Advertisement

Monitoring the Functional Status of the Peritoneum

  • D. G. Struijk
  • R. Khanna

The integrity of the peritoneal membrane is essential for long-term treatment of peritoneal dialysis (PD) patients. Unlike an artificial kidney used for hemodialysis, the peritoneal membrane consists of living tissue. This implies that the properties of this membrane are not constant, but may change under the influence of endogenous or exogenous factors. Thus, it is important to monitor the peritoneal membrane in time. Data obtained during follow-up are crucial in the development of more biocompatible solutions. For the individual patient these data could be used to tailor the dialysis adequacy or to predict clinical problems such as ultrafiltration failure or peritoneal sclerosis.

Keywords

Peritoneal Dialysis Mesothelial Cell Continuous Ambulatory Peritoneal Dialysis Peritoneal Dialysis Patient Peritoneal Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Topley N. The host’s initial response to peritoneal infection: the pivotal role of the mesothelial cell. Perit Dial Int 1995; 15: 116–117.PubMedGoogle Scholar
  2. 2.
    Topley N, Coles GA, Williams JD. Biocompatibility studies on peritoneal cells. Perit Dial Int 1994; 14 (Suppl. 3): S21–S28.PubMedGoogle Scholar
  3. 3.
    Breborowicz A, Rodela H, Oreopoulos DG. Toxicity of osmotic solutes on human mesothelial cells in vitro. Kidney Int 1992; 41: 1280–1285.PubMedGoogle Scholar
  4. 4.
    Witowski J, Topley N, Jorres A, Liberek T, Coles GA, Williams JD. Effect of lactate-buffered peritoneal dialysis fluids on human peritoneal mesothelial cell interleukin-6 and prostaglandin synthesis. Kidney Int 1994; 46: 282–293.Google Scholar
  5. 5.
    Yang AH, Chen JY, Lin YP, Huang TP, Wu CW. Peritoneal dialysis solution induces apoptosis of mesothelial cells. Kidney Int 1997; 51: 1280–1288.PubMedGoogle Scholar
  6. 6.
    Dobbie JW, Zaki M, Wilson L. Ultrastructural studies on the peritoneum with special reference to chronic ambulatory peritoneal dialysis. Scott Med J 1981; 26: 213–223.PubMedGoogle Scholar
  7. 7.
    Di Paolo N, Sacchi G, De Mia M, Gaggiotti E, Capotondo L, Rossi R, et al. Morphology of the peritoneal membrane during continuous ambulatory peritoneal dialysis. Nephron 1986; 44: 204–211.PubMedGoogle Scholar
  8. 8.
    Gotloib L, Shostak A, Bar-Sella P, Cohen R. Continuous mesothelial injury and regeneration during long term peritoneal dialysis. Perit Dial Bull 1987; 7: 148–155.Google Scholar
  9. 9.
    Dobbie JW. Morphology of the peritoneum in CAPD. Blood Purif 1989; 7: 74–85.PubMedGoogle Scholar
  10. 10.
    Pollock CA, Ibels LS, Eckstein RP, Graham JC, Caterson RJ, Mahony JF, et al. Peritoneal morphology on maintenance dialysis. Am J Nephrol 1989; 9: 198–204.PubMedGoogle Scholar
  11. 11.
    Dobbie JW, Lloyd JK, Gall CA. Categorization of ultrastructural changes in peritoneal mesothelium, stroma and blood vessels in uremia and CAPD patients. Adv Perit Dial 1990; 6: 3–12.PubMedGoogle Scholar
  12. 12.
    Di Paolo N, Sacchi G. The peritoneum during peritoneal dialysis. In: Di Paolo N, Sacchi G, eds. Atlas of Peritoneal Histology. Perit Dial Int 2000; 20 (Suppl. 3): S37–S63.Google Scholar
  13. 13.
    Dobbie JW, Anderson JD, Hind C. Long-term effects of peritoneal dialysis on peritoneal morphology. Perit Dial Int 1994; 14 (Suppl. 3): S16–S20.PubMedGoogle Scholar
  14. 14.
    Dobbie JW. Pathogenesis of peritoneal fibrosing syndromes (sclerosing peritonitis) in peritoneal dialysis. Perit Dial Int 1992; 12: 14–27.PubMedGoogle Scholar
  15. 15.
    Suassuna JHR, Das Neves FC, Hartley B, Ogg CS, Cameron JS. Immunohistochemical studies of the peritoneal membrane and infiltrating cells in normal subjects and patients on CAPD. Kidney Int 1994; 46: 443–454.PubMedGoogle Scholar
  16. 16.
    Dobbie JW. New concepts in molecular biology and ultrastructural pathology of the peritoneum: their significance for peritoneal dialysis. Am J Kidney Dis 1990; 15: 97–109.PubMedGoogle Scholar
  17. 17.
    Yanez-Mo M, Lara-Pezzi E, Selgas R, Ramirez-Huesca M, Dominguez-Jimenez C, Jimenez-Heffernan JA, Aguilera A, Sanchez-Tomero JA, Bajo MA, Alvarez V, Castro MA, del Peso G, Cirujeda A, Gamallo C, Sanchez-Madrid F, Lopez-Cabrera M. Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N Engl J Med 2003; 348: 403–413.PubMedGoogle Scholar
  18. 18.
    Koomen GCM, Betjes MGH, Zemel D, Krediet RT, Hoek FJ. Cancer antigen 125 is locally produced in the peritoneal cavity during continuous ambulatory peritoneal dialysis. Perit Dial Int 1994; 14: 132–136.PubMedGoogle Scholar
  19. 19.
    Visser CE, Brouwer-Steenbergen JJE, Betjes MGH, Koomen GCM, Beelen RHJ, Krediet RT. Cancer antigen 125: a bulk marker for the mesothelial mass in stable peritoneal dialysis patients. Nephrol Dial Transplant 1995; 10: 64–69.PubMedGoogle Scholar
  20. 20.
    O’Brien TJ, Hardin JW, Bannon GA, Norvis JS, Quirk G Jr. CA 125 antigen in human amniotic fluid and fetal membranes. Am J Obstet Gynecol 1986; 155: 50–55.PubMedGoogle Scholar
  21. 21.
    O’Brien TJ, Raymond LM, Bannon GA, Ford HD, Hardartottir H, Miller FC, et al. New monoclonal antibodies identify the glycoprotein carrying the CA 125 epitope. Am J Obstet Gynecol 1991; 165: 1857–1864.PubMedGoogle Scholar
  22. 22.
    Kabawat SE, Bast RC Jr, Bhan AK, Welch WR, Knapp RC, Colvin RB. Tissue distribution of a coelomic epithelium related antigen recognized by the monoclonal antibody OC125. Int J Gynecol Pathol 1983; 2: 275–285.PubMedGoogle Scholar
  23. 23.
    Bast RC Jr, Klug TL, St John E, Jenison E, Niloff JM, Lazarus H, et al. A radioimmunoassay using a monoclonal antibody to monitor the course of epithelial ovarian cancer. N Engl J Med 1983; 309: 883–887.PubMedGoogle Scholar
  24. 24.
    Jacobs L, Stabile I, Bridges J, Kemsley P, Reynolds C, Grudzinskas J, et al. Multimodal approach to screening for ovarian cancer. Lancet 1988; 1: 268–271.PubMedGoogle Scholar
  25. 25.
    Malkasian GD, Knapp RC, Lavin PT, Zurawski VR, Podrate KC, Stanhope R, et al. Preoperative evaluation of serum CA 125 levels in premenopausal and postmenopausal patients with pelvic masses: discrimination of benign from malignant disease. Am J Obstet Gynecol 1988; 159: 341–346.PubMedGoogle Scholar
  26. 26.
    Patsner B, Mann WJ. The value of preoperative serum CA125 levels in patients with a pelvic mass. Am J Obstet Gynecol 1988; 159: 873–876.PubMedGoogle Scholar
  27. 27.
    Zurawski VR, Orjaseter H, Anderson A, Jellum E. Elevated serum CA125 levels prior to diagnosis of ovarian neoplasia: relevance for early detection of ovarian cancer. Int J Cancer 1988; 42: 677–680.PubMedGoogle Scholar
  28. 28.
    Bon GJ, Kenemans P, Verstraeten R, Van Kamp GJ, Hilgers J. Serum tumor marker immunoassays in gynecologic oncology: establishment of reference values. Am J Obstet Gynecol 1996; 174: 107–114.PubMedGoogle Scholar
  29. 29.
    Buller RE, Vasilev S, DiSaia PJ. CA 125 kinetics: a cost-effective clinical tool to evaluate trial outcomes in the 1990s. Am J Obstet Gynecol 1996; 174: 1241–1254.PubMedGoogle Scholar
  30. 30.
    Jacobs I, Bast RC Jr. The CA125 tumor-associated antigen: a review of the literature. Hum Reprod 1989; 4: 1–12.PubMedGoogle Scholar
  31. 31.
    Van der Burg MEL, Lammes FB, Verweij J. CA125 in ovarian cancer. Neth J Med 1992; 40: 36–51.PubMedGoogle Scholar
  32. 32.
    Barbieri RL, Niloff JM, Bast RC Jr, Schnaetze E, Kistner RW, Knapp RC. Elevated serum concentrations of CA125 in patients with advanced endometriosis. Fertil Steril 1986; 45: 630–634.PubMedGoogle Scholar
  33. 33.
    Halila H, Steuman UH, Seppula M. Ovarian cancer antigen CA125 levels in pelvic inflammatory disease and pregnancy. Cancer 1986; 57: 1327–1329.PubMedGoogle Scholar
  34. 34.
    Simseh H, Kadayifci A, Okan E. High serum level of CA125 in malignant peritoneal mesothelioma. Eur J Cancer 1995; 31: 129.Google Scholar
  35. 35.
    Molina R, Filella X, Bruix J, Mengual P, Bosch J, Colvet X, et al. Cancer antigen 125 in serum and ascitic fluid of patients with liver diseases. Clin Chem 1991; 37: 1379–1383.PubMedGoogle Scholar
  36. 36.
    Cases A, Filella X, Molina R, Ballesta AM, Lopez-Pedret J, Revert L. Tumor markers in chronic renal failure and hemodialysis patients. Nephron 1991; 57: 183–186.PubMedGoogle Scholar
  37. 37.
    Zeferos N, Digenis GE, Christophoraki M, Alexopoulos I, Kostakis A, Gyftahi H. Tumor markers in patients undergoing hemodialysis or kidney transplantation. Nephron 1991; 59: 618–620.PubMedGoogle Scholar
  38. 38.
    Menzin AW, Kobrin S, Pollak E, Goodman DBP, Rubin SC. The effect of renal function on serum levels of CA125. Gynecol Oncol 1995; 58: 375–377.PubMedGoogle Scholar
  39. 39.
    Passadakis P, Panagoutsos S, Thodis E, Tsivara I, Sopassi F, Kartali S, et al. Evaluation of changes in serum and dialysate levels of cancer antigen 125 in stable continuous ambulatory peritoneal dialysis patients. Adv Perit Dial 1999; 15: 40–44.PubMedGoogle Scholar
  40. 40.
    Camci C, Buyukberber S, Tarakcioglu M, Adam SM, Camci C, Turk HM, et al. The effect of continuous ambulatory peritoneal dialysis on serum CA-125 levels. Eur J Gynaecol Oncol 2002; 23: 472–474.PubMedGoogle Scholar
  41. 41.
    Lye WC, Tambyah P, Leong SO, Lee EJC. Serum tumor markers in patients on dialysis and kidney transplantation. Adv Perit Dial 1994; 10: 109–111.PubMedGoogle Scholar
  42. 42.
    Sevinc A, Buyukberber S, Sari R, Kiroglu Y, Turk HM, Ates M. Elevated serum CA-125 levels in hemodialysis patients with peritoneal, pleural, or pericardial fluids. Gynecol Oncol 2000; 77: 254–257.PubMedGoogle Scholar
  43. 43.
    Kawabe T, Ishii M, Sugimoto T, Tagawa H. Low serum CA125 concentration in chronic renal failure treated with continuous ambulatory peritoneal dialysis. Clin Chim Acta 1987; 168: 113–114.PubMedGoogle Scholar
  44. 44.
    Bastiani B, Chu H. Serum CA125 in chronic peritoneal dialysis (PD) patients: the effect of PD catheter implantation and peritonitis. Am J Nephrol 1995; 15: 468–472.Google Scholar
  45. 45.
    Pannekeet MM, Zemel D, Koomen GCM, Struijk DG, Krediet RT. Dialysate markers of peritoneal tissue during peritonitis and in stable CAPD. Perit Dial Int 1995; 15: 217–225.PubMedGoogle Scholar
  46. 46.
    Ismail M, Rotmensch J, Mercer LJ, Block BS, Salti GI, Holt JA. CA125 in peritoneal fluid from patients with nonmalignant gynecologic disorders. J Reprod Med 1994; 39: 510–512.PubMedGoogle Scholar
  47. 47.
    Onsrud M, Shabana A, Austgullen R, Nustad K. Comparison between soluble tumor necrosis factor receptors and CA125 in peritoneal fluids as a marker for epithelial ovarian cancer. Gynecol Oncol 1995; 57: 183–187.PubMedGoogle Scholar
  48. 48.
    Redman CWE, Jones SR, Luesley DM, Nicholl SE, Kelly K, Buxton EJ, et al. Peritoneal trauma releases CA125? Br J Cancer 1988; 58: 502–504.PubMedGoogle Scholar
  49. 49.
    Stylianou E, Jenner LA, Davies M, Coles GA, Williams JD. Isolation, culture and characterization of human peritoneal mesothelial cells. Kidney Int 1990; 37: 1563–1570.PubMedGoogle Scholar
  50. 50.
    Betjes MGH, Tak CW, Struijk DG, Krediet RT, Arisz L, Beelen RHJ. Adherence of staphylococci to plastic, mesothelial cells and mesothelial extracellular matrix. Adv Perit Dial 1992; 8: 215–218.PubMedGoogle Scholar
  51. 51.
    Zeillemaker AM, Verbrugh HA, Hoynck van Papendrecht AAGM, Leguit P. CA125 secretion by peritoneal mesothelial cells. J Clin Pathol 1994; 47: 263–265.PubMedGoogle Scholar
  52. 52.
    Breborowicz A, Breborowicz M, Pyda M, Polubinska A, Oreopoulos D. Limitations of CA125 as an index of peritoneal mesothelial cell mass. Nephron Clin Pract 2005; 100: c46–c51.PubMedGoogle Scholar
  53. 53.
    Breborowicz A, Breborowicz M, Oreopoulos D. Glucose-induced changes in the phenotype of human peritoneal mesothelial cells: effect of L-2-oxothiazolide carboxylic acid. Am J Nephrol 2003; 23: 471–476.PubMedGoogle Scholar
  54. 54.
    Sanusi AA, Zweers MM, Weening JJ, de Waart DR, Struijk DG, Krediet RT. Expression of cancer antigen 125 by peritoneal mesothelial cells is not influenced by duration of peritoneal dialysis. Perit Dial Int 2001; 21: 495–500.PubMedGoogle Scholar
  55. 55.
    Lai KN, Lai KB, Szeto CC, Ho KKL, Poon P, Lam CWK, et al. Dialysate cell population and cancer antigen 125 in stable continuous ambulatory peritoneal dialysis patients: their relationship with transport parameters. Am J Kidney Dis 1997; 29: 699–705.PubMedGoogle Scholar
  56. 56.
    Wong ECC. Difficulties in analysis of CA125 in diluted samples. Clin Chem 1995; 41: 1543–1544.PubMedGoogle Scholar
  57. 57.
    Ho-dac-Pannekeet MM, Hiralall JK, Struijk DG, Krediet RT. Longitudinal follow-up of CA125 in peritoneal effluent. Kidney Int 1997; 51: 888–893.PubMedGoogle Scholar
  58. 58.
    Jimenez C, Diaz C, Selgas R, Bajo MA, Del Peso G, Sánchez-Tomero JA, et al. Peritoneal kinetics of cancer antigen 125 in peritoneal dialysis patients: the relationship with peritoneal outcome. Adv Perit Dial 1999; 15: 36–39.PubMedGoogle Scholar
  59. 59.
    Akman,S. van Westrhenen R, De Waart DR, Hiralall JK, Zweers M M, Krediet RT. The effect of dwell time on dialysate cancer antigen 125 appearance rates in patients on continuous ambulatory peritoneal dialysis. Adv Perit Dial 2003; 19: 24–27.PubMedGoogle Scholar
  60. 60.
    Pannekeet MM, Koomen GCM, Struijk DG, Krediet RT. Dialysate CA125 in stable CAPD patients: no relation with transport parameters. Clin Nephrol 1995; 44: 248–254.PubMedGoogle Scholar
  61. 61.
    Kawanishi H, Moriishi M, Harada Y, Sakikubo E, Nagai T, Tsuchiya S. Necessity of correcting cancer antigen 125 appearance rates by body surface area. Adv Perit Dial 2000; 16: 22–25.PubMedGoogle Scholar
  62. 62.
    Bouts AHM, Groothoff JW, Ploos van Amstel S, Zweers MM, Davin J-C, Krediet RT. Dialysate cancer antigen 125 levels in children treated with peritoneal dialysis. Adv Perit Dial 2000; 16: 328–331.PubMedGoogle Scholar
  63. 63.
    Turhan P, Sever L, Caliskan S, Kasapcopur O, Sever A, Hacibekiroglu M, et al. Dialysate CA125 levels in children on continuous peritoneal dialysis. Pediatr Nephrol 2005; 20: 1615–1621.PubMedGoogle Scholar
  64. 64.
    Grzegorzewska AE, Mlot M, Leande M. Serum levels of cancer antigen 125 and interleukin-15 in relation to the nutrition status of peritoneal dialysis patients. Adv Perit Dial 2004; 20: 185–189.PubMedGoogle Scholar
  65. 65.
    Flessner M. Osmotic barrier of the parietal peritoneum. Am J Physiol 1994; 267: F861–F870.PubMedGoogle Scholar
  66. 66.
    Pietrzak I, Hirszel P, Shostak A, Welch PG, Lee RE, Maher JF. Splanchnic volume, not flow rate, determines peritoneal permeability. ASAIO Trans 1989; 35: 583–587.PubMedGoogle Scholar
  67. 67.
    Douma CE, De Waart DR, Struijk DG, Krediet RT. The nitric oxide donor nitroprusside intraperitoneally affects peritoneal permeability in CAPD. Kidney Int 1997; 51: 1885–1892.PubMedGoogle Scholar
  68. 68.
    Ho-dac-Pannekeet MM, Krediet RT. Inflammatory changes in vivo during CAPD: what can the effluent tell us? Kidney Int 1966; 50 (Suppl. 56): S12–S16.Google Scholar
  69. 69.
    Zemel D, Koomen GCM, Hart AAM, Ten Berge RJM, Struijk DG, Krediet RT. Relationship of TNF-a, interleukin-6 and prostaglandins to peritoneal permeability for macromolecules during longitudinal follow-up of peritonitis in continuous ambulatory peritoneal dialysis. J Lab Clin Med 1993; 122: 686–696.PubMedGoogle Scholar
  70. 70.
    Zemel D, Struijk DG, Dinkla C, Stolk LM, Ten Berge RJM, Krediet RT. Effects of intraperitoneal cyclooxygenase inhibition on inflammatory mediators in dialysate and peritoneal membrane characteristics during peritonitis in continuous ambulatory peritoneal dialysis. J Lab Clin Med 1995; 126: 204–215.PubMedGoogle Scholar
  71. 71.
    Zemel D, Krediet RT. Cytokine patterns in the effluent of continuous ambulatory peritoneal dialysis: relationship to peritoneal permeability. Blood Purif 1996; 14: 198–216.PubMedGoogle Scholar
  72. 72.
    Fussholler A, Grabensee B, Plum J. Effluent CA 125 concentration in chronic peritoneal dialysis patients: influence of PD duration, peritoneal transport and PD regimen. Kidney Blood Press Res 2003; 26: 118–122.PubMedGoogle Scholar
  73. 73.
    van Esch S, Zweers MM, Jansen MA, de Waart DR, van Manen JG, Krediet RT. Determinants of peritoneal solute transport rates in newly started nondiabetic peritoneal dialysis patients. Perit Dial Int 2004; 24: 554–561.PubMedGoogle Scholar
  74. 74.
    Rodrigues A, Martins M, Santos MJ, Fonseca I, Oliveira JC, Cabrita A, et al. Evaluation of effluent markers cancer antigen 125, vascular endothelial growth factor, and interleukin-6: relationship with peritoneal transport. Adv Perit Dial 2004; 20: 8–12.Google Scholar
  75. 75.
    Mateijsen MA, van der Wal AC, Hendriks PM, Zweers MM, Mulder J, Struijk DG, Krediet RT. Vascular and interstitial changes in the peritoneum of CAPD patients with peritoneal sclerosis. Perit Dial Int 1999; 19: 517–525.PubMedGoogle Scholar
  76. 76.
    Ho-dac-Pannekeet MM, Hiralall JK, Struijk DG, Krediet RT. Markers of peritoneal mesothelial cells during treatment with peritoneal dialysis. Adv Perit Dial 1997; 13: 72–76.PubMedGoogle Scholar
  77. 77.
    Martikainen T, Ekstrand A, Honkanen E, Teppo AM, Gronhagen-Riska C. Do interleukin-6, hyaluronan, soluble intercellular adhesion molecule-1 and cancer antigen 125 in dialysate predict changes in peritoneal function? A 1-year follow-up study. Scand J Urol Nephrol 2005; 39: 410–416.PubMedGoogle Scholar
  78. 78.
    Ho-dac-Pannekeet MM. Assessment of peritoneal permeability and mesothelial cell mass in peritoneal dialysis patients (Thesis). Amsterdam: University of Amsterdam, 1997.Google Scholar
  79. 79.
    Otsuka Y, Nakayama M, Ikeda M, Sherif AM, Yokoyama K, Yamamoto H, et al. Restoration of peritoneal integrity after withdrawal of peritoneal dialysis: characteristic features of the patients at risk of encapsulating peritoneal sclerosis. Clin Exp Nephrol 2005; 9: 315–319.PubMedGoogle Scholar
  80. 80.
    Miranda B, Selgas R, Celadilla O, Munoz J, Sánchez- Sicilia L. Peritoneal resting and heparinization as an effective treatment for ultrafiltration failure in patients on CAPD. Contrib Nephrol 1991; 89: 199–204.Google Scholar
  81. 81.
    Da Alvaro F, Castro MJ, Dapena F, Bajo MA, Fernandez-Reyes MJ, Romero JR, et al. Peritoneal resting is beneficial in peritoneal hyperpermeability and ultrafiltration failure. Adv Perit Dial 1993; 9: 56–61.PubMedGoogle Scholar
  82. 82.
    Hagmolen of ten Have W, Ho-dac-Pannekeet MM, Struijk DG, Krediet RT. Mesothelial regeneration after peritonitis in dialysis patients (Abstract). J Am Soc Nephrol 1997; 8: 180A.Google Scholar
  83. 83.
    Ho-dac-Pannekeet MM. Peritoneal fluid markers of mesothelial cells and function. Adv Ren Replace Ther 1998; 5: 205–211PubMedGoogle Scholar
  84. 84.
    Simonsen O, Wieslander A, Landgren C, Rippe B. Less infusion pain and elevated level of cancer antigen 125 by the use of a new and more biocompatible PD fluid. Adv Perit Dial 1996; 12: 156–160.PubMedGoogle Scholar
  85. 85.
    Cappelli G, Bandiani G, Cancarini GC, Feriani M, Dell’Aquila R, Saffioti S, et al. Low concentrations of glucose degradation products in peritoneal dialysis fluids and their impact on biocompatibility parameters: prospective cross-over study with a three-compartment bag. Adv Perit Dial 1999; 15: 238–242.PubMedGoogle Scholar
  86. 86.
    Rippe B, Simonsen O, Heimburger O, Christensson A, Haraldsson B, Stelin G, et al. Long-term clinical effects of a peritoneal dialysis fluid with less glucose degradation products. Kidney Int 2001; 59: 348–357.PubMedGoogle Scholar
  87. 87.
    Jones S, Holmes CJ, Krediet RT, Mackenzie R, Faict D, Tranaeus A, et al. Continuous dialysis with bicarbonate/lactate based peritoneal dialysis solution is associated with an increase in dialysate CA125 and a decrease in hyaluronic acid (HA) levels. Kidney Int 2001; 59: 1529–1538.PubMedGoogle Scholar
  88. 88.
    Van Biesen W, Boer W, De Greve B, Dequidt C, Vijt D, Faict D, et al. A randomized clinical trial with a 0.6% amino acid/ 1.4% glycerol peritoneal dialysis solution. Perit Dial Int 2004; 24: 222–230.PubMedGoogle Scholar
  89. 89.
    Williams JD, Topley N, Craig KJ, Mackenzie RK, Pischetsrieder M, Lage C, et al. The Euro-Balance Trial: the effect of a new biocompatible peritoneal dialysis fluid (balance) on the peritoneal membrane. Kidney Int 2004; 66: 408–418.PubMedGoogle Scholar
  90. 90.
    Witowski J, Korybalska K, Ksiazek K, Wisniewska-Elnur J, Jorres A, Lage C, et al. Peritoneal dialysis with solutions low in glucose degradation products is associated with improved biocompatibility profile towards peritoneal mesothelial cells. Nephrol Dial Transplant 2004; 19: 917–924.PubMedGoogle Scholar
  91. 91.
    Martikainen T, Ekstrand A, Honkanen E, Teppo AM, Gronhagen-Riska C. Do interleukin-6, hyaluronan, Soluble intercellular adhesion molecule-1 cancer antigen 125 in dialysate predict changes in peritoneal function? A 1-year folloe-up study J Urol Nephrol 2005;39: 410–416.PubMedGoogle Scholar
  92. 92.
    Martikainen TA, Teppo AM, Gronhagen-Riska C, Ekstrand AV. Glucose-free dialysis solutions: inductors of inflammation or preservers of peritoneal membrane? Perit Dial Int 2005; 25: 453–460.PubMedGoogle Scholar
  93. 93.
    Szeto CC, Chow KM, Lam CW, Leung CB, Kwan BC, Chung KY, et al. Clinical biocompatibility of a neutral peritoneal dialysis solution with minimal glucose-degradation products – A 1-year randomized control trial. Nephrol Dial Transplant 2007; 22: 552–559.PubMedGoogle Scholar
  94. 94.
    Grahame GR, Torchia MG, Dankewich KA, Ferguson IA. Surface-active material in peritoneal effluent of CAPD patients. Perit Dial Bull 1985; 5: 109–111.Google Scholar
  95. 95.
    Di Paolo N, Buoncristiani U, Capotondo L, et al. Phosphatidylcholine and peritoneal transport during peritoneal dialysis. Nephron 1986; 44: 365–370.PubMedGoogle Scholar
  96. 96.
    Williams JD, Beavis JM. Phosphatidylcholine and peritoneal dialysis. Contrib Nephrol 1990; 85: 142–149.PubMedGoogle Scholar
  97. 97.
    Beavis J, Harwood JL, Coles GA, Williams JD. Synthesis of phospholipids by human peritoneal mesothelial cells. Perit Dial Int 1994; 14: 348–355.PubMedGoogle Scholar
  98. 98.
    Dobbie JW, Pavlina T, Lloyd JK, Johnston RC. Phosphatidylcholine synthesis by peritoneal mesothelium: its implications for peritoneal dialysis. Am J Kidney Dis 1988; 12: 31–36.PubMedGoogle Scholar
  99. 99.
    Dobbie JW, Lloyd JK. Mesothelium secretes lamellar bodies in a similar manner to type II pneumocyte secretion of surfactant. Perit Dial Int 1989; 9: 215–219.PubMedGoogle Scholar
  100. 100.
    Lipkin GW, Forbes MA, Cooper EH, Turney JH. Hyaluronic acid metabolism and its clinical significance in patients treated by continuous ambulatory peritoneal dialysis. Nephrol Dial Transplant 1993; 8: 357–360.PubMedGoogle Scholar
  101. 101.
    Yung S, Coles GA, Williams JD, Davies M. The source and possible significance of hyaluronan in the peritoneal cavity. Kidney Int 1994; 46: 527–533.PubMedGoogle Scholar
  102. 102.
    Honkanen E, Froseth B, Gronhagen-Riska C. Serum hyaluronic acid and procollagen III amino terminal propeptide in chronic renal failure. Am J Nephrol 1991; 11: 201–206.PubMedGoogle Scholar
  103. 103.
    Lai KN, Szeto CC, Lai KB, Lam CW, Chan DT, Leung JC. Increased production of hyaluronan by peritoneal cells and its significance in patients on CAPD. Am J Kidney Dis 1999; 33: 318–324.PubMedGoogle Scholar
  104. 104.
    Staprans I, Piel CF, Felts JM. Analysis of selected plasma constituents in continuous ambulatory peritoneal dialysis effluent. Am J Kidney Dis 1986; 7: 490–494.PubMedGoogle Scholar
  105. 105.
    Davies M, Stylianou E, Yung S, Thomas GJ, Coles GA, Williams JD. Proteoglycans of CAPD-dialysate fluid and mesothelium. Contrib Nephrol 1990; 85: 131–141.Google Scholar
  106. 106.
    Szeto CC, Wong TY, Lai KB, Lam CW, Lai KN, Li PK. Dialysate hyaluronan concentration predicts survival but not peritoneal sclerosis in continuous ambulatory peritoneal dialysis. Am J Kidney Dis 2000; 36: 609–614.PubMedGoogle Scholar
  107. 107.
    Yung S, Thomas GJ, Stylianou E, Williams JD, Coles GA, Davies M. Source of peritoneal proteoglycans. Human peritoneal mesothelial cells synthesize and secrete mainly small dermatan sulfate proteoglycans. Am J Pathol 1995; 146: 520–529.PubMedGoogle Scholar
  108. 108.
    Herbelin A, Nguyen AT, Zingraff J, Urefla P, Deschamps-Latscha B. Influence of uremia and hemodialysis on circulating interleukin-1 and tumor necrosis factor a. Kidney Int 1990; 37: 116–125.PubMedGoogle Scholar
  109. 109.
    Pereira BJG, Shapiro LS, King AJ, Falagas ME, Strom JA, Dinarello CA. Plasma levels of IL-113, TNFα and their specific inhibitors in undialyzed chronic renal failure, CAPD and hemodialysis patients. Kidney Int 1994; 45: 890–896.PubMedGoogle Scholar
  110. 110.
    Herbelin A, Urefla P, Nguyen AT, Zingraff J, Deschamps-Latscha B. Elevated levels of interleukin-6 in patients with chronic renal failure. Kidney Int 1991; 39: 954–960.PubMedGoogle Scholar
  111. 111.
    Zemel D, ten Berge RJM, Koomen GCM, Struijk DG, Krediet RT. Serum interleukin-6 in continuous ambulatory peritoneal dialysis patients. Nephron 1993; 64: 320–321.PubMedGoogle Scholar
  112. 112.
    Douvdevani A, Rapoport J, Konforti A, Argov S, Ovnat A, Chaimovitz C. Human peritoneal mesothelial cells synthesize IL-1 alpha and beta. Kidney Int 1994; 46: 993–1001.PubMedGoogle Scholar
  113. 113.
    Topley N, Jórres A, Luttmann W, et al. Human peritoneal mesothelial cells synthesize IL-6: induction by IL-1 beta and TNF alpha. Kidney Int 1993; 43: 226–233.PubMedGoogle Scholar
  114. 114.
    Betjes MGH, Tuk CW, Struijk DG, et al. Interleukin-8 production by human peritoneal mesothelial cells in response to tumor necrosis factor-a, interleukin-1, and medium conditioned by macrophages cocultured with Staphylococcus epidermidis. J Infect Dis 1993; 168: 1202–1210.PubMedGoogle Scholar
  115. 115.
    Topley N, Brown Z, Jórres A, et al. Human peritoneal mesothelial cells synthesize interleukin-8. Synergistic induction by interleukin-1 beta and tumor necrosis factor-alpha. Am J Pathol 1993; 142: 1876–86.PubMedGoogle Scholar
  116. 116.
    Visser CE, Tekstra J, Brouwer-Steenbergen JJ, Tuk CW, Boorsma DM, Sampat-Sardjoepersad SC, Meijer S, Krediet RT, Beelen RH. Chemokines produced by mesothelial cells: huGRO-alpha, IP-10, MCP-1 and RANTES. Clin Exp Immunol 1998; 112: 270–275.PubMedGoogle Scholar
  117. 117.
    Stylianou E, Mackenzie RK, Davies M, Coles GA, Williams JD. The interaction of organism, phagocyte and mesothelial cell. Contrib Nephrol 1990; 85: 30–38.PubMedGoogle Scholar
  118. 118.
    Shaldon S, Dinarello CA, Wyler DJ. Induction of interleukin-1 during CAPD. Contrib Nephrol 1987; 57: 207–212.PubMedGoogle Scholar
  119. 119.
    Goldman M, Vandenabeele P, Moulart J, et al. Intraperitoneal secretion of interleukin-6 during continuous ambulatory peritoneal dialysis. Nephron 1990; 56: 277–280.PubMedGoogle Scholar
  120. 120.
    Zemel D, ten Berge RJM, Struijk DG, Bloemena E, Koomen GCM, Krediet RT. Interleukin-6 in CAPD patients without peritonitis; relationship to the intrinsic permeability of the peritoneal membrane. Clin Nephrol 1992; 37: 97–103.PubMedGoogle Scholar
  121. 121.
    Lin CY, Lin CC, Huang TP. Serial changes of interleukin-6 and interleukin-8 levels in drain dialysate of uremic patients with continuous ambulatory peritoneal dialysis during peritonitis. Nephron 1993; 63: 404–408.PubMedGoogle Scholar
  122. 122.
    Zemel D, Krediet RT, Koomen GCM, Kortekaas WMR, Geertzen HGM, ten Berge RJM. Interleukin-8 during peritonitis in patients treated with CAPD; an in vivo model of acute inflammation. Nephrol Dial Transplant 1994; 9: 169–174.PubMedGoogle Scholar
  123. 123.
    Brauner A, Hylander B, Wretlind B. Interleukin-6 and interleukin-8 in dialysate and serum from patients on continuous ambulatory peritoneal dialysis. Am JKidney Dis 1993; 22: 430–435.Google Scholar
  124. 124.
    Steinhauer HB, Gunter B, Schollmeyer P. Stimulation of peritoneal synthesis of vasoactive prostaglandins during peritonitis in patients on continuous ambulatory peritoneal dialysis. Eur J Clin lnvest 1985; 15: 1–15.Google Scholar
  125. 125.
    Steinhauer HB, Schollmeyer P. Prostaglandin-mediated loss of proteins during peritonitis in continuous ambulatory peritoneal dialysis. Kidney Int 1986; 29: 584–590.PubMedGoogle Scholar
  126. 126.
    Zemel D, Imholz ALT, de Waart DR, Dinkla C, Struijk DG, Krediet RT. Appearance of tumor necrosis factor-a and soluble TNF-receptors I and II in peritoneal effluent of CAPD. Kidney Int 1994; 46: 1422–1430.PubMedGoogle Scholar
  127. 127.
    Witowski J, Topley N, Jorres A, Liberek T, Coles GA, Williams JD. Effect of lactate-buffered peritoneal dialysis fluids on human peritoneal mesothelial cell interleukin-6 and prostaglandin synthesis. Kidney Int 1995; 47: 282–293.PubMedGoogle Scholar
  128. 128.
    Selgas R, Del Peso G, Bajo MA, Castro MA, Molina S, Cirugeda A, et al. Spontaneous VEGF production by cultured peritoneal mesothelial cells from patients on peritoneal dialysis. Perit Dial Int 2000; 20: 798–801.PubMedGoogle Scholar
  129. 129.
    Gries E, Kopp J, Thomae U, Kuhlman H. Relation of intraperitoneal and intravascular coagulation and fibrinolysis related antigens in peritoneal dialysis. Thromb Haemost 1990; 63: 356–360.PubMedGoogle Scholar
  130. 130.
    Sitter T, Spannagl M, Schiffl H, Held E, van Hinsbergh VW, Kooistra T. Disbalance between intraperitoneal coagulation and fibrinolysis during peritonitis of CAPD patients: the role of mesothelial cells. Nephrol Dial Transplant 1995; 10: 677–683.PubMedGoogle Scholar
  131. 131.
    van Hinsbergh WM, Kooistra T, Scheffer MA, van Bockel JH, van Muijen GNP. Characterization and fibrinolytic properties of human omental tissue mesothelial cells. Comparison with endothelial cells. Blood 1990; 75: 1490–1497.PubMedGoogle Scholar
  132. 132.
    Slater ND, Cope GH, Raftery AT. Peritoneal plasminogen activator activity after chronic exposure to dialysis fluid. Perit Dial Int 1992; 12: 203–263.Google Scholar
  133. 133.
    Gotloib L, Digenis GE, Rabinovich S, Medline A, Oreopoulos DG. Ultrastructure of normal rabbit mesentery. Nephron 1983; 34: 248–255.PubMedGoogle Scholar
  134. 134.
    Laurent TC. II The ultrastructure and physical-chemical properties of interstitial connective tissue. Pflugers Arch 1972; 336 (Suppl.): S21–S42.Google Scholar
  135. 135.
    Jorres A, Ludat K, Lang J, Sander K, Gahl GM, Frei U, DeJonge K, Williams JD, Topley N. Establishment and functional characterization of human peritoneal fibroblasts in culture: regulation of interleukin-6 production by proinflammatory cytokines. J Am Soc Nephrol 1996; 7: 2192–2201.PubMedGoogle Scholar
  136. 136.
    Nagata Y, Matsumura F, Motoyoski H, Yamasaki H, Fukuda K, Tanaka S. Secretion of hyaluronic acid from synovial fibroblasts is enhanced by histamine: a newly observed metabolic effect of histamine. J Lab Clin Med 1992; 120: 707–712.PubMedGoogle Scholar
  137. 137.
    Laurent TC, Fraser JRE. The properties and turnover of hyaluronan. In: Evered D, Whelan J, eds. Functions of Proteoglycans. Ciba Foundation Symposium, Chichester: Wiley, 1986; 124: 9–29.Google Scholar
  138. 138.
    Lai KN, Lai KB, Szeto CC, Lam CWK, Leung JCK. Growth factors in continuous ambulatory peritoneal dialysis effluent. Am J Nephrol 1999; 19: 416–422.PubMedGoogle Scholar
  139. 139.
    Zweers MM, De Waart DR, Smit W, Struijk DG, Krediet RT. The growth factors VEGF and TGF-beta1 in peritoneal dialysis. J Lab Clin Med 1999; 134: 124–132.PubMedGoogle Scholar
  140. 140.
    Wong TYH, Szeto CC, Lai KB, Lam CWK, Lai KN, Li PKT. Longitudinal study of peritoneal membrane function in continuous ambulatory peritoneal dialysis: relationship with peritonitis and fibrosing factors. Perit Dial Int 2000; 20: 679–685.PubMedGoogle Scholar
  141. 141.
    Fessler JH, Fessler LI. Biosynthesis of procollagen. Annu Rev Biochem 1978; 47: 129–162.PubMedGoogle Scholar
  142. 142.
    Rohde H, Vargas L, Hahn E, Kalbfleisch H, Bruguera M, Timpl R. Radioimmunoassay for type III procollagen peptide and its application to human liver disease. Eur J Clin Invest 1979; 9: 451–459.PubMedGoogle Scholar
  143. 143.
    Shahin M, Schuppan D, Waldherr R, et al. Serum procollagen peptides and collagen type VI for the assessment of activity and degree of hepatic fibrosis in schistosomiasis and alcoholic liver disease. Hepatology 1992; 15: 637–644.PubMedGoogle Scholar
  144. 144.
    Parfitt AM, Simon LS, Villanueva AR, Krane SM. Procollagen type I carboxy-terminal extension peptide in serum as a marker of collagen biosynthesis in bone. Correlation with iliac bone formation rate and comparison with total alkaline phosphatase. J Bone Miner Res 1987; 2: 427–436.PubMedGoogle Scholar
  145. 145.
    Digenis GE, Dombros NV, Christophoraki M, et al. Procollagen type-I in serum and dialysate of continuous ambulatory peritoneal dialysis patients. Perit Dial Int 1993; 13 (Suppl. 2): S480–S483.PubMedGoogle Scholar
  146. 146.
    Gerakis A, Apostolou T, Bagiatoudi G, Tzouganatou A, Margellos V, Nikolopoulou N, et al. Serum procollagen type I carboxyterminal propeptide in CAPD and hemodialysis patients. Perit Dial Int 1996; 16 (Suppl.) 1: S309–S311.PubMedGoogle Scholar
  147. 147.
    Joffe P, Jensen LT. Type I and III procollagens in CAPD: markers of peritoneal fibrosis. In: Khanna R, Nolph KD, Prowant BF, Twardowski ZJ, Oreopoulos DG, eds. Advances in Peritoneal Dialysis. Toronto: Peritoneal Dialysis Bulletin Inc., 1991; 7: 158–160.Google Scholar
  148. 148.
    Graff J, Joffé P, Fugleberg S, Jensen LT. Collagen markers in peritoneal dialysis patients. Adv Perit Dial 1995; 11: 24–27.PubMedGoogle Scholar
  149. 149.
    Fukudome K, Fujimoto S, Sato Y, Hisanaga S, Eto T. Peritonitis increases MMP-9 activity in peritoneal effluent from CAPD patients. Nephron 2001; 87: 35–41.PubMedGoogle Scholar
  150. 150.
    De Boer A, Levi M, Reddingius RE, et al. Intraperitoneal hypercoagulation and hyperfibrinolysis is present in childhood peritonitis. Pediatr Nephrol 1999; 13: 284–287.PubMedGoogle Scholar
  151. 151.
    Szeto CC, Poon P, Szeto CY, Wong TY, Lai KB, Li PK. Plasminogen activator inhibitor-1 4G/5G genetic polymorphism does not affect peritoneal transport characteristic. Am J Kidney Dis. 2002; 39: 1061–1067.PubMedGoogle Scholar
  152. 152.
    Tekstra J, Visser CE, Tuk CW, et al. Identification of the major chemokines that regulate cell influxes in peritoneal dialysis patients. J Am Soc Nephrol 1996; 7: 2379–2384PubMedGoogle Scholar
  153. 153.
    Zemel D, Betjes MG, Dinkla C, Struijk DG, Krediet RT. Analysis of inflammatory mediators and peritoneal permeability to macromolecules shortly before the onset of overt peritonitis in patients treated with CAPD. Perit Dial Int 1995; 15: 134–141.PubMedGoogle Scholar
  154. 154.
    Martikainen TA, Ekstrand AV, Honkanen EO, Teppo AM, Gronhagen-Riska C. Dialysate leukocytes, sICAM-1, hyaluronan and IL-6: predictors of outcome of peritonitis? Blood Purif 2004; 22: 360–366.PubMedGoogle Scholar
  155. 155.
    Ziegler C, Torchia M, Grahame GR, Ferguson IA. Peritoneal surface-active material in continuous ambulatory peritoneal dialysis (CAPD) patients. Perit Dial Int 1989; 9: 47–49.PubMedGoogle Scholar
  156. 156.
    Krack G, Viglino G, Cavalli PL, et al. Intraperitoneal administration of phosphatidylcholine improves ultrafiltration in continuous ambulatory peritoneal dialysis patients. Perit Dial Int 1992; 12: 359–364.PubMedGoogle Scholar
  157. 157.
    Beavis J, Harwood JL, Coles GA, Williams JD. Intraperitoneal phosphatidylcholine levels in patients on continuous ambulatory peritoneal dialysis do not correlate with adequacy of ultrafiltration. J Am Soc Nephrol 1993; 3: 1954–1960.PubMedGoogle Scholar
  158. 158.
    Wakabayashi Y, Yamada K, Miura Y, Nakano H, Nishimura M, Tsuchida H, et al. Type III procollagen N-peptide and hyaluronate in serum and dialysate of CAPD patients. Nippon Jinzo Gakkai Shi 1997; 39: 408–413.PubMedGoogle Scholar
  159. 159.
    Yamagata K, Tomida C, Koyama A. Intraperitoneal hyaluronan production in stable continuous ambulatory peritoneal dialysis patients. Perit Dial Int. 1999; 19: 131–137.PubMedGoogle Scholar
  160. 160.
    Digenis GE, Dombros NV, Balaskas EV, et al. Procollagen-1 and collagen-1 in the serum and dialysate of CAPD patients. Changes over time. Perit Dial Int 1995; 15: 371–374.PubMedGoogle Scholar
  161. 161.
    Hirahara I, Inoue M, Okuda K, Ando Y, Muto S, Kusano E. The potential of matrix metalloproteinase-2 as a marker of peritoneal injury, increased solute transport, or progression to encapsulating peritoneal sclerosis during peritoneal dialysis – a multicentre study in Japan. Nephrol Dial Transplant 2007; 22: 560–567.Google Scholar
  162. 162.
    Szeto CC, Wong TY, Lai KB, Chow KM, Li PK. The role of vascular endothelial growth factor in peritoneal hyperpermeability during CAPD-related peritonitis. Perit Dial Int 2002; 22: 265–267.PubMedGoogle Scholar
  163. 163.
    Pecoits-Filho R, Araujo MR, Lindholm B, Stenvinkel P, Abensur H, Romao JE Jr et al. Plasma and dialysate IL-6 and VEGF concentrations are associated with high peritoneal solute transport rate. Nephrol Dial Transplant 2002; 17: 1480–1486.PubMedGoogle Scholar
  164. 164.
    Zweers MM, Struijk DG, Smit W, Krediet RT. Vascular endothelial growth factor in peritoneal dialysis: a longitudinal follow-up. J Lab Clin Med 2001; 137: 125–132.PubMedGoogle Scholar
  165. 165.
    Szeto CC, Chow KM, Poon P, Szeto CY, Wong TY, Li PK. Genetic polymorphism of VEGF: impact on longitudinal change of peritoneal transport and survival of peritoneal dialysis patients. Kidney Int 2004; 65: 1947–1955.PubMedGoogle Scholar
  166. 166.
    Blom IE, Zweers MM, Krediet RT, et al. Connective tissue growth factor expression, net ultrafiltration rate and duration of peritoneal dialysis treatment. J Am Soc Nephrol 2001; 12: 423–424A.Google Scholar
  167. 167.
    Joffe P, Jensen LT. Type I and III procollagens in CAPD: markers of peritoneal fibrosis. Adv Perit Dial 1991; 7: 158–160.PubMedGoogle Scholar
  168. 168.
    Kim YL, Do J, Park SH, Cho K, Park J, Yoon K, Cho DK, Lee EG, Kim IS. Low glucose degradation products dialysis solution modulates the levels of surrogate markers of peritoneal inflammation, integrity, and angiogenesis: preliminary report. Nephrology (Carlton) 2003; 8 (Suppl.): S28–S32.Google Scholar
  169. 169.
    Feit J, Richard C, McCaffrey C, Levy M. Peritoneal clearance of creatinine and inulin in dogs: effect of splanchnic vasodilators. Kidney Int 1979; 16: 459–469.Google Scholar
  170. 170.
    Miller FN, Nolph KD, Harris PD, Rubin J, Wiegman DL, Joshua IG, Twardowski ZJ, Ghods AJ. Microvascular and clinical effects of altered peritoneal dialysis solutions. Kidney Int 1979; 15: 630–639.PubMedGoogle Scholar
  171. 171.
    Verfier C, Brunschvicg O, Le Charpentier Y, Lavergne A, Vantelon J. Structural and ultrastructural peritoneal membrane changes and permeability alterations during continuous ambulatory peritoneal dialysis. Proc Eur Dial Transplant Assoc 1981; 18: 199–205.Google Scholar
  172. 172.
    Rubin J, Herrera GA, Collins D. An autopsy study of the peritoneal cavity from patients on continuous ambulatory peritoneal dialysis. Am. J Kidney Dis 1991; 18: 97–102.PubMedGoogle Scholar
  173. 173.
    Flessner MF, Henegar J, Bigler S, Genous L. Is the peritoneum a significant transport barrier in peritoneal dialysis? Perit Dial Int 2003; 23: 542–549.PubMedGoogle Scholar
  174. 174.
    Levick JR. Flow through interstitium and fibrous matrices. Q J Exp Physiol 1987; 72: 409–438.PubMedGoogle Scholar
  175. 175.
    Nakamura Y, Wayland H. Macromolecular transport in the cat mesentery. Microvasc Res 1975; 9: 1–21PubMedGoogle Scholar
  176. 176.
    Fox JR, Wayland H. Interstitial diffusion of macromolecules in the rat mesentery. Microvasc Res 1979; 18: 255–276.PubMedGoogle Scholar
  177. 177.
    Collins JM. Inert gas exchange of subcutaneous and intraperitoneal gas pockets in piglets. Respir Physiol 1981; 46: 391–404.PubMedGoogle Scholar
  178. 178.
    Flessner MF, Fenstermacher JD, Dedrick RL, Blasberg RG. A distributed model of peritoneal-plasma transport: tissue concentration gradients. Am J Physiol 1985; 248: F425–F435.PubMedGoogle Scholar
  179. 179.
    Wiig H, DeCarlo M, Sibley L, Renkin EM. Interstitial exclusion of albumin in rat tissues measured by a continuous infusion method. Am J Physiol 1992; 263: H1222–H1233.PubMedGoogle Scholar
  180. 180.
    Hirszel P, Shea-Donohue T, Chakrabarti E, Montcalm E, Maher JF. The role of the capillary wall in restricting diffusion of macromolecules. Nephron 1988; 49: 58–61.PubMedGoogle Scholar
  181. 181.
    Rippe B, Stelin S. How does peritoneal dialysis remove small and large molecular weight solutes? Transport pathways: fact and myth. Adv Perit Dial 1991; 7: 13–18.Google Scholar
  182. 182.
    Popovich RP, Moncrief JW, Pyle WK. Transport kinetics. In: Nolph KD, ed. Peritoneal Dialysis. Dordrecht, Kluwer Academic Publishers, 1989; 96–116.Google Scholar
  183. 183.
    Lasrich M, Maher JM, Hirszel P, Maher JF. Correlation of peritoneal transport rates with molecular weight: a method for predicting clearances. ASAIO J 1979; 2: 107–113.Google Scholar
  184. 184.
    Leypoldt JK, Parker HR, Frigon RP, Henderson LW. Molecular size dependence of peritoneal transport. J Lab Clin Med 1987; 110: 207–216.PubMedGoogle Scholar
  185. 185.
    Krediet RT, Zuyderhoudt FMJ, Boeschoten EW, Arisz L. Alterations in the peritoneal transport of water and solutes during peritonitis in continuous ambulatory peritoneal dialysis patients. Eur J Clin Invest 1987; 17: 43–52.PubMedGoogle Scholar
  186. 186.
    Krediet RT, Boeschoten EW, Struijk DG, Arisz L. Differences in the peritoneal transport of water, solutes and proteins between dialysis with two- and with three- litre exchanges. Nephrol Dial Transplant 1988; 2: 198–204.Google Scholar
  187. 187.
    Nolph KD, Miller F, Rubin J, Popovich R. New directions in peritoneal dialysis concepts and applications. Kidney Int 1980; 18: S111–S116.Google Scholar
  188. 188.
    Nolph KD, Twardowski ZJ. The peritoneal dialysis system. In: Nolph KD, ed. Peritoneal Dialysis. Dordrecht, Kluwer Academic Publishers, 1989; 13–27.Google Scholar
  189. 189.
    McGary TJ, Nolph KD, Rubin J. In vitro simulations of peritoneal dialysis. J Lab Clin Med 1980; 96: 148–157.PubMedGoogle Scholar
  190. 190.
    Rudoy J, Kohan R, Ben-Ari J. Externally applied abdominal vibration as a method for improving efficiency in peritoneal dialysis. Nephron 1987; 46: 364–366.PubMedGoogle Scholar
  191. 191.
    Levitt MD, Kneip JM, Overdahl MC. Influence of shaking on peritoneal transport. Kidney Int 1989; 35: 1145–1150.PubMedGoogle Scholar
  192. 192.
    Krediet RT, Koomen GCM, Koopman MG, Hoek FJ, Struijk DG, Boeschoten EW, Arisz L. The peritoneal transport of serum proteins and neutral dextran in CAPD patients. Kidney Int 1989; 35: 1064–1072.PubMedGoogle Scholar
  193. 193.
    Rippe B, Stelin G. Simulations of peritoneal solute transport during CAPD. Application of two-pore formalism. Kidney Int 1989; 35: 1234–1244.PubMedGoogle Scholar
  194. 194.
    Gotloib L, Bar Sella P, Shustack A. Ruthenium-red-stained polyanionic fixed charges in peritoneal microvessels. Nephron 1987; 47: 22–28.PubMedGoogle Scholar
  195. 195.
    Gotloib L, Shostack A, Jaichenko J. Ruthenium-red-stained anionic charges of rat and mice mesothelial cella and basal lamina: the peritoneum is a negatively charged dialyzing membrane. Nephron 1988; 48: 65–70.PubMedGoogle Scholar
  196. 196.
    Galdi P, Shostak A, Jaichenko J, Fudin R, Gotloib L. Protamine sulfate induces enhanced peritoneal permeability to proteins. Nephron 1991; 57: 45–51.PubMedGoogle Scholar
  197. 197.
    Krediet RT, Struijk DG, Koomen GCM, Boeschoten EW, Hoek FJ, Arisz L. The peritoneal transport of macromolecules in CAPD patients. Contrib Nephrol 1991; 89: 161–174.PubMedGoogle Scholar
  198. 198.
    Krediet RT, Struijk DG, Zemel D, Koomen GC, Arisz L. The transport of macromolecules across the human peritoneum during CAPD. In: La Greca G, Ronco C, Feriani M, Chiaramonte S, Conz P, eds. Peritoneal Dialysis. Wichtige Editore: Milan, 1991; 61–69.Google Scholar
  199. 199.
    Krediet RT, Zemel D, Struijk DG, Koomen GCM, Arisz L. Individual characterization of the peritoneal restriction barrier to macromolecules. Adv Perit Dial 1991; 7: 16–20.Google Scholar
  200. 200.
    Zemel D, Krediet RT, Koomen GCM, Struijk DG, Arisz L. Day to day variability of protein transport used as a method for the analysis of peritoneal permeability in continuous ambulatory peritoneal dialysis patients. Perit Dial Int 1991; 1: 217–223.Google Scholar
  201. 201.
    Vink H, Duling BR. Identification of distinct luminal domains for macromolecules, erythrocytes, and leucocytes within mammalian capillaries. Circ Res 1996; 79: 581–589.PubMedGoogle Scholar
  202. 202.
    Carlsson O, Nielsen S, Zakaria el R, Rippe B. In vivo inhibition of transcellular water channels (aquaporin-1) during acute peritoneal dialysis in rats. Am J Physiol 1996; 271: H2254–H2262.PubMedGoogle Scholar
  203. 267.
    Pannekeet MM, Mulder JB, Weening JJ, Struijk DG, Zweers MM, Krediet RT. Demonstration of aquaporin-CHIP in peritoneal tissue of uremic and CAPD patients. Perit Dial Int 1996; 16 (Suppl. 1): S54–S57.PubMedGoogle Scholar
  204. 203.
    Devuyst O, Nielsen S, Cosyns JP, et al. Aquaporin-1 and endothelial nitric oxide synthase expression in capillary endothelia of human peritoneum. Am J Physiol 1998; 275: H234–H242.PubMedGoogle Scholar
  205. 204.
    Rippe B, Carlsson O. Role of transcellular water channels in peritoneal dialysis. Perit Dial Int 1999; 19 (Suppl. 2): S95–S101.PubMedGoogle Scholar
  206. 205.
    Krediet RT. The effective lymphatic absorption rate is an accurate and useful concept in the physiology of peritoneal dialysis. Perit Dial Int 2004; 24: 309–313.PubMedGoogle Scholar
  207. 206.
    Flessner M. Effective lymphatic absorption rate is not a useful or accurate term to use in the physiology of peritoneal dialysis. Perit Dial Int 2004; 24: 313–316.PubMedGoogle Scholar
  208. 207.
    Smit W, Schouten N, van den BN, Langedijk MJ, Struijk DG, Krediet RT. Analysis of the prevalence and causes of ultrafiltration failure during long-term peritoneal dialysis: a cross-sectional study. Perit Dial Int 2004; 24: 562–570.PubMedGoogle Scholar
  209. 208.
    Krediet RT, Lindholm B, Rippe B. Pathophysiology of peritoneal membrane failure. Perit Dial Int 2000; 20 (Suppl. 4): S22–S42.PubMedGoogle Scholar
  210. 209.
    Mujais S, Nolph K, Gokal R, Blake P, Burkart J, Coles G, et al. Evaluation and management of ultrafiltration problems in peritoneal dialysis. International Society for Peritoneal Dialysis Ad Hoc Committee on Ultrafiltration Management in Peritoneal Dialysis. Perit Dial Int 2000; 20 (Suppl. 4): S5–S21.PubMedGoogle Scholar
  211. 210.
    Monquil MC, Imholz AL, Struijk DG, Krediet RT. Does impaired transcellular water transport contribute to net ultrafiltration failure during CAPD? Perit Dial Int 1995; 15: 42–48.PubMedGoogle Scholar
  212. 211.
    Goffin E, Combet S, Jamar F, Cosyns JP, Devuyst O. Expression of aquaporin-1 in a long-term peritoneal dialysis patient with impaired transcellular water transport. Am J Kidney Dis 1999; 33: 383–388.PubMedGoogle Scholar
  213. 212.
    Mactier RA, Khanna R, Twardowski ZJ, Nolph KD. Ultrafiltration failure in continuous ambulatory peritoneal dialysis due to excessive peritoneal cavity lymphatic absorption. Am J Kidney Dis 1987; 10: 461–466.PubMedGoogle Scholar
  214. 213.
    Grollman A, Turner LB, Mclean JA. Intermittent peritoneal lavage in nephrectomized dogs and its application to the human being. Arch Int Med 1951; 87: 379–390.Google Scholar
  215. 214.
    Boen ST. Peritoneal dialysis: a clinical study of factors governing its effectiveness. Thesis, University of Amsterdam, November, 1959, p 26.Google Scholar
  216. 215.
    Boen ST. Kinetics of peritoneal dialysis. Medicine (Baltimore) 1961; 40: 243–287.Google Scholar
  217. 216.
    Verger C, Brunschvicg O, Le Chatpentier Y, Lavergne A, Vantelon J. Peritoneal structure alterations on CAPD. In : Advances in Peritoneal Dialysis, edited by Gahl GM, Kessel M, Nolph KD, Amsterdam, Exerpta Medica, 1981, pp 10–5.Google Scholar
  218. 217.
    Twardowski ZJ, Nolph KD, Khanna R, Prowant BF, Ryan LP, Moore HL, Nielsen MP. Peritoneal equilibration test. Perit Dial Bull 1987; 7: 138–147.Google Scholar
  219. 218.
    Warady BA, Alexander SR, Hossli S, Vonesh E, Geary D, Watkins S, Salusky IB, Kohaut EC. Peritoneal membrane transport function in children receiving long-term dialysis. J Am Soc Nephrol 1996; 7: 2385–2391.PubMedGoogle Scholar
  220. 219.
    Davies SJ, Brown B, Bryan J, Russell GI. Clinical evaluation of the peritoneal equilibration test: a population-based study. Nephrol Dial Transplant 1993; 8: 64–70.PubMedGoogle Scholar
  221. 220.
    Wang T, Heimburger O, Waniewski J, Bergstrom J, Lindholm B. Increased peritoneal permeability is associated with decreased fluid and small-solute removal and higher mortality in CAPD patients. Nephrol Dial Transplant 1998; 13: 1242–1249.PubMedGoogle Scholar
  222. 221.
    Heimburger O, Waniewski J, Werynski I A, Lindholm B. A quantitative description of solute and fluid transport during peritoneal dialysis. Kidney Int 1992; 41: 1320–1332.PubMedGoogle Scholar
  223. 222.
    Heimburger O, Waniewski J, Werynski A, Park MS, Lindholm B. Dialysate to plasma solute concentration (D/P) versus peritoneal transport parameters in CAPD. Nephrol Dial Transplant 1994; 9: 47–59.PubMedGoogle Scholar
  224. 223.
    Smit W, Langedijk MJ, Schouten N, van den Berg N, Struijk DG, Krediet RT. A comparison between 1.36% and 3.86% glucose dialysis solution for the assessment of peritoneal membrane function. Perit Dial Int 2000; 20: 734–741.PubMedGoogle Scholar
  225. 224.
    Pride ET, Gustafson J, Graham A, Spainhour L, Mauck V, Brown P, Burkart JM. Comparison of a 2.5% and a 4.25% dextrose peritoneal equilibration test. Perit Dial Int 2002; 22: 365–370.PubMedGoogle Scholar
  226. 225.
    Cara M, Virga G, Mastrosimone S, Girotto A, Rossi V, D'Angelo A, Bonfante L. Comparison of peritoneal equilibration test with 2.27% and 3.86% glucose dialysis solution. J Nephrol 2005; 18: 67–71.PubMedGoogle Scholar
  227. 226.
    Lilaj T, Vychytil A, Schneider B, Horl WH, Haag-Weber M. Influence of the preceding exchange on peritoneal equilibration test results: a prospective study. Am J Kidney Dis 1999; 34: 247–253.PubMedGoogle Scholar
  228. 227.
    Twardowski ZJ, Prowant BF, Moore HL, Lou LC, White E, Farris K. Short peritoneal equilibration test: impact of preceding dwell time. Adv Perit Dial 2003; 19: 53–58.PubMedGoogle Scholar
  229. 228.
    Figueiredo AE, Conti A, Poli de Figueiredo CE. Influence of the preceding exchange on peritoneal equilibration test results. Adv Perit Dial 2002; 18: 75–77.PubMedGoogle Scholar
  230. 229.
    Lilaj T, Dittrich E, Puttinger H, Schneider B, Haag-Weber M, Horl WH, Vychytil A. A preceding exchange with polyglucose versus glucose solution modifies peritoneal equilibration test results. Am J Kidney Dis 2001; 38: 118–126.PubMedGoogle Scholar
  231. 230.
    Mahon A, Fan SL. Accuracy of ultrafiltration volume measurements for patients on peritoneal dialysis. Perit Dial Int. 2005; 25: 92–93.PubMedGoogle Scholar
  232. 231.
    La Milia V, Pozzoni P, Crepaldi M, Locatelli F. Overfill of peritoneal dialysis bags as a cause of underestimation of ultrafiltration failure. Perit Dial Int 2006; 26: 503–505.PubMedGoogle Scholar
  233. 232.
    Imholz AL, Koomen GC, Struijk DG, Arisz L, Krediet RT. Residual volume measurements in CAPD patients with exogenous and endogenous solutes. Adv Perit Dial 1992; 8: 33–38.PubMedGoogle Scholar
  234. 233.
    Westra WM, Smit W, Zweers MM, Struijk DG, Krediet RT. Diffusion correction of sodium sieving applicable in a peritoneal equilibration test. Adv Perit Dial 2003; 19: 6–9.PubMedGoogle Scholar
  235. 234.
    Cnossen TT, Lijten INM, Konings CJA, Smit W, Kooman JP, Hoorntje SJ, Leunissen KLM, Krediet RT. Peritoneal transport and ultrafiltration quantification of free water transport during the peritoneal equilibrium test. Perit Dial Int 2006; 26(Suppl. 2): S5 (Abstract).Google Scholar
  236. 235.
    Twardowski ZJ. PET--a simpler approach for determining prescriptions for adequate dialysis therapy. Adv Perit Dial 1990; 6: 186–191.PubMedGoogle Scholar
  237. 266.
    Adcock A, Fox K, Walker P, Raymond K. Clinical experience and comparative analysis of the standard and fast peritoneal equilibration tests (PET). Adv Perit Dial 1992; : 59–61.Google Scholar
  238. 236.
    La Milia V, Di Filippo S, Crepaldi M, Del Vecchio L, Dell'Oro C, Andrulli S, Locatelli F. Mini-peritoneal equilibration test: a simple and fast method to assess free water and small solute transport across the peritoneal membrane. Kidney Int 2005; 68: 840–846.PubMedGoogle Scholar
  239. 237.
    Imholz AL, Koomen GC, Struijk DG, Arisz L, Krediet RT. Fluid and solute transport in CAPD patients using ultralow sodium dialysate. Kidney Int 1994; 46: 333–340.PubMedGoogle Scholar
  240. 238.
    Verger C. How to use the peritoneum as a dialysis membrane. Methods of surveillance, criteria of efficacy and longevity as a dialysis membrane, consequences with respect to techniques of peritoneal dialysis. Nephrologie 1995; 16: 19–31.PubMedGoogle Scholar
  241. 239.
    Fischbach M, Mengus L, Birmele B, Hamel G, Simeoni U, Geisert J. Solute equilibration curves, crossing time for urea and glucose during peritoneal dialysis: a function of age in children. Adv Perit Dial 1991; 7: 262–265.PubMedGoogle Scholar
  242. 240.
    Fischbach M, Lahlou A, Eyer D, Desprez P, Geisert J. Determination of individual ultrafiltration time (APEX) and purification phosphate time by peritoneal equilibration test: application to individual peritoneal dialysis modality prescription in children. Perit Dial Int 1996; 16 (Suppl. 1): S557–S560.PubMedGoogle Scholar
  243. 241.
    Bouts AH, Davin JC, Groothoff JW, Van Amstel SP, Zweers MM, Krediet RT. Standard peritoneal permeability analysis in children. J Am Soc Nephrol 2000; 11: 943–950.PubMedGoogle Scholar
  244. 242.
    Pannekeet MM, Imholz AL, Struijk DG, Koomen GC, Langedijk MJ, Schouten N, et al. The standard peritoneal permeability analysis: a tool for the assessment of peritoneal permeability characteristics in CAPD patients. Kidney Int 1995; 48: 866–875.PubMedGoogle Scholar
  245. 243.
    Smit W, van DP, Langedijk MJ, Schouten N, van den BN, Struijk DG, et al. Peritoneal function and assessment of reference values using a 3.86% glucose solution. Perit Dial Int 2003; 23: 440–449.PubMedGoogle Scholar
  246. 244.
    Smit W, de Waart DR, Struijk DG, Krediet RT. Peritoneal transport characteristics with glycerol-based dialysate in peritoneal dialysis. Perit Dial Int 2000; 20: 557–565.PubMedGoogle Scholar
  247. 245.
    Struijk DG, Krediet RT, Koomen GC, Boeschoten EW, Hoek FJ, Arisz L. A prospective study of peritoneal transport in CAPD patients. Kidney Int 1994; 45: 1739–1744.PubMedGoogle Scholar
  248. 246.
    Krediet RT, Struijk DG, Koomen GCM, Arisz L. Peritoneal fluid kinetics during CAPD measured with intraperitoneal dextran 70. ASAIO Trans 1991; 37: 662–667.PubMedGoogle Scholar
  249. 247.
    Parikova A, Smit W, Struijk DG, Zweers MM, Krediet RT. The contribution of free water transport and small pore transport to the total fluid removal in peritoneal dialysis. Kidney Int 2005; 68: 1849–1856.PubMedGoogle Scholar
  250. 248.
    Zweers MM, Imholz AL, Struijk DG, Krediet RT. Correction of sodium sieving for diffusion from the circulation. Adv Perit Dial 1999; 15: 65–72.PubMedGoogle Scholar
  251. 249.
    Rocco MV, Jordan JR, Burkart JM. Determination of peritoneal transport characteristics with 24-hour dialysate collections: dialysis adequacy and transport test. J Am Soc Nephrol 1994; 5: 1333–1338.PubMedGoogle Scholar
  252. 250.
    Rocco MV, Jordan JR, Burkart JM. 24-hour dialysate collection for determination of peritoneal membrane transport characteristics: longitudinal follow-up data for the dialysis adequacy and transport test (DATT). Perit Dial Int 1996; 16: 590–593.PubMedGoogle Scholar
  253. 251.
    Vonesh EF, Keshaviah PR. Applications in kinetic modeling using PD ADEQUEST. Perit Dial Int 1997; 17 (Suppl. 2): S119–S125.PubMedGoogle Scholar
  254. 252.
    Stelin G, Rippe B. A phenomenological interpretation of the variation in dialysate volume with dwell time in CAPD. Kidney Int 1990; 38: 465–472.PubMedGoogle Scholar
  255. 253.
    Warady BA, Watkins SL, Fivush BA, Andreoli SP, Salusky I, Kohaut EC, Vonesh EF. Validation of PD Adequest 2.0 for pediatric dialysis patients. Pediatr Nephrol 2001; 16: 205–211.PubMedGoogle Scholar
  256. 254.
    Vonesh EF, Story KO, O'Neill WT. A multinational clinical validation study of PD ADEQUEST 2.0. PD ADEQUEST International Study Group. Perit Dial Int 1999; 19: 556–571PubMedGoogle Scholar
  257. 255.
    Vonesh EF, Story KO, Douma CE, Krediet RT. Modeling of icodextrin in PD Adequest 2.0. Perit Dial Int 2006; 26: 475–481.PubMedGoogle Scholar
  258. 256.
    Haraldsson B. Assessing the peritoneal dialysis capacities of individual patients. Kidney Int 1995; 47: 1187–1198.PubMedGoogle Scholar
  259. 257.
    Imai H, Satoh K, Ohtani H, Hamai K, Haseyama T, Komatsuda A, Miura AB. Clinical application of the Personal Dialysis Capacity (PDC) test: serial analysis of peritoneal function in CAPD patients. Kidney Int. 1998; 54 (2): 546–553.PubMedGoogle Scholar
  260. 258.
    Schaefer F, Haraldsson B, Haas S, Simkova E, Feber J, Mehls O. Estimation of peritoneal mass transport by three-pore model in children. Kidney Int 1998; 54: 1372–1379.PubMedGoogle Scholar
  261. 261.
    Van Biesen W, Carlsson O, Bergia R, Brauner M, Christensson A, Genestier S, Haag-Weber M, Heaf J, Joffe P, Johansson AC, Morel B, Prischl F, Verbeelen D, Vychytil A. Personal dialysis capacity (PDC(TM)) test: a multicentre clinical study. Nephrol Dial Transplant. 2003; 18: 788–796.PubMedGoogle Scholar
  262. 262.
    Johansson AC and Haraldsson B. Physiological properties of the peritoneum in an adult peritoneal dialysis population over a three-year period. Perit Dial Int 2006; 26: 482–489.PubMedGoogle Scholar
  263. 263.
    Gotch FA, Lipps BJ, Keen ML, Panlilio F. Computerized urea kinetic modeling to prescribe and monitor delivered Kt/V (pKt/V, dKt/V) in peritoneal dialysis. Fresenius Randomized Dialysis Prescriptions and Clinical Outcome Study (RDP/CO). Adv Perit Dial 1996; 12: 43–45.PubMedGoogle Scholar
  264. 264.
    Gotch FA, Lipps BJ. PACK PD: a urea kinetic modeling computer program for peritoneal dialysis. Perit Dial Int 1997; 17 (Suppl. 2): S126–S130.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Academic Medical Center, University of AmsterdamThe Netherlands
  2. 2.University of Missouri School of MedicineColumbiaUSA

Personalised recommendations