Advertisement

Fluid overload is an important problem in peritoneal dialysis (PD) patients, especially when residual urine production is absent. It may be caused by a high fluid intake, inappropriate PD prescription, noncompliance, or by a low drained volume. The latter can be due to mechanical problems, such as catheter dislocation or subcutaneous leakages, or to peritoneal membrane failure. When the diagnosis of ultrafiltration failure is based on a clinical definition, all the above causes of overhydration are included, which might lead to overdiagnosis. Underdiagnosis is also possible, for instance, when a patient with impaired peritoneal ultrafiltration remains in a good hydration status because of strict adherence to a severe salt and fluid restriction. Hence, when faced with a disruption of volume homeostasis, the clinician needs to determine where the fault lies: is it failure of the peritoneum to respond to an adequate osmotic stimulus, or the failure of the prescription to provide such an osmotic stimulus, or the failure of the patient to comply with dietary restrictions and guidelines.

Keywords

Peritoneal Dialysis Continuous Ambulatory Peritoneal Dialysis Residual Renal Function Peritoneal Membrane Fluid Removal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ho-dac-Pannekeet MM, Atasever B, Struijk DG, Krediet RT. Analysis of ultrafiltration failure in peritoneal dialysis patients by means of standard peritoneal permeability analysis. Perit Dial Int 1997; 17: 144–150.PubMedGoogle Scholar
  2. 2.
    Mujais S, Nolph K, Gokal R, et al. Evaluation and management of ultrafiltration problems in peritoneal dialysis. International Society for Peritoneal Dialysis Ad Hoc Committee on Ultrafiltration Management in Peritoneal Dialysis. Perit Dial Int 2000; 20 (suppl. 4):S5–S21.PubMedGoogle Scholar
  3. 3.
    Selgas R, Fernandez-Reyes MJ, Bosque E, Bajo M-A, Borrego F, Jimenez C, Del Peso G, De Alvaro F. Functional longevity of the human peritoneum: how long is continuous peritoneal dialysis possible? Results of a prospective medium long-term study. Am J Kidney Dis 1994; 23: 64–73.PubMedGoogle Scholar
  4. 4.
    Davies SJ, Bryan J, Phillips L, Russell GI. Longitudinal changes in peritoneal kinetics: the effects of peritoneal dialysis and peritonitis. Nephrol Dial Transplant 1996; 11: 498–506.PubMedGoogle Scholar
  5. 5.
    Faller B, Marichal JF. Loss of ultrafiltration in continuous ambulatory peritoneal dialysis. A role for acetate. Perit Dial Bull 1984; 4: 10.Google Scholar
  6. 6.
    Bazzato G, Coli U, Landini S, et al. Restoration of ultrafiltration capacity of peritoneal membrane in patients on CAPD. Int J Artif Organs 1984; 7: 93.PubMedGoogle Scholar
  7. 7.
    Verger C, Larpent L, Celicout B. Clinical significance of ultrafiltration failure on CAPD. In La Graeca G, Chiaramonte S, Fabris A, Feriani M, Ronco C (eds). Peritoneal Dialysis. Milano: Wichtig Editore. 1986: 91–94.Google Scholar
  8. 8.
    Lameire N. Volume control in peritoneal dialysis patients: role of new dialysis solutions. Blood Purif 2004; 22 (1): 44–54.PubMedGoogle Scholar
  9. 9.
    Ronco C, Ferianai M, Chiaramonte S, et al. Pathophysiology of ultrafiltration in peritoneal dialysis. Perit Dialysis Int 1990; 10: 119.Google Scholar
  10. 10.
    Mactier RA. Investigation and management of ultrafiltration failure in CAPD. In Khanna R, Nolph KD, Prowant BF, et al. (eds). Advances in Peritoneal Dialysis, vol 7. Nashville: Perit Dial Bull, Inc., 1991: 57.Google Scholar
  11. 11.
    Korbet SM, Rodby RA. Causes, diagnosis, and treatment of peritoneal membrane failure, In Henrich WL. (ed). Principles and Practice of Dialysis, 2nd ed. Baltimore: Williams and Wilkins, 1998: 185–206.Google Scholar
  12. 12.
    Korbet SM, Work-up of ultrafiltration failure. Adv Ren Replace Ther 1998; 5: 194–204.PubMedGoogle Scholar
  13. 13.
    Heimburger O, Waniewski J, Werynski A, Tranaeus A, Lindholm B. Peritoneal transport in CAPD patients with permanent loss of ultrafiltration capacity. Kidney Int 1990; 38: 495–506.PubMedGoogle Scholar
  14. 14.
    Kawaguchi Y, Hasegawa T, Nakayama M, Kubo H, Shigematu T. Issues affecting the longevity of the continuous peritoneal dialysis therapy. Kidney Int 1997; 52 (suppl. 62): S105–S107Google Scholar
  15. 15.
    Smit W, Schouten N, Van den Berg N, Langelijk M, Struijk DG, Krediet RT. Analysis of the prevalence and causes of ultrafiltration failure during long-term peritoneal dialysis: a cross-sectional study. Perit Dial Int 2004; 24: 562–570PubMedGoogle Scholar
  16. 16.
    Imholz ALT, Brown CB, Koomen GCM, Arisz L, Krediet RT. The effect of glucose polymers on water removal and protein clearances during CAPD. Adv Perit Dial 1993; 9: 25–30.PubMedGoogle Scholar
  17. 17.
    Ho-dac-Pannekeet MM, Schouten N, Langendijk MJ, Hiralall JK, de Waart DR, Struijk DG, Krediet R. Peritoneal transport characteristics with glucose polymer based dialysate. Kindey Int 1996; 50: 979–986.Google Scholar
  18. 18.
    Peers E, Gokal R. Icodextrin: Overview of clinical experience. Perit Dial Int 1997; 17: 22–26.PubMedGoogle Scholar
  19. 19.
    Peers E, Gokal R. Icodextrin provides long dwell peritoneal dialysis and maintenance of intraperitoneal volume. Artif Organs 1998; 22: 8–12.PubMedGoogle Scholar
  20. 20.
    Posthuma N, ter Wee PM, Verbruh HA, Oe PL, Peers E, Sayers J, Donker AJM. Icodextrin instead of glucose during the daytime dwell in CCPD increases ultrafiltration and 24-h dialysis creatinine clearance. Nephrol Dial Transplant 1997; 12 (suppl. 1): 550–553.PubMedGoogle Scholar
  21. 21.
    Woodrow G, Stables G, Oldroyd R, Gibson J, Turney JH, and Brownjohn AM. Comparison of icodextrin and glucose solutions for the daytime dwell in automated peritoneal dialysis. Nephrol Dial Transplant 1999; 14: 1530–1535.PubMedGoogle Scholar
  22. 22.
    Wilkie ME, Plant MJ, Edwards L, Brown CB. Icodextrin 7.5% dialysate solution (glucose polymer) in patients with ultrafiltration failure: extension of technique survival. Perit Dial Int 1997; 17: 84–87.PubMedGoogle Scholar
  23. 23.
    Mujais S. Ultrafiltration management in automated peritoneal dialysis. In Ronco C, Amici G, Feriani M, Virga G (eds). Automated Peritoneal Dialysis, vol 129. Contrib Nephrol. Basel: Karger, 1999: 255–266.Google Scholar
  24. 24.
    Litherland J, Gibson M, Sambrook P, Lupton E, Beaman M, Ackrill P. Investigation and treatment of poor drains of dialysate fluid associated with anterior abdominal wall leaks in patients on chronic ambulatory peritoneal dialysis. Nephrol Dial Transplant 1992; 7: 1030–1034.PubMedGoogle Scholar
  25. 25.
    Litherland J, Lupton EW, Ackrill PA, Venning M, Sambrook P. Computed tomographic peritoneography: CT manifestations in the investigation of leaks and abnormal collections in patients on CAPD. Nephrol Dial Transplant 1994; 9:1449–1452.PubMedGoogle Scholar
  26. 26.
    Scanziani R, Dozio B, Caimi F, De Rossi N, Magfri F, Surian M. Peritoneography and peritoneal computerized tomography: a new approach to non-infectious complications of CAPD. Nephrol Dial Transplant 1992; 7:1035–1038.PubMedGoogle Scholar
  27. 27.
    Cochran ST, Do HM, Ronaghi A, Nissenson AR, Kadell BM. Complications of peritoneal dialysis: evaluation with CT peritoneography. Radiographics 1997; 17: 869–878.Google Scholar
  28. 28.
    Twardowski ZJ. Clinical value of standardized equilibration tests in CAPD patients. Blood Purif 1989; 7 (2–3): 95–108.PubMedGoogle Scholar
  29. 29.
    Twardowski ZJ, Nolph K, Khanna R, Prowant B, Ryan L, Moore H, Neilsen M. Peritoneal equilibration test. Periton Dial Bull 1987; 7: 138–147.Google Scholar
  30. 30.
    Smit W, Van Dijk P, Langendijk M, Schouten N, van den Berg N, Struijk DG, Krediet RT. Peritoneal function and assessment of reference values using a 3.86% glucose solution. Perit Dial Int 2003; 23: 440–449.PubMedGoogle Scholar
  31. 31.
    Smit W, Schouten N, van den Berg N, Langedijk M, Struijk DG, Krediet RT. Analysis of the prevalence and causes of ultrafiltration failure during long-term peritoneal dialysis: a cross-sectional study. Perit Dial Int 2004; 25: 562–670.Google Scholar
  32. 32.
    Monquil MC, Imholz AL, Struijk DG, Krediet RT. Does impaired transcellular water transport contribute to net ultrafiltration failure during CAPD? Perit Dial Int 1995; 15: 42–48, 24–27.PubMedGoogle Scholar
  33. 33.
    Pride ET, Gustafson J, Graham A, Spainhour L, Mauck V, Brown P, Burkart JM. Comparison of a 2.5% and a 4.25% dextrose peritoneal equilibration test. Perit Dial Int 2002; 22: 365–370.PubMedGoogle Scholar
  34. 34.
    Smit W, Langedijk MJ, Schouten N, van den Berg N, Struijk DG, Krediet RT. A comparison between 1.36 and 3.86% glucose dialysis solution for the assessment of peritoneal membrane function. Perit Dial Int 2000; 20: 734–741.PubMedGoogle Scholar
  35. 35.
    Coles GA. Have we underestimated the importance of fluid balance for the survival of PD patients. Perit Dial Int 1997; 17: 321–326.PubMedGoogle Scholar
  36. 36.
    Mactier R, Khanna R, Twardowski Z, Nolph K. Contribution of lymphatic absorption to loss of ultrafiltration and solute clearances in continuous ambulatory peritoneal dialysis. J Clin Invest 1987; 80: 1311–1316.PubMedGoogle Scholar
  37. 37.
    Heimbürger O, Waniewski J, Werynski A, Sun Park M, Lindholm, B. Lymphatic absorption in CAPD patients with loss of ultrafiltration capacity. Blood Purif 1995; 13: 327–339.PubMedGoogle Scholar
  38. 38.
    Heimburger O, Waniewski J, Werynski A, Lindholm B. A quantitative description of solute and fluid transport during peritoneal dialysis. Kidney Int 1992; 41: 1320–1332.PubMedGoogle Scholar
  39. 39.
    Zakaria ER, Rippe B. Intraperitoneal fluid volume changes during peritoneal dialysis in the rat: indicator dilution vs. volumetric measurements. Blood Purif 1995; 13: 255–270.PubMedGoogle Scholar
  40. 40.
    Krediet RT, Struijk DG, Koomen GC, Arisz L. Peritoneal fluid kinetics during CAPD measured with intraperitoneal dextran 70. ASAIO Trans 1991; 37: 662–667.PubMedGoogle Scholar
  41. 41.
    Koomen GC, Krediet RT, Leegwater AC, Struijk DG, Arisz L, Hoek FJ. A fast reliable method for the measurement of intraperitoneal dextran 70, used to calculate lymphatic absorption. Adv Perit Dial 1991; 7: 10–14.PubMedGoogle Scholar
  42. 42.
    Struijk DG, Krediet RT, Koomen GC, Boeschoten EW, vd Reijden HJ, Arisz L. Indirect measurement of lymphatic absorption with inulin in continuous ambulatory peritoneal dialysis (CAPD) patients. Perit Dial Int 1990; 10: 141–145.PubMedGoogle Scholar
  43. 43.
    Imholz ALT, Koomen GCM, Struijk DG, Arisz L, Krediet RT. Effect of an increased intraperitoneal pressure on fluid and solute transport during CAPD. Kidney Int 1993; 44(5): 1078–1085.PubMedGoogle Scholar
  44. 44.
    Pannekeet MM, Imholz AL, Struijk DG, Koomen GC, Langedijk MJ, Schouten N, de Waart R, Hiralall J, Krediet RT. The standard peritoneal permeability analysis: a tool for the assessment of peritoneal permeability characteristics in CAPD patients. Kidney Int 1995; 48: 866–875.PubMedGoogle Scholar
  45. 45.
    Michels WM, Smit W, Korevaar J, Struijk DG, Van Westrhenen R, Krediet RT. Does lymphatic absorption change with the duration of peritoneal dialysis? Perit Dial Int 2004; 24: 347–352.PubMedGoogle Scholar
  46. 46.
    Abensur H, Romao J, Prado E, Kakehashi E, Sabbaga E, Marcondes M. Use of dextran 70 to estimate peritoneal lymphatic absorption rate in CAPD. Adv Perit Dial 1992; 8: 3–6.PubMedGoogle Scholar
  47. 47.
    Mateijsen MA, van der Wal AC, Hendriks PM, Zweers MM, Krediet RT. Vascular and interstitial changes in the peritoneum of CAPD patients with peritoneal sclerosis. Perit Dial Int 1999; 19: 517–525.PubMedGoogle Scholar
  48. 48.
    Selgas R, Bajo MA, Paiva A, et al. Stability of the peritoneal membrane in long-term peritoneal dialysis patients, Adv Ren Replace Ther 1998; 5(3): 168–178.PubMedGoogle Scholar
  49. 49.
    Brimble KS, Walker M, Margetts PJ, Kundhal KK, Rabbat CG. Meta-analysis: peritoneal membrane transport, mortality, and technique failure in peritoneal dialysis. J Am Soc Nephrol 2006; 17(9): 2591–2598.PubMedGoogle Scholar
  50. 50.
    Reyes MJ, Bajo MA, Hevia C, Del Peso G, Ros S, de Miguel AG, Cirugeda A, Castro MJ, Sanchez-Tomero JA, Selgas R. Inherent high peritoneal transport and ultrafiltration deficiency: their mid-term clinical relevance. Nephrol Dial Transplant 2007; 22(1): 218–223.PubMedGoogle Scholar
  51. 51.
    Davies SJ, Phillips L, Russel GI. Peritoneal solute transport predicts survival on CAPD independently of residual renal function. Nephrol Dial Transplant 1998; 13: 962–968.PubMedGoogle Scholar
  52. 52.
    Churchill DN, Thorpe KE, Nolph KD, Keshaviah PR, Page D, Oreopoulos DG. Increased peritoneal transport is associated with decreased CAPD technique and patient survival. J Am Soc Nephrol 1997; 8: 189A.Google Scholar
  53. 53.
    Wang T, Heimbürger O, Waniewski J, Bergström J, Lindholm B. Increased peritoneal permeability is associated with decreased fluid and small-solute removal and higher mortality in CAPD patients. Nephrol Dial Transplant 1998; 13: 1242–1249.PubMedGoogle Scholar
  54. 54.
    Krediet RT, Zuyderhoudt FM, Boeschoten EW, Arisz L. Alterations in the peritoneal transport of water and solutes during peritonitis in continuous ambulatory peritoneal dialysis patients. Eur J Clin Invest 1987; 17: 43–52.PubMedGoogle Scholar
  55. 55.
    Zemel D, Koomen GC, Hart AA, ten Berge IJ, Struijk DG, Krediet RT. Relationship of TNF-alpha, interleukin-6, and prostaglandins to peritoneal permeability for macromolecules during longitudinal follow-up of peritonitis in continuous ambulatory peritoneal dialysis. J Lab Clin Med 1993; 122: 686–696.PubMedGoogle Scholar
  56. 56.
    Combet S, Van Landschoot M, Moulin P, Piech A, Verbavatz JM, Goffin E, et al. Regulation of aquaporin-1 and nitric oxide synthase isoforms in a rat model of acute peritonitis. J Am Soc Nephrol 1999; 10: 2185–2196.PubMedGoogle Scholar
  57. 57.
    Douma CE, de Waart DR, Struijk DG, Krediet RT. Are phospholipase A2 and nitric oxide involved in the alterations in peritoneal transport during CAPD peritonitis? J Lab Clin Med 1998; 132: 329–340.PubMedGoogle Scholar
  58. 58.
    Steinhauer HB, Schollmeyer P. Prostaglandin-mediated loss of proteins during peritonitis in continuous ambulatory peritoneal dialysis. Kidney Int 1986; 29(2): 584–590.PubMedGoogle Scholar
  59. 59.
    Panasiuk E, Pietrzak B, Klos M, et al. Characteristics of peritoneum after peritonitis in peritonitis in CAPD patients. Adv Perit Dial 1988; 4: 42.Google Scholar
  60. 60.
    Krediet RT, Mujais S. Use of icodextrin in high transport ultrafiltration failure. Kidney Int Suppl 2002; (81): S53–S61.Google Scholar
  61. 61.
    Posthuma N, ter Weel PM, Donnker AJM, Peers EM, Oe PL, Vergrugh HA. Icodextrin use is CCPD patients during peritonitis: ultrafiltration and serum disaccharide concentrations. Nephrol Dial Transplant 1998; 13: 2341–2344.PubMedGoogle Scholar
  62. 62.
    Krediet RT, Lindholm B, Rippe B. Pathophysiology of peritoneal membrane failure. Perit Dial Int 2000; 20 (suppl. 4): S22–S42.PubMedGoogle Scholar
  63. 63.
    Williams JD, Craig KJ, Topley N, Von Ruhland C, Fallon M, Newman GR, et al. Morphologic changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol 2002; 13: 470–479.PubMedGoogle Scholar
  64. 64.
    Nakayama M, Kawaguchi Y, Yamada K, Hasegawa T, Takazoe K, Katok N, et al. Immunohistochemical detection of advanced glycosylation end-products in the peritoneum and its possible pathophysiological role in CAPD. Kidney Int 1997; 51: 182–186.PubMedGoogle Scholar
  65. 65.
    Rottembourg J, Brouard R, Issad B, et al. Role of acetate in loss of ultrafiltration during CAPD. Contr Nephrol 1987; 57: 197.Google Scholar
  66. 66.
    Wideroë FE, Smeby LC, Mjåland S, Dahl K, Berg KJ, Aas TW. Long-term changes in transperitoneal water transport during continuous ambulatory peritoneal dialysis. Nephron 1984; 38: 238–247.PubMedGoogle Scholar
  67. 67.
    Davies SJ, Bryan j, Phillips L Russel GI. Longitudinal changes in peritoneal kinetics: the effects of peritoneal dialysis and peritonitis. Nephrol Dial Transplant 1996; 11: 448–456.Google Scholar
  68. 68.
    Lameire N, Vanholder R, Veys D, et al. A longitudinal five year survey of urea kinetic parameters in CAPD patients. Kidney Int 1992; 42: 426–433.PubMedGoogle Scholar
  69. 69.
    Struijk DG, Krediet RT, Koomen GCM, Boeschoten EW, Hoek FJ, Arisz L. A prospective study of peritoneal transport in CAPD patients. Kidney Int 1994; 45: 1739–1744.PubMedGoogle Scholar
  70. 70.
    Faller B, Lameire N. Evolution of clinical parameters and peritoneal function in a cohort of CAPD patients followed over 7 years. Nephrol Dial Transplant 1994; 9: 280–286.PubMedGoogle Scholar
  71. 71.
    Rippe B, Stelin G. Simulations of peritoneal solute transport during CAPD. Application of two pore formalism. Kidney Int 1989; 35: 1234–1244.PubMedGoogle Scholar
  72. 72.
    Rippe B, Stelin G, Haraldsson B. Computer simulations of peritoneal transport in CAPD. Kidney Int 1991; 40: 315–325.PubMedGoogle Scholar
  73. 73.
    Rippe B, Simonsen O, Stelin G. Clinical implication of a three pore model of peritoneal transport. Adv Perit Dial 1991; 7: 3–9.PubMedGoogle Scholar
  74. 74.
    Rippe B, Krediet R. Peritoneal physiology-transport of solutes. InGokal R,Nolph KD (eds). The Textbook of Peritoneal Dialysis. Dordrecht: Kluwer Academic Publishers. 1994: 69–113.Google Scholar
  75. 75.
    Stelin G, Rippe B. A phenomenological interpretation of the variation in dialysate volume with dwell time in CAPD. Kidney Int 1990; 38: 465–472.PubMedGoogle Scholar
  76. 76.
    Vonesh EF, Rippe, B. Net fluid absorption under membrane transport models of peritoneal dialysis. Blood Purif 1992; 10: 209–226.PubMedGoogle Scholar
  77. 77.
    Flessner MF. Peritoneal transport physiology: insights from basic research. J Am Soc Nephrol 1991; 2: 122–135.PubMedGoogle Scholar
  78. 78.
    Hasegawa H, Kamijo T, Takahashi H, Kagami H, Hayakawa H, Hirahara I et al. Regulation and localisation of peritoneal aquaporins expression during long-term peritoneal dialysis in rats. J Am Soc Nephrol 1998; 9: 19A.Google Scholar
  79. 79.
    Yang B, Folfesson HG, Yang J, Ma T, Matthay MA, Verkman SA. Reduced osmotic water permeability of the peritoneal barrier in AQP1 knockout mice; AQP1 provides a “water-only" pathway in peritoneal dialysis. J Am Soc Nephrol 1998; 9: 29A.Google Scholar
  80. 80.
    Carlsson O, Nielsen S, Zakaria ER, Rippe B. In vivo inhibition of transcellular water channels (aquaporin-1) during acute peritoneal dialysis in rats. Am J Physiol 1996; 271: H2254–H2262.PubMedGoogle Scholar
  81. 81.
    Zweers MM, Douma CE, de Waart DR, Korevaar JC, Krediet RT, Struijk DG. Amphotericin B, mercury chloride and peritoneal transport in rabbits. Clin Nephrol 2001; 56: 60–68.PubMedGoogle Scholar
  82. 82.
    Pannekeet MM, Mulder JB, Weening JJ, Struijk DG, Zweers MM, Krediet RT. Demonstrations of aquaporin-CHIP in peritoneal tissue of uremic and CAPD patients. Perit Dial Int 1995; 15 (suppl. 1):S54–S57.Google Scholar
  83. 83.
    Ho-dac-Pannekeet MM, Krediet R. Water channels in the peritoneum. Perit Dial Int 1996; 16: 255–259.PubMedGoogle Scholar
  84. 84.
    Goffin E, Combet S, Jamar F, Cosyns J-P, Devuyst O. Expression of aquaporin-1 (AQP1) in a long-term peritoneal dialysis patient with impaired transcellular water transport. Am J Kidney Dis 1999; 33: 383–338.PubMedGoogle Scholar
  85. 85.
    Nolph KD, Hano JE, Teschan PE. Peritoneal sodium transport during hypertonic peritoneal dialysis. Physiologic mechanisms and clinical implications. Ann Intern Med 1969; 70: 931–941.PubMedGoogle Scholar
  86. 86.
    Chen TW, Khanna R, Moore H, Twardowski ZJ, Nolph KD. Sieving and reflection coefficients for sodium salts and glucose during peritoneal dialysis in rats. J Am Soc Nephrol 1991; 2: 1092–1100.PubMedGoogle Scholar
  87. 87.
    Zweers MM, Imholz AL, Struijk DG, Krediet RT. Correction of sodium sieving for diffusion from the circulation. Adv Perit Dial 1999; 15:65–72.PubMedGoogle Scholar
  88. 88.
    Westra W, Smit W, Zweers M, Struijk D, Krediet. Correction of sodium sieving for diffusion from the circulation. Adv Perit Dial 2003; 19: 6–9.PubMedGoogle Scholar
  89. 89.
    La Milia V, Di Filippo S, Crepaldi M, Del Vecchio L, Dell’Oro C, Andrulli S, Locatelli F. Mini-PET: a simple and fast method to assess free water and small solute transport across the peritoneal membrane. Kidney Int 2005; 68(2): 840–846.PubMedGoogle Scholar
  90. 90.
    Smit W, Struijk DG, Ho-dac MM, Krediet RT. Quantification of free water transport in peritoneal dialysis. Kidney Int 2004; 66: 849–854.PubMedGoogle Scholar
  91. 91.
    Parikova A, Smit W, Struik DG, Krediet RT. Analysis of fluid transport pathways and their determinants in peritoneal dialysis patients with ultrafiltration failure. Kidney Int 2006; 70(11): 1988–1994.PubMedGoogle Scholar
  92. 92.
    Parikova A, Smit W, Struik DG, Zweers MM, Krediet RT. The contribution of free water transport and small pore transport to the total fluid removal in peritoneal dialysis. Kidney Int 2005; 68(4): 1849–1856.PubMedGoogle Scholar
  93. 93.
    Venturoli D, Rippe B. Validation by computer simulation of two indirect methods for quantification of free water transport in peritoneal dialysis. Perit Dial Int 2005; 25(1): 77–84.PubMedGoogle Scholar
  94. 94.
    Verger C, Celicout B. Peritoneal permeability and encapsulating peritonitis. Lancet 1985; 1: 986.PubMedGoogle Scholar
  95. 95.
    Krediet RT, Struijk DG, Boescheten EW, Koomen GCM, Stouthard JML, Hock FJ, Arisz L. The time course of peritoneal transport kinetics in continuous ambulatory peritoneal dialysis patients who develop sclerosing peritonitis. Am J Kidney Dis 1989; 13: 299–307.PubMedGoogle Scholar
  96. 96.
    Hendriks PMEM, Ho-dac-Pannekeet MM, van Gulik TM, Struijk DG, Phoa SSKS, Sie L, Kox C, Krediet RT. Peritoneal sclerosis in chronic peritoneal dialysis patients: analysis of clinical presentation, risk factors and peritoneal transport kinetics. Perit Dial Int 1997; 17: 136–143.PubMedGoogle Scholar
  97. 97.
    Campbell S, Clarke P, Hawley C, Wigan M, Kerlin P, Butler J, Wall D. Sclerosing peritonitis: identification of diagnostic, clinical and radiological features. Am J Kidney Dis 1994; 24: 819–825.PubMedGoogle Scholar
  98. 98.
    Schleifer C, Ziemek H, Teehan B, Benz R, Sigler M, Gilgore G. Migration of peritoneal catheters: personal experience and survey of 72 other units. Perit Dial Bull 1987; 7: 189–193.Google Scholar
  99. 99.
    Tzamaloukas A, Gibel L, Eisenberg B, Goldman R, Kanig S, Zager P, Elledge L, Wood B, Simon D. Early and late peritoneal leaks in patients on CAPD. Adv Perit Dial 1990; 6: 64–71.PubMedGoogle Scholar
  100. 100.
    Twardowski ZJ, Tully R, Nichols W. Computerized tomography CT in the diagnosis of subcutaneous leak sites during continuous ambulatory peritoneal dialysis (CAPD). Perit Dial Bull 1984; 4: 163–166.Google Scholar
  101. 101.
    Schultz S, Harmon T, Nachtnebel K. Computerized tomographic scanning with intraperitoneal contrast enhancement in a CAPD patient with localized edema. Perit Dial Bull 1984; 4: 253–254.Google Scholar
  102. 102.
    Wankowicz Z, Pietrzak B, Przedlacki J: Colloid peritoneoscintigraphy in complications of CAPD. Adv Perit Dial 1988; 4: 138–143.Google Scholar
  103. 103.
    Kopecky R, Frymoyer P, Witanowski L, Thomas F, Wojtaszek J, Reinitz E. Prospective peritoneal scintigraphy in patients beginning continuous ambulatory peritoneal dialysis. Am J Kidney Dis 1990; 15: 228–236.PubMedGoogle Scholar
  104. 104.
    Fine A, Fontaine B, Ma M. Commonly prescribed salt intake in continuous ambulatory peritoneal dialysis is too restrictive: results of a double-blind crossover study. J Am Soc Nephrol 1997; 8: 1311–1314.PubMedGoogle Scholar
  105. 105.
    Medcalfe JF, Harris KPG, Walls J. Frusemide increases urine volume but does not preserve residual renal function in patients on CAPD--results of a six months randomized controlled study. Perit Dial Int 1998; 18 (suppl. 2): S1.Google Scholar
  106. 106.
    van Olden RW, Guchelaar HJ, Struijk DG, Krediet RT, Arisz L. Acute effects of high-dose furosemide on residual renal function in CAPD patients. Perit Dial Int 2003; 23(4): 339–347.PubMedGoogle Scholar
  107. 107.
    Vargemezis V, Thodis E. Prevention and management of peritonitis and exit-site infection in patients on continuous ambulatory peritoneal dialysis. Nephrol Dial Transplant 2001; 16 (suppl. 6): 106–108.PubMedGoogle Scholar
  108. 108.
    Mortier S, Faict D, Lameire NH, De Vriese AS. Benefits of switching from a conventional to a low-GDP bicarbonate/lactate-buffered dialysis solution in a rat model Kidney Int 2005; 67(4): 1559–1565.Google Scholar
  109. 109.
    Wieczorowska-Tobis K, Brelinska R, Witowski J, Passlick-Deetjen J, Schaub TP, Schilling H, Breborowicz A. Evidence for less irritation to the peritoneal membrane in rats dialyzed with solutions low in glucose degradation products. Perit Dial Int 2004; 24(1): 48–57.PubMedGoogle Scholar
  110. 110.
    Miranda B, Selgas R, Celadilla O, et al. Peritoneal resting and heparinization as an effective treatment for ultrafiltration failure in patients on CAPD. Contrib Nephrol 1991; 89: 199.PubMedGoogle Scholar
  111. 111.
    De Alvaro F, Castro MJ, Dapena F, Bajo MA, Fdez-Reyes MJ, Romero JR, Jimenez C, Miranda B, Selgas R. Peritoneal resting is beneficial in peritoneal hyperpermeability and ultrafiltration failure. Adv Perit Dial 1993; 9: 56–61.PubMedGoogle Scholar
  112. 112.
    Burkhart J, Stallard R. Result of peritoneal membrane (PM) resting (R) on dialysate (d) CA125 levels and PET results. Perit Dial Int 1997; 17(suppl. 1):S5.Google Scholar
  113. 113.
    Ho-dac-Pannekeet MM, Struijk DG, Krediet R. Improvement of transcellular water transport by treatment with glucose free dialysate in patients with ultrafiltration failure. Nephrol Dial Transplant 1996; 11: 255.Google Scholar
  114. 114.
    Selgas R, Bajo MA, Del Peso G, Jiménez C. Preserving the peritoneal dialysis membrane in long-term peritoneal dialysis patients. Semin Dial 1995; 8: 326–332.Google Scholar
  115. 115.
    Krediet RT. Preserving the integrity of the peritoneal membrane in chronic peritoneal dialysis. Nephrology Forum. Kidney Int 1999; 55: 341–356. Google Scholar
  116. 116.
    Krediet R, Ho-dac-Pannekeet MM, Imholz AL, Struijk DG. Icodextrin’s effects on peritoneal transport. Perit Dial Int 1997; 17: 35–41.PubMedGoogle Scholar
  117. 117.
    Mactier RA, Khanna R, Moore H, Twardowski ZJ, Nolph KD. Pharmacological reduction of lymphatic absorption from the peritoneal cavity increases net ultrafiltration and solute clearances in peritoneal dialysis. Nephron 1988; 50: 229–232.PubMedGoogle Scholar
  118. 118.
    Chan PCK, Tam SCF, Robinson JD, Yu L, Ip MSM, Chan CY, Cheng IKP. Effect of phosphatidylcholine on ultrafiltration in patients on continuous ambulatory peritoneal dialysis. Nephron 1991; 59: 100–103.PubMedGoogle Scholar
  119. 119.
    Mactier RA, Khanna R, Twardowski ZJ, Moore H, Nolph KD. Influence of phosphatidylcholine on lymphatic absorption during peritoneal dialysis in the rat. Perit Dial Int 1988; 8: 179–186.Google Scholar
  120. 120.
    Struijk DG, van der Reijden HJ, Krediet RT, Koomen GCM, Arisz L. Effect of phosphatidylcholine on peritoneal transport and lymphatic absorption in a CAPD patient with sclerosing peritonitis. Nephron 1989; 51: 577–578.PubMedGoogle Scholar
  121. 121.
    Baranowska-Daca E, Torneli J, Popovich RP, Moncrief JW. Use of bethanechol chloride to increase available ultrafiltration in CAPD. Adv Perit Dial 1995; 11: 69–72.PubMedGoogle Scholar
  122. 122.
    Fernando SK, Santacroce S, Finkelstein FO. Two daytime Icodextrin exchanges. J Am Soc Nephrol 2006; 17: 278A.Google Scholar
  123. 123.
    Sav T, Oymak O, Tokgoz B, Sipahioglu MH, Unal A, Akcakaya M, Utas C. Effect of the double dose icodextrin use on blood pressure and left ventricular mass in peritoneal dialysis patients. J Am Soc Nephrol 2006; 17: 102A.Google Scholar
  124. 124.
    Fontan MP, Rodriguez-Carmona A, García-López E, García-Falcón T, Díaz-Cambre E. Icodextrin-based nocturnal automated peritoneal dialysis (APD) allows sustained ultrafiltration (UF) while reducing peritoneal glucose load. a crossover study. J Am Soc Nephrol 2006; 17: 278A.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Medical Sciences, Research and DevelopmentAstellas Pharma, USDeerfieldUSA
  2. 2.Department of Nephrology, Academic Medical CenterUniversity of AmsterdamNetherlands

Personalised recommendations