Smit W, Parikova A, Struijk DG, Krediet RT. The difference in causes of early and late ultrafiltration failure in peritoneal dialysis. Perit Dial Int 2005; 25(suppl. 3): S41–S45.PubMedGoogle Scholar
  70. 70.
    Combet S, Van Landschoot M, Moulin P, et al. Regulation of aquaporin-1 and nitric oxide synthase isoforms in a rat model of acute peritonitis. J Am Soc Nephrol 1999; 10 (10): 2185–2196.PubMedGoogle Scholar
  71. 71.
    Devuyst O, Nielsen S, Cosyns JP, et al. Aquaporin-1 and endothelial nitric oxide synthase expression in capillary endothelia of human peritoneum. Am J Physiol 1998; 275 (1 Pt 2): H234–H242.PubMedGoogle Scholar
  72. 72.
    Flessner MF. The transport barrier in intraperitoneal therapy. Am J Physiol 2005; 288 (3): F433–F442.Google Scholar
  73. 73.
    Coester AM, Struijk DG, Smit W, de Waart DR, Krediet RT. The cellular contribution to effluent potassium and its relation with free water transport during peritoneal dialysis. Nephrol Dial Transplant 2007; 22 (12): 3593–3600.PubMedGoogle Scholar
  74. 74.
    La Milia V, Di Filippo S, Crepaldi M, et al. Mini-peritoneal equilibration test: a simple and fast method to assess free water and small solute transport across the peritoneal membrane. Kidney Int 2005; 68 (2): 840–846.PubMedGoogle Scholar
  75. 75.
    Davies SJ, Phillips L, Naish PF, Russell GI. Quantifying comorbidity in peritoneal dialysis patients and its relationship to other predictors of survival. Nephrol Dial Transplant 2002; 17 (6): 1085–1092.PubMedGoogle Scholar
  76. 76.
    Krediet RT, Struijk DG, Koomen GC, et al. Peritoneal transport of macromolecules in patients on CAPD. Contrib Nephrol 1991; 89: 161–174.PubMedGoogle Scholar
  77. 77.
    Ho-dac-Pannekeet MM, Koopmans JG, Struijk DG, Krediet RT. Restriction coefficients of low molecular weight solutes and macromolecules during peritoneal dialysis. Adv Perit Dial 1997; 13: 72–76.PubMedGoogle Scholar
  78. 78.
    Haraldsson B. Assessing the peritoneal dialysis capacities of individual patients. Kidney Int 1995; 47 (4): 1187–1198.PubMedGoogle Scholar
  79. 79.
    Johansson AC, Haraldsson B. Physiological properties of the peritoneum in an adult peritoneal dialysis population over a three-year period. Perit Dial Int 2006; 26 (4): 482–489.PubMedGoogle Scholar
  80. 80.
    Heaf JG, Sarac S, Afzal S. A high peritoneal large pore fluid flux causes hypoalbuminaemia and is a risk factor for death in peritoneal dialysis patients. Nephrol Dial Transplant 2005; 20 (10): 2194–2201.PubMedGoogle Scholar
  81. 81.
    Brown EA, Davies SJ, Rutherford P, et al. Survival of functionally anuric patients on automated peritoneal dialysis: the European APD Outcome Study. J Am Soc Nephrol 2003; 14 (11): 2948–2957.PubMedGoogle Scholar
  82. 82.
    Davies SJ, Brown EA. EAPOS: what have we learned? Perit Dial Int 2007; 27 (2): 131–135.PubMedGoogle Scholar
  83. 83.
    Davies SJ, Brown EA, Reigel W, et al. What is the link between poor ultrafiltration and increased mortality in anuric patients on automated peritoneal dialysis? Analysis of data from EAPOS. Perit Dial Int 2006; 26 (4): 458–465.PubMedGoogle Scholar
  84. 84.
    Krediet RT. The peritoneal membrane in chronic peritoneal dialysis. Kidney Int 1999; 55 (1): 341–356.PubMedGoogle Scholar
  85. 85.
    Rippe B, Simonsen O, Stelin G. Clinical implications of a three-pore model of peritoneal transport. Adv Perit Dial 1991; 7: 3–9.PubMedGoogle Scholar
  86. 86.
    Rippe B, Stelin G, Haraldsson B. Computer simulations of peritoneal fluid transport in CAPD. Kidney Int 1991; 40 (2): 315–325.PubMedGoogle Scholar
  87. 87.
    Devuyst O, van Ypersele de Strihou C. Nitric oxide, advanced glycation end products, and uremia. Kidney Int 2000; 58 (4): 1814–1815.PubMedGoogle Scholar
  88. 88.
    Ni J, Verbavatz JM, Rippe A, et al. Aquaporin-1 plays an essential role in water permeability and ultrafiltration during peritoneal dialysis. Kidney Int 2006; 69 (9): 1518–1525.PubMedGoogle Scholar
  89. 89.
    Krediet RT, van Westrhenen R, Zweers MM, Struijk DG. Clinical advantages of new peritoneal dialysis solutions. Nephrol Dial Transplant 2002; 17 (suppl. 3): 16–18.PubMedGoogle Scholar
  90. 90.
    Combet S, Miyata T, Moulin P, Pouthier D, Goffin E, Devuyst O. Vascular proliferation and enhanced expression of endothelial nitric oxide synthase in human peritoneum exposed to long-term peritoneal dialysis. J Am Soc Nephrol 2000; 11 (4): 717–728.PubMedGoogle Scholar
  91. 91.
    Margetts PJ, Gyorffy S, Kolb M, et al. Antiangiogenic and antifibrotic gene therapy in a chronic infusion model of peritoneal dialysis in rats. J Am Soc Nephrol 2002; 13 (3): 721–728.PubMedGoogle Scholar
  92. 92.
    Ni J, Cnops Y, McLoughlin RM, Topley N, Devuyst O. Inhibition of nitric oxide synthase reverses permeability changes in a mouse model of acute peritonitis. Perit Dial Int 2005; 25 (suppl. 3): S11–S14.PubMedGoogle Scholar
  93. 93.
    Ni J, Moulin P, Gianello P, Feron O, Balligand JL, Devuyst O. Mice that lack endothelial nitric oxide synthase are protected against functional and structural modifications induced by acute peritonitis. J Am Soc Nephrol 2003; 14 (12): 3205–3216.PubMedGoogle Scholar
  94. 94.
    Ferrier ML, Combet S, van Landschoot M, et al. Inhibition of nitric oxide synthase reverses changes in peritoneal permeability in a rat model of acute peritonitis. Kidney Int 2001; 60 (6): 2343–2350.PubMedGoogle Scholar
  95. 95.
    De Vriese AS, Tilton RG, Stephan CC, Lameire NH. Vascular endothelial growth factor is essential for hyperglycemia- induced structural and functional alterations of the peritoneal membrane. J Am Soc Nephrol 2001; 12 (8): 1734–1741.PubMedGoogle Scholar
  96. 96.
    Stoenoiu MS, Ni J, Verkaeren C, et al. Corticosteroids induce expression of aquaporin-1 and increase transcellular water transport in rat peritoneum. J Am Soc Nephrol 2003; 14 (3): 555–565.PubMedGoogle Scholar
  97. 97.
    Kakuta T, Tanaka R, Satoh Y, et al. Pyridoxamine improves functional, structural, and biochemical alterations of peritoneal membranes in uremic peritoneal dialysis rats. Kidney Int 2005; 68 (3): 1326–1336.PubMedGoogle Scholar
  98. 98.
    Schwenger V, Morath C, Salava A, et al. Damage to the peritoneal membrane by glucose degradation products is mediated by the receptor for advanced glycation end-products. J Am Soc Nephrol 2006; 17 (1): 199–207.PubMedGoogle Scholar
  99. 99.
    Margetts PJ, Kolb M, Galt T, Hoff CM, Shockley TR, Gauldie J. Gene transfer of transforming growth factor-beta1 to the rat peritoneum: effects on membrane function. J Am Soc Nephrol 2001; 12 (10): 2029–2039.PubMedGoogle Scholar
  100. 100.
    De Vriese AS, Flyvbjerg A, Mortier S, Tilton RG, Lameire NH. Inhibition of the interaction of AGE-RAGE prevents hyperglycemia-induced fibrosis of the peritoneal membrane. J Am Soc Nephrol 2003; 14 (8): 2109–2118.PubMedGoogle Scholar
  101. 101.
    Duwe AK, Vas SI, Weatherhead JW. Effects of the composition of peritoneal dialysis fluid on chemiluminescence, phagocytosis and bactericidal activity in vitro. Infect Immun 1981; 33 (130): 130–135.PubMedGoogle Scholar
  102. 102.
    Topley N, Alobaidi HM, Davies M, Coles GA, Williams JD, Lloyd D. The effect of dialysate on peritoneal phagocyte oxidative metabolism. Kidney Int 1988; 34 (3): 404–411.PubMedGoogle Scholar
  103. 103.
    Topley N. The host's initial response to peritoneal infection: the pivotal role of the mesothelial cell. Perit Dial Int 1995; 15 (2): 116–117.PubMedGoogle Scholar
  104. 104.
    Topley N, Jörres A, Mackenzie R, Coles GA, Williams JD. Interactions of macrophages and mesothelial cells in peritoneal host defence. Nieren-und Hochdruckkrankheiten 1994; 23: S88–S91.Google Scholar
  105. 105.
    Topley N. Membrane longevity in peritoneal dialysis: impact of infection and bio-incompatible solutions. Adv Ren Replace Ther 1998; 5 (3): 179–184.PubMedGoogle Scholar
  106. 106.
    Jorres A, Witowski J. Lessons from basic research for PD treatment. Perit Dial Int 2005; 25 (suppl. 3): S35–S38.PubMedGoogle Scholar
  107. 107.
    Topley N. Animal models in peritoneal dialysis: more questions than answers? Perit Dial Int 2005; 25 (1): 33–34.PubMedGoogle Scholar
  108. 108.
    Lameire N, Topley N. Animal models of peritoneal dialysis. Nephrol Dial Transplant 2001; 16 (3): 647.Google Scholar
  109. 109.
    Mortier S, Lameire NH, De Vriese AS. Animal models in peritoneal dialysis research: a need for consensus. Perit Dial Int 2005; 25 (1): 16–24.PubMedGoogle Scholar
  110. 110.
    Lameire N, Van Biesen W, Mortier S, De Vriese A. What did we learn from animal models in peritoneal dialysis? Contrib Nephrol 2006; 150: 70–76.PubMedGoogle Scholar
  111. 111.
    ter Wee PM, Beelen RH, van den Born J. The application of animal models to study the biocompatibility of bicarbonate-buffered peritoneal dialysis solutions. Kidney Int 2003; 64 (suppl. 88): S75–S83.Google Scholar
  112. 112.
    Fabbrini P, Zareie M, ter Wee PM, Keuning ED, Beelen RH, van den Born J. Peritoneal exposure model in the rat as a tool to unravel bio(in)compatibility of PDF. Nephrol Dial Transplant 2006; 21 (suppl. 2): ii8–ii11.PubMedGoogle Scholar
  113. 113.
    Nishino T, Ni J, Devuyst O. Transgenic mouse models. Perit Dial Int 2007; 27 (6): 625–633.PubMedGoogle Scholar
  114. 114.
    Hekking LH, Aalders MC, Van Gelderop E, et al. Effect of peritoneal dialysis fluid measured in vivo in a rat-model of continuous peritoneal dialysis. Adv Perit Dial 1998; 14: 14–18.PubMedGoogle Scholar
  115. 115.
    Wieczorowska-Tobis K, Korybalska K, Polubinska A, et al. Long-term effects of glycylglycine peritoneal dialysis solution with neutral pH on peritoneum in rats. Adv Perit Dial 1997; 13: 42–46.PubMedGoogle Scholar
  116. 116.
    Hekking LH, Huijsmans A, Van Gelderop E, et al. Effect of PD fluid instillation on the peritonitis-induced influx and bacterial clearing capacity of peritoneal cells. Nephrol Dial Transplant 2001; 16 (3): 679–682.PubMedGoogle Scholar
  117. 117.
    Hekking LH, Zareie M, Driesprong BA, et al. Better preservation of peritoneal morphologic features and defense in rats after long-term exposure to a bicarbonate/lactate-buffered solution. J Am Soc Nephrol 2001; 12 (12): 2775–2786.PubMedGoogle Scholar
  118. 118.
    Kim YL, Cho S, Kim JC, et al. Effect in a rat model of heparinized peritoneal dialysis catheters on bacterial colonization and the healing of the exit site. Perit Dial Int 2001; 21 (suppl. 3): S357–S358.PubMedGoogle Scholar
  119. 119.
    Mortier S, Faict D, Lameire NH, De Vriese AS. Benefits of switching from a conventional to a low-GDP bicarbonate/lactate-buffered dialysis solution in a rat model. Kidney Int 2005; 67 (4): 1559–1565.PubMedGoogle Scholar
  120. 120.
    Zweers MM, Splint LJ, Krediet RT, Struijk DG. Ultrastructure of basement membranes of peritoneal capillaries in a chronic peritoneal infusion model in the rat. Nephrol Dial Transplant 2001; 16 (3): 651–654.PubMedGoogle Scholar
  121. 121.
    Lameire N, Van Biesen W, Van Landschoot M, et al. Experimental models in peritoneal dialysis: a European experience. Kidney Int 1998; 54 (6): 2194–2206.PubMedGoogle Scholar
  122. 122.
    Gotloib L, Crassweller P, Rodella H, et al. Experimental model for studies of continuous peritoneal dialysis in uremic rabbits. Nephron 1982; 31 (3): 254–259.PubMedGoogle Scholar
  123. 123.
    Van Biesen W, Vanholder R, Lameire N. Animal models in peritoneal dialysis: a story of kangaroos and ostriches. Perit Dial Int 2006; 26 (5): 571–573.PubMedGoogle Scholar
  124. 124.
    Breborowicz A, Rodela H, Oreopoulos DG. Toxicity of osmotic solutes on human mesothelial cells in vitro. Kidney Int 1992; 41: 1280–1285.PubMedGoogle Scholar
  125. 125.
    Nakayama M, Kawaguchi Y, Yamada K, et al. Immunohistochemical detection of advanced glycosylation end-products in the peritoneum and its possible pathophysiological role in CAPD. Kidney Int 1997; 51 (1): 182–186.PubMedGoogle Scholar
  126. 126.
    Thornalley PJ. Measurement of protein glycation, glycated peptides, and glycation free adducts. Perit Dial Int 2005; 25 (6): 522–533.PubMedGoogle Scholar
  127. 127.
    Thornalley PJ. Glycation free adduct accumulation in renal disease: the new AGE. Pediatr Nephrol 2005; 20 (11): 1515–1522.PubMedGoogle Scholar
  128. 128.
    Wong TY, Phillips AO, Witowski J, Topley N. Glucose-mediated induction of TGF-beta1 and MCP-1 in mesothelial cells in vitro is osmolality and polyol pathway dependent. Kidney Int 2003; 63 (4): 1404–1416.PubMedGoogle Scholar
  129. 129.
    Devuyst O, Ni J, Verbavatz JM. Aquaporin-1 in the peritoneal membrane: implications for peritoneal dialysis and endothelial cell function. Biol Cell 2005; 97 (9): 667–673.PubMedGoogle Scholar
  130. 130.
    Carlsson O, Nielsen S, Zakaria el R, Rippe B. In vivo inhibition of transcellular water channels (aquaporin-1) during acute peritoneal dialysis in rats. Am J Physiol 1996; 271 (6 Pt 2): H2254–H2262.PubMedGoogle Scholar
  131. 131.
    Devuyst O, Topley N. Peritoneal membrane transport: driving under the influence. Perit Dial Int 2006; 26 (1): 35–37.PubMedGoogle Scholar
  132. 132.
    Ni J, Cnops Y, Debaix H, Boisde I, Verbavatz JM, Devuyst O. Functional and molecular characterization of a peritoneal dialysis model in the C57BL/6 J mouse. Kidney Int 2005; 67 (5): 2021–2031.PubMedGoogle Scholar
  133. 133.
    Miyata T, van Ypersele de Strihou C, Kurokawa K, Baynes JW. Alterations in nonenzymatic biochemistry in uremia: origin and significance of “carbonyl stress” in long-term uremic complications. Kidney Int 1999; 55 (2): 389–399.PubMedGoogle Scholar
  134. 134.
    Erixon M, Linden T, Kjellstrand P, et al. PD fluids contain high concentrations of cytotoxic GDPs directly after sterilization. Perit Dial Int 2004; 24 (4): 392–398.PubMedGoogle Scholar
  135. 135.
    Miyata T, Horie K, Ueda Y, et al. Advanced glycation and lipidoxidation of the peritoneal membrane: respective roles of serum and peritoneal fluid reactive carbonyl compounds. Kidney Int 2000; 58 (1): 425–435.PubMedGoogle Scholar
  136. 136.
    Inagi R, Miyata T, Yamamoto T, et al. Glucose degradation product methylglyoxal enhances the production of vascular endothelial growth factor in peritoneal cells: role in the functional and morphological alterations of peritoneal membranes in peritoneal dialysis. FEBS Lett 1999; 463 (3): 260–264.PubMedGoogle Scholar
  137. 137.
    Thornalley PJ, Langborg A, Minhas HS. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem J 1999; 344 (Pt 1): 109–116.PubMedGoogle Scholar
  138. 138.
    Morgan LW, Wieslander A, Davies M, et al. Glucose degradation products (GDP) retard remesothelialization independently of D-glucose concentration. Kidney Int 2003; 64 (5): 1854–1866.PubMedGoogle Scholar
  139. 139.
    Witowski J, Wisniewska J, Korybalska K, et al. Prolonged exposure to glucose degradation products impairs viability and function of human peritoneal mesothelial cells. J Am Soc Nephrol 2001; 12 (11): 2434–2441.PubMedGoogle Scholar
  140. 140.
    Devuyst O. New insights in the molecular mechanisms regulating peritoneal permeability. Nephrol Dial Transplant 2002; 17 (4): 548–551.PubMedGoogle Scholar
  141. 141.
    Witowski J, Korybalska K, Wisniewska J, et al. Effect of glucose degradation products on human peritoneal mesothelial cell function. J Am Soc Nephrol 2000; 11 (4): 729–739.PubMedGoogle Scholar
  142. 142.
    Lai KN, Leung JC, Chan LY, et al. Differential expression of receptors for advanced glycation end-products in peritoneal mesothelial cells exposed to glucose degradation products. Clin Exp Immunol 2004; 138 (3): 466–475.PubMedGoogle Scholar
  143. 143.
    Boulanger E, Grossin N, Wautier MP, Taamma R, Wautier JL. Mesothelial RAGE activation by AGEs enhances VEGF release and potentiates capillary tube formation. Kidney Int 2007; 71 (2): 126–133.PubMedGoogle Scholar
  144. 144.
    Bredt DS, Snyder SH. Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem 1994; 63: 175–195.PubMedGoogle Scholar
  145. 145.
    Bikfalvi A, Klein S, Pintucci G, Rifkin DB. Biological roles of fibroblast growth factor-2. Endocr Rev 1997; 18 (1): 26–45.PubMedGoogle Scholar
  146. 146.
    Pecoits-Filho R, Araujo MR, Lindholm B, et al. Plasma and dialysate IL-6 and VEGF concentrations are associated with high peritoneal solute transport rate. Nephrol Dial Transplant 2002; 17 (8): 1480–1486.PubMedGoogle Scholar
  147. 147.
    Kubes P. Nitric oxide affects microvascular permeability in the intact and inflamed vasculature. Microcirculation 1995; 2 (3): 235–244.PubMedGoogle Scholar
  148. 148.
    Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 1999; 13 (1): 9–22.PubMedGoogle Scholar
  149. 149.
    Fukumura D, Gohongi T, Kadambi A, et al. Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc Natl Acad Sci USA 2001; 98 (5): 2604–2609.PubMedGoogle Scholar
  150. 150.
    Hood JD, Meininger CJ, Ziche M, Granger HJ. VEGF upregulates ecNOS message, protein, and NO production in human endothelial cells. Am J Physiol 1998; 274 (3 Pt 2): H1054–H1058.PubMedGoogle Scholar
  151. 151.
    Lee HB, Yu MR, Song JS, Ha H. Reactive oxygen species amplify protein kinase C signaling in high glucose-induced fibronectin expression by human peritoneal mesothelial cells. Kidney Int 2004; 65 (4): 1170–1179.PubMedGoogle Scholar
  152. 152.
    Noh H, Kim JS, Han KH, et al. Oxidative stress during peritoneal dialysis: implications in functional and structural changes in the membrane. Kidney Int 2006; 69 (11): 2022–2028.PubMedGoogle Scholar
  153. 153.
    Rubin J, Rust P, Brown P, Popovich RP, Nolph KD. A comparison of peritoneal transport in patients with psoriasis and uremia. Nephron 1981; 29 (3–4): 185–189.PubMedGoogle Scholar
  154. 154.
    Lamb EJ, Worrall J, Buhler R, Harwood S, Cattell WR, Dawnay AB. Effect of diabetes and peritonitis on the peritoneal equilibration test. Kidney Int 1995; 47 (6): 1760–1767.PubMedGoogle Scholar
  155. 155.
    Topley N, Liberek T, Davenport A, Li FK, Fear H, Williams JD. Activation of inflammation and leukocyte recruitment into the peritoneal cavity. Kidney Int (suppl. 56)1996; S17–S21.PubMedGoogle Scholar
  156. 156.
    Topley N, Mackenzie RK, Williams JD. Macrophages and mesothelial cells in bacterial peritonitis. Immunobiology 1996; 195 (4–5): 563–573.PubMedGoogle Scholar
  157. 157.
    Topley N, Mackenzie R, Jörres A, Coles GA, Williams JD. Cytokine networks in continuous ambulatory peritoneal dialysis: interactions of resident cells during inflammation in the peritoneal cavity. Perit Dial Int 1993; 13 (suppl. 2): S282–S285.PubMedGoogle Scholar
  158. 158.
    Li FK, Davenport A, Robson RL, et al. Leukocyte migration across human peritoneal mesothelial cells is dependent on directed chemokine secretion and ICAM-1 expression. Kidney Int 1998; 54 (6): 2170–2183.PubMedGoogle Scholar
  159. 159.
    Robson RL, McLoughlin RM, Witowski J, et al. Differential regulation of chemokine production in human peritoneal mesothelial cells: IFN-gamma controls neutrophil migration across the mesothelium in vitro and in vivo. J Immunol 2001; 167 (2): 1028–1038.PubMedGoogle Scholar
  160. 160.
    McLoughlin RM, Hurst SM, Nowell MA, et al. Differential regulation of neutrophil-activating chemokines by IL-6 and its soluble receptor isoforms. J Immunol 2004; 172 (9): 5676–5683.PubMedGoogle Scholar
  161. 161.
    McLoughlin RM, Jenkins BJ, Grail D, et al. IL-6 trans-signaling via STAT3 directs T cell infiltration in acute inflammation. Proc Natl Acad Sci U S A 2005; 102 (27): 9589–9594.PubMedGoogle Scholar
  162. 162.
    Cannistra SA, Ottensmeier C, Tidy J, DeFranzo B. Vascular cell adhesion molecule-1 expressed by peritoneal mesothelium partly mediates the binding of activated human T lymphocytes. Exp Hematol 1994; 22: 996–1002.PubMedGoogle Scholar
  163. 163.
    Liberek T, Topley N, Luttmann W, Williams JD. Adherence of neutrophils to human peritoneal mesothelial cells: role of intercellular adhesion molecule-1. J Am Soc Nephrol 1996; 7: 208–217.PubMedGoogle Scholar
  164. 164.
    Jonjic N, Peri G, Bernasconi S, et al. Expression of adhesion molecules and chemotactic cytokines in cultured human mesothelial cells. J Exp Med 1992; 176: 1165–1174.PubMedGoogle Scholar
  165. 165.
    Basok A, Shnaider A, Man L, Chaimovitz C, Douvdevani A. CD40 is expressed on human peritoneal mesothelial cells and upregulates the production of interleukin-15 and RANTES. J Am Soc Nephrol 2001; 12 (4): 695–702.PubMedGoogle Scholar
  166. 166.
    Glik A, Douvdevani A. T lymphocytes: the “cellular” arm of acquired immunity in the peritoneum. Perit Dial Int 2006; 26 (4): 438–448.PubMedGoogle Scholar
  167. 167.
    Glik A, Mazar J, Rogachev B, Zlotnik M, Douvdevani A. CD40 ligand expression correlates with resolution of peritonitis and mononuclear cell recruitment. Perit Dial Int 2005; 25 (3): 240–247.PubMedGoogle Scholar
  168. 168.
    Man L, Lewis E, Einbinder T, Rogachev B, Chaimovitz C, Douvdevani A. Major involvement of CD40 in the regulation of chemokine secretion from human peritoneal mesothelial cells. Kidney Int 2003; 64 (6): 2064–2071.PubMedGoogle Scholar
  169. 169.
    Mazar J, Agur T, Rogachev B, et al. CD40 ligand (CD154) takes part in regulation of the transition to mononuclear cell dominance during peritonitis. Kidney Int 2005; 67 (4): 1340–1349.PubMedGoogle Scholar
  170. 170.
    Jones SA. Directing transition from innate to acquired immunity: defining a role for IL-6. J Immunol 2005; 175 (6): 3463–3468.PubMedGoogle Scholar
  171. 171.
    Jones SA, Horiuchi S, Topley N, Yamamoto N, Fuller GM. The soluble interleukin 6 receptor: mechanisms of production and implications in disease. FASEB J 2001; 15 (1): 43–58.PubMedGoogle Scholar
  172. 172.
    Fricke H. Expression of CD44v9 on peritoneal T cells from patients on continuous ambulatory peritoneal dialysis. Nephron 1996; 73: 373–374.PubMedGoogle Scholar
  173. 173.
    Fricke H, Hartmann J, Sitter T, Steldinger R, Rieber P, Schiffl H. Continuous ambulatory peritoneal dialysis impairs T lymphocyte selection in the peritoneum. Kidney Int 1996; 49: 1386–1395.PubMedGoogle Scholar
  174. 174.
    Williams JD, Topley N, Craig KJ, et al. The Euro-Balance Trial: the effect of a new biocompatible peritoneal dialysis fluid (balance) on the peritoneal membrane. Kidney Int 2004; 66 (1): 408–418.PubMedGoogle Scholar
  175. 175.
    Cooker LA, Luneburg P, Holmes CJ, Jones S, Topley N. Interleukin-6 levels decrease in effluent from patients dialyzed with bicarbonate/lactate-based peritoneal dialysis solutions. Perit Dial Int 2001; 21 (suppl. 3): S102–S107.PubMedGoogle Scholar
  176. 176.
    Martikainen TA, Ekstrand AV, Honkanen EO, Teppo AM, Gronhagen-Riska C. Dialysate leukocytes, sICAM-1, hyaluronan and IL-6: predictors of outcome of peritonitis? Blood Purif 2004; 22 (4): 360–366.PubMedGoogle Scholar
  177. 177.
    Pecoits-Filho R, Barany P, Lindholm B, Heimburger O, Stenvinkel P. Interleukin-6 is an independent predictor of mortality in patients starting dialysis treatment. Nephrol Dial Transplant 2002; 17 (9): 1684–1688.PubMedGoogle Scholar
  178. 178.
    Pecoits-Filho R, Carvalho MJ, Stenvinkel P, Lindholm B, Heimburger O. Systemic and intraperitoneal interleukin-6 system during the first year of peritoneal dialysis. Perit Dial Int 2006; 26 (1): 53–63.PubMedGoogle Scholar
  179. 179.
    Szeto CC, Chow KM, Lam CW, et al. Clinical biocompatibility of a neutral peritoneal dialysis solution with minimal glucose-degradation products--a 1-year randomized control trial. Nephrol Dial Transplant 2007; 22 (2): 552–559.PubMedGoogle Scholar
  180. 180.
    Holmes CJ. Glucotoxicity in peritoneal dialysis – solutions for the solution! Adv Chronic Kidney Dis 2007; 14 (3): 269–278.PubMedGoogle Scholar
  181. 181.
    Rodrigues A, Cabrita A, Maia P, Guimaraes S. Peritoneal rest may successfully recover ultrafiltration in patients who develop peritoneal hyperpermeability with time on continuous ambulatory peritoneal dialysis. Adv Perit Dial 2002; 18: 78–80.PubMedGoogle Scholar
  182. 182.
    de Alvaro F, Castro MJ, Dapena F, et al. Peritoneal resting is beneficial in peritoneal hyperpermeability and ultrafiltration failure. Adv Perit Dial 1993; 9: 56–61.PubMedGoogle Scholar
  183. 183.
    Zhe XW, Tian XK, Cheng L, Wang T. Effects of peritoneal resting on peritoneal fluid transport kinetics. Perit Dial Int 2007; 27 (5): 575–579.PubMedGoogle Scholar
  184. 184.
    Kim YL, Kim SH, Kim JH, et al. Effects of peritoneal rest on peritoneal transport and peritoneal membrane thickening in continuous ambulatory peritoneal dialysis rats. Perit Dial Int 1999; 19 (suppl. 2): S384–S387.PubMedGoogle Scholar
  185. 185.
    Davies SJ. Monitoring of long-term peritoneal membrane function. Perit Dial Int 2001; 21 (2): 225–230.PubMedGoogle Scholar
  186. 186.
    Twardowski ZJ, Nolph K, Khanna R. Peritoneal equilibration test. Perit Dial Bull 1987; 7: 138–147.Google Scholar
  187. 187.
    Rumpsfeld M, McDonald SP, Johnson DW. Higher peritoneal transport status is associated with higher mortality and technique failure in the Australian and New Zealand peritoneal dialysis patient populations. J Am Soc Nephrol 2006; 17 (1): 271–278.PubMedGoogle Scholar
  188. 188.
    Rumpsfeld M, McDonald SP, Purdie DM, Collins J, Johnson DW. Predictors of baseline peritoneal transport status in Australian and New Zealand peritoneal dialysis patients. Am J Kidney Dis 2004; 43 (3): 492–501.PubMedGoogle Scholar
  189. 189.
    Gillerot G, Goffin E, Michel C, et al. Genetic and clinical factors influence the baseline permeability of the peritoneal membrane. Kidney Int 2005; 67 (6): 2477–2487.PubMedGoogle Scholar
  190. 190.
    Selgas R, Bajo MA, Cirugeda A, et al. Ultrafiltration and small solute transport at initiation of PD: questioning the paradigm of peritoneal function. Perit Dial Int 2005; 25 (1): 68–76.PubMedGoogle Scholar
  191. 191.
    Goffin E, Devuyst O. Phenotype and genotype: perspectives for peritoneal dialysis patients. Nephrol Dial Transplant 2006; 21 (11): 3018–3022.PubMedGoogle Scholar
  192. 192.
    Wong TY, Szeto CC, Szeto CY, Lai KB, Chow KM, Li PK. Association of ENOS polymorphism with basal peritoneal membrane function in uremic patients. Am J Kidney Dis 2003; 42 (4): 781–786.PubMedGoogle Scholar
  193. 193.
    Szeto CC, Chow KM, Poon P, Szeto CY, Wong TY, Li PK. Genetic polymorphism of VEGF: Impact on longitudinal change of peritoneal transport and survival of peritoneal dialysis patients. Kidney Int 2004; 65 (5): 1947–1955.PubMedGoogle Scholar
  194. 194.
    Ioannidis JP. Genetic associations: false or true? Trends Mol Med 2003; 9 (4):135–138.PubMedGoogle Scholar
  195. 195.
    Cordell HJ, Clayton DG. Genetic association studies. Lancet 2005; 366 (9491): 1121–1131.PubMedGoogle Scholar
  196. 196.
    Passlick-Deetjen J, Pischetsrieder M, Witowski J, Bender TO, Jorres A, Lage C. In vitro superiority of dual-chambered peritoneal dialysis solution with possible clinical benefits. Perit Dial Int 2001; 21 (suppl. 3): S96–S101.PubMedGoogle Scholar
  197. 197.
    Erixon M, Wieslander A, Linden T, et al. Take care in how you store your PD fluids: actual temperature determines the balance between reactive and non-reactive GDPs. Perit Dial Int 2005; 25 (6): 583–590.PubMedGoogle Scholar
  198. 198.
    Erixon M, Wieslander A, Linden T, et al. How to avoid glucose degradation products in peritoneal dialysis fluids. Perit Dial Int 2006; 26 (4): 490–497.PubMedGoogle Scholar
  199. 199.
    Kjellstrand P, Erixon M, Wieslander A, Linden T, Martinson E. Temperature: the single most important factor for degradation of glucose fluids during storage. Perit Dial Int 2004; 24 (4): 385–391.PubMedGoogle Scholar
  200. 200.
    Linden T, Cohen A, Deppisch R, Kjellstrand P, Wieslander A. 3,4-Dideoxyglucosone-3-ene (3,4-DGE): a cytotoxic glucose degradation product in fluids for peritoneal dialysis. Kidney Int 2002; 62 (2): 697–703.PubMedGoogle Scholar
  201. 201.
    Jones S, Holmes CJ, Krediet RT, et al. Bicarbonate/lactate-based peritoneal dialysis solution increases cancer antigen 125 and decreases hyaluronic acid levels. Kidney Int 2001; 59 (4):1529–1538.PubMedGoogle Scholar
  202. 202.
    Jones S, Holmes CJ, Mackenzie RK, et al. Continuous dialysis with bicarbonate/lactate-buffered peritoneal dialysis fluids results in a long-term improvement in ex vivo peritoneal macrophage function. J Am Soc Nephrol 2002; 13 (suppl. 1): S97–S103.PubMedGoogle Scholar
  203. 203.
    Ueda Y, Miyata T, Goffin E, et al. Effect of dwell time on carbonyl stress using icodextrin and amino acid peritoneal dialysis fluids. Kidney Int 2000; 58 (6): 2518–2524.PubMedGoogle Scholar
  204. 204.
    Mortier S, De Vriese AS, McLoughlin RM, et al. Effects of conventional and new peritoneal dialysis fluids on leukocyte recruitment in the rat peritoneal membrane. J Am Soc Nephrol 2003; 14 (5): 1296–1306.PubMedGoogle Scholar
  205. 205.
    Mortier S, De Vriese AS, Van de Voorde J, Schaub TP, Passlick-Deetjen J, Lameire NH. Hemodynamic effects of peritoneal dialysis solutions on the rat peritoneal membrane: role of acidity, buffer choice, glucose concentration, and glucose degradation products. J Am Soc Nephrol 2002; 13 (2): 480–489.PubMedGoogle Scholar
  206. 206.
    Rippe B, Simonsen O, Heimburger O, et al. Long-term clinical effects of a peritoneal dialysis fluid with less glucose degradation products. Kidney Int 2001; 59 (1): 348–357.PubMedGoogle Scholar
  207. 207.
    Miyata T, Devuyst O, Kurokawa K, van Ypersele de Strihou C. Toward better dialysis compatibility: advances in the biochemistry and pathophysiology of the peritoneal membranes. Kidney Int 2002; 61 (2): 375–386.PubMedGoogle Scholar
  208. 208.
    Hobbs AJ, Higgs A, Moncada S. Inhibition of nitric oxide synthase as a potential therapeutic target. Annu Rev Pharmacol Toxicol 1999; 39: 191–220.PubMedGoogle Scholar
  209. 209.
    Duman S, Gunal AI, Sen S, et al. Does enalapril prevent peritoneal fibrosis induced by hypertonic (3.86%) peritoneal dialysis solution? Perit Dial Int 2001; 21 (2): 219–224.PubMedGoogle Scholar
  210. 210.
    Duman S, Sen S, Duman C, Oreopoulos DG. Effect of valsartan versus lisinopril on peritoneal sclerosis in rats. Int J Artif Organs 2005; 28 (2): 156–163.PubMedGoogle Scholar
  211. 211.
    Duman S, Sen S, Sozmen EY, Oreopoulos DG. Atorvastatin improves peritoneal sclerosis induced by hypertonic PD solution in rats. Int J Artif Organs 2005; 28 (2): 170–176.PubMedGoogle Scholar
  212. 212.
    Duman S, Wieczorowska-Tobis K, Styszynski A, Kwiatkowska B, Breborowicz A, Oreopoulos DG. Intraperitoneal enalapril ameliorates morphologic changes induced by hypertonic peritoneal dialysis solutions in rat peritoneum. Adv Perit Dial 2004; 20: 31–36.PubMedGoogle Scholar
  213. 213.
    Kyuden Y, Ito T, Masaki T, Yorioka N, Kohno N. Tgf-beta1 induced by high glucose is controlled by angiotensin-converting enzyme inhibitor and angiotensin II receptor blocker on cultured human peritoneal mesothelial cells. Perit Dial Int 2005; 25 (5): 483–491.PubMedGoogle Scholar
  214. 214.
    Sauter M, Cohen CD, Wornle M, Mussack T, Ladurner R, Sitter T. ACE inhibitor and AT1-receptor blocker attenuate the production of VEGF in mesothelial cells. Perit Dial Int 2007; 27 (2): 167–172.PubMedGoogle Scholar
  215. 215.
    Fang CC, Yen CJ, Chen YM, et al. Diltiazem suppresses collagen synthesis and IL-1beta-induced TGF-beta1 production on human peritoneal mesothelial cells. Nephrol Dial Transplant 2006; 21 (5): 1340–1347.PubMedGoogle Scholar
  216. 216.
    Griffioen AW, Molema G. Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacol Rev 2000; 52 (2): 237–268.PubMedGoogle Scholar
  217. 217.
    Yoshio Y, Miyazaki M, Abe K, et al. TNP-470, an angiogenesis inhibitor, suppresses the progression of peritoneal fibrosis in mouse experimental model. Kidney Int 2004; 66 (4): 1677–1685.PubMedGoogle Scholar
  218. 218.
    Tanabe K, Maeshima Y, Ichinose K, et al. Endostatin peptide, an inhibitor of angiogenesis, prevents the progression of peritoneal sclerosis in a mouse experimental model. Kidney Int 2007; 71 (3): 227–238.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Division of NephrologyUniversité Catholiqué de Louvain Medical School Belgium
  2. 2.Dutch Medicines Evaluation Board, Clinical Assessor FT1Netherlands
  3. 3.School of Medicine Cardiff UniversityUnited Kingdom

Personalised recommendations