Advertisement

Automated Peritoneal Dialysis

  • P. Kathuria
  • Z. J. Twardowski

Automated peritoneal dialysis (APD) is a term used to refer to all forms of peritoneal dialysis that employ a mechanized device to assist in the delivery and drainage of dialysate. Automated cyclers are used in intermittent peritoneal dialysis (IPD), nocturnal intermittent peritoneal dialysis (NIPD), continuous cyclic peritoneal dialysis (CCPD), tidal peritoneal dialysis (TPD), and continuous flow peritoneal dialysis (CFPD) [1–3]. In addition, some patients on continuous ambulatory peritoneal dialysis (CAPD) may receive one or more nocturnal exchanges with a night exchange device [4].

Keywords

Peritoneal Dialysis Continuous Ambulatory Peritoneal Dialysis Peritoneal Membrane Automate Peritoneal Dialysis Continuous Ambulatory Peritoneal Dialysis Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Twardowski Z. Peritoneal dialysis glossary II. Perit Dial Int 1988; 8: 15–77.Google Scholar
  2. 2.
    Ronco C, Diaz-Buxo JA. Automated peritoneal dialysis. Revisitation of the past or beginning of a new PD era? Nephron 2001; 87 (1): 1–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Twardowski ZJ. Peritoneal dialysis glossary III. Adv Perit Dial 1990; 6: 47–49.PubMedGoogle Scholar
  4. 4.
    Cruz C, Dumler F, Schmidt R, Gotch F. Enhanced peritoneal dialysis delivery with PD-PLUS. Adv Perit Dial 1992; 8: 288–290.PubMedGoogle Scholar
  5. 5.
    Diaz-Buxo JA. What is the role of automated peritoneal dialysis and continuous flow peritoneal dialysis? Contrib Nephrol 2003; (140): 264–721.Google Scholar
  6. 6.
    Negoi D, Nolph KD. Automated peritoneal dialysis – indications and management. Contrib Nephrol 2006; 150: 278–284.PubMedCrossRefGoogle Scholar
  7. 7.
    Grassmann A, Gioberge S, Moeller S, Brown G. ESRD patients in 2004: global overview of patient numbers, treatment modalities and associated trends. Nephrol Dial Transplant 2005; 20 (12): 2587–2593.PubMedCrossRefGoogle Scholar
  8. 8.
    Verger C, Ryckelynck JP, Duman M, et al. French peritoneal dialysis registry (RDPLF): outline and main results. Kidney Int Suppl 2006; 70(103): S12–S20.Google Scholar
  9. 9.
    U.S. Renal Data System, USRDS 2005 Annual Data Report. Atlas of End-Stage Renal Disease in the United States, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 2006.Google Scholar
  10. 10.
    Mujais S, Story K. Peritoneal dialysis in the US: evaluation of outcomes in contemporary cohorts. Kidney Int Suppl 2006; 70(103): S21–S26.Google Scholar
  11. 11.
    Guo A, Mujais S. Patient and technique survival on peritoneal dialysis in the United States: evaluation in large incident cohorts. Kidney Int Suppl 2003; 64(88): S3–S12.Google Scholar
  12. 12.
    Leonard MB, Donaldson LA, Ho M, Geary DF. A prospective cohort study of incident maintenance dialysis in children: an NAPRTC study. Kidney Int 2003; 63 (2): 744–755.PubMedCrossRefGoogle Scholar
  13. 13.
    Boen ST MA, Dillard DH, Schribner BH. Periodic peritoneal dialysis in the management of chronic uremia. Trans Am Soc Artif Intern Organs 1962; 8: 256–65.Google Scholar
  14. 14.
    Boen ST, Mion CM, Curtis FK, Shilipetar G. Periodic peritoneal dialysis using the repeated puncture technique and an automatic cycling machine. Trans Am Soc Artif Intern Organs 1964; 10: 409–414.PubMedGoogle Scholar
  15. 15.
    Lasker N, McCauley EP, Passarotti CT. Chronic peritoneal dialysis. Trans Am Soc Artif Intern Organs 1966; 12: 94–97.PubMedGoogle Scholar
  16. 16.
    Tenckhoff H, Shilipetar G, Van Paasschen WH, Swanson E. A home peritoneal dialysate delivery system. Trans Am Soc Artif Intern Organs 1969; 15: 103–107.PubMedGoogle Scholar
  17. 17.
    Tenckhoff H, Meston B, Shilipetar G. A simplified automatic peritoneal dialysis system. Trans Am Soc Artif Intern Organs 1972; 18 (0): 436–440.PubMedGoogle Scholar
  18. 18.
    Boen S. Overview and history of peritoneal dialysis. Dial Transplant 1977; 6: 12–13.Google Scholar
  19. 19.
    Diaz-Buxo JA, Walker PJ, Chandler JT, Burgess WP, Farmer CD. Experience with intermittent peritoneal dialysis and continuous cyclic peritoneal dialysis. Am J Kidney Dis 1984; 4 (3): 242–248.PubMedGoogle Scholar
  20. 20.
    Ahmad S, Gallagher N, Shen F. Intermittent peritoneal dialysis: status reassessed. Trans Am Soc Artif Intern Organs 1979; 25: 86–89.PubMedGoogle Scholar
  21. 21.
    Schmidt RW, Blumenkrantz MJ. IPD, CAPD, CCPD, CRPD – peritoneal dialysis: past, present and future. Int J Artif Organs 1981; 4 (3): 124–129.PubMedGoogle Scholar
  22. 22.
    Popovich RP, Moncrief JW, Decherd JF et al. The definition of a portable-wearable equilibrium peritoneal technique. ASAIO Abstracts 1976; 5: 64.Google Scholar
  23. 23.
    Popovich RP, Moncrief JW, Nolph KD. Continuous ambulatory peritoneal dialysis. Artif Organs 1978; 2 (1): 84–86.PubMedGoogle Scholar
  24. 24.
    Oreopoulos DG, Robson M, Izatt S, Clayton S, deVeber GA. A simple and safe technique for continuous ambulatory peritoneal dialysis (CAPD). Trans Am Soc Artif Intern Organs 1978; 24: 484–489.PubMedGoogle Scholar
  25. 25.
    Diaz-Buxo JA, Farmer CD, Walker PJ, Chandler JT, Holt KL. Continuous cyclic peritoneal dialysis: a preliminary report. Artif Organs 1981; 5 (2): 157–161.PubMedCrossRefGoogle Scholar
  26. 26.
    Price CG, Suki WN. Newer modifications of peritoneal dialysis: options in the treatment of patients with renal failure. Am J Nephrol 1981; 1 (2): 97–104.PubMedCrossRefGoogle Scholar
  27. 27.
    Stephen RL, Atkin-Thor E, Kolff WJ. Recirculating peritoneal dialysis with subcutaneous catheter. Trans Am Soc Artif Intern Organs 1976; 22: 575–585.PubMedGoogle Scholar
  28. 28.
    Twardowski ZJ, Prowant BF, Nolph KD, Khanna R, Schmidt LM, Satalowich RJ. Chronic nightly tidal peritoneal dialysis. ASAIO Trans 1990; 36 (3) :M584–M558.PubMedGoogle Scholar
  29. 29.
    Nolph KD, Sorkin MI, Moore H. Autoregulation of sodium and potassium removal during continuous ambulatory peritoneal dialysis. Trans Am Soc Artif Intern Organs 1980; 26: 334–338.PubMedGoogle Scholar
  30. 30.
    Nolph KD, Twardowski ZJ, Popovich RP, Rubin J. Equilibration of peritoneal dialysis solutions during long-dwell exchanges. J Lab Clin Med 1979; 93 (2): 246–256.PubMedGoogle Scholar
  31. 31.
    Ahearn DJ, Nolph KD. Controlled sodium removal with peritoneal dialysis. Trans Am Soc Artif Intern Organs 1972; 18 (0): 423–428, 440.PubMedGoogle Scholar
  32. 32.
    Nolph KD, Hano JE, Teschan PE. Peritoneal sodium transport during hypertonic peritoneal dialysis. Physiologic mechanisms and clinical implications. Ann Intern Med 1969; 70 (5): 931–941.PubMedGoogle Scholar
  33. 33.
    Topley N, Alobaidi HM, Davies M, Coles GA, Williams JD, Lloyd D. The effect of dialysate on peritoneal phagocyte oxidative metabolism. Kidney Int 1988; 34 (3): 404–411.PubMedCrossRefGoogle Scholar
  34. 34.
    Zareie M, Hekking LH, Welten AG, et al. Contribution of lactate buffer, glucose and glucose degradation products to peritoneal injury in vivo. Nephrol Dial Transplant 2003; 18 (12): 2629–2637.PubMedCrossRefGoogle Scholar
  35. 35.
    Breborowicz A, Martis L, Oreopoulos DG. Changes in biocompatibility of dialysis fluid during its dwell in the peritoneal cavity. Perit Dial Int 1995; 15 (2): 152–157.PubMedGoogle Scholar
  36. 36.
    Fusshoeller A, Baehr J, Tiemann B, Grabensee B, Plum J. Biocompatibility parameters in in-vitro simulated automated versus continuous ambulatory peritoneal dialysis. Clin Nephrol 2005; 64 (3): 214–220.PubMedGoogle Scholar
  37. 37.
    Vlaanderen K, Bos HJ, de Fijter CW, et al. Short dwell times reduce the local defence mechanism of chronic peritoneal dialysis patients. Nephron 1991; 57 (1): 29–35.PubMedCrossRefGoogle Scholar
  38. 38.
    de Fijter CW, Verbrugh HA, Oe LP, et al. Peritoneal defense in continuous ambulatory versus continuous cyclic peritoneal dialysis. Kidney Int 1992; 42 (4): 947–950.PubMedCrossRefGoogle Scholar
  39. 39.
    Wolfson M, Ogrinc F, Mujais S. Review of clinical trial experience with icodextrin. Kidney Int Suppl 2002; 62(81): S46–S52.Google Scholar
  40. 40.
    Finkelstein F, Healy H, Abu-Alfa A, et al. Superiority of icodextrin compared with 4.25% dextrose for peritoneal ultrafiltration. J Am Soc Nephrol 2005; 16 (2): 546–554.PubMedCrossRefGoogle Scholar
  41. 41.
    Posthuma N, ter Wee PM, Verbrugh HA, et al. Icodextrin instead of glucose during the daytime dwell in CCPD increases ultrafiltration and 24-h dialysate creatinine clearance. Nephrol Dial Transplant 1997; 12 (3): 550–553.PubMedCrossRefGoogle Scholar
  42. 42.
    Woodrow G, Stables G, Oldroyd B, Gibson J, Turney JH, Brownjohn AM. Comparison of icodextrin and glucose solutions for the daytime dwell in automated peritoneal dialysis. Nephrol Dial Transplant 1999; 14 (6): 1530–1535.PubMedCrossRefGoogle Scholar
  43. 43.
    Plum J, Gentile S, Verger C, et al. Efficacy and safety of a 7.5% icodextrin peritoneal dialysis solution in patients treated with automated peritoneal dialysis. Am J Kidney Dis 2002; 39 (4): 862–871.PubMedCrossRefGoogle Scholar
  44. 44.
    Posthuma N, ter Wee PM, Donker AJ, Oe PL, Peers EM, Verbrugh HA. Assessment of the effectiveness, safety, and biocompatibility of icodextrin in automated peritoneal dialysis. The Dextrin in APD in Amsterdam (DIANA) Group. Perit Dial Int 2000; 20 (Suppl 2): S106–S113.PubMedGoogle Scholar
  45. 45.
    Davies SJ. Exploring new evidence of the clinical benefits of icodextrin solutions. Nephrol Dial Transplant 2006; 21 (Suppl 2): ii47–ii50.PubMedCrossRefGoogle Scholar
  46. 46.
    Rippe B, Levin L. Computer simulations of ultrafiltration profiles for an icodextrin-based peritoneal fluid in CAPD. Kidney Int 2000; 57 (6): 2546–2556.PubMedCrossRefGoogle Scholar
  47. 47.
    Jeloka TK, Ersoy FF, Yavuz M, et al. What is the optimal dwell time for maximizing ultrafiltration with icodextrin exchange in automated peritoneal dialysis patients? Perit Dial Int 2006; 26 (3): 336–340.PubMedGoogle Scholar
  48. 48.
    Neri L, Viglino G, Cappelletti A, Gandolfo C, Cavalli PL. Ultrafiltration with icodextrins in continuous ambulatory peritoneal dialysis and automated peritoneal dialysis. Adv Perit Dial 2000; 16: 174–176.PubMedGoogle Scholar
  49. 49.
    Davies SJ, Woodrow G, Donovan K, et al. Icodextrin improves the fluid status of peritoneal dialysis patients: results of a double-blind randomized controlled trial. J Am Soc Nephrol 2003; 14 (9): 2338–2344.PubMedCrossRefGoogle Scholar
  50. 50.
    Woodrow G, Oldroyd B, Stables G, Gibson J, Turney JH, Brownjohn AM. Effects of icodextrin in automated peritoneal dialysis on blood pressure and bioelectrical impedance analysis. Nephrol Dial Transplant 2000; 15 (6): 862–866.PubMedCrossRefGoogle Scholar
  51. 51.
    Adachi Y, Nakagawa Y, Nishio A. Icodextrin preserves residual renal function in patients treated with automated peritoneal dialysis. Perit Dial Int 2006; 26 (3): 405–407.PubMedGoogle Scholar
  52. 52.
    Dawnay AB, Millar DJ. Glycation and advanced glycation end-product formation with icodextrin and dextrose. Perit Dial Int 1997; 17 (1): 52–58.PubMedGoogle Scholar
  53. 53.
    Davies SJ, Brown EA, Frandsen NE, et al. Longitudinal membrane function in functionally anuric patients treated with APD: data from EAPOS on the effects of glucose and icodextrin prescription. Kidney Int 2005; 67 (4): 1609–1615.PubMedCrossRefGoogle Scholar
  54. 54.
    Wolfson M, Piraino B, Hamburger RJ, Morton AR. A randomized controlled trial to evaluate the efficacy and safety of icodextrin in peritoneal dialysis. Am J Kidney Dis 2002; 40 (5): 1055–1065.PubMedCrossRefGoogle Scholar
  55. 55.
    Dratwa M, Wilkie M, Ryckelynck JP, et al. Clinical experience with two physiologic bicarbonate/lactate peritoneal dialysis solutions in automated peritoneal dialysis. Kidney Int Suppl 2003; 64(88): S105–S113.Google Scholar
  56. 56.
    Brunkhorst R, Fromm S, Wrenger E, et al. Automated peritoneal dialysis with “on-line”-prepared bicarbonate-buffered dialysate: technique and first clinical experiences. Nephrol Dial Transplant 1998; 13 (12): 3189–3192.PubMedCrossRefGoogle Scholar
  57. 57.
    Diaz-Buxo JA. Bicarbonate solutions: update. Adv Perit Dial 2005; 21: 115–119.PubMedGoogle Scholar
  58. 58.
    Fusshoeller A, Plail M, Grabensee B, Plum J. Biocompatibility pattern of a bicarbonate/lactate-buffered peritoneal dialysis fluid in APD: a prospective, randomized study. Nephrol Dial Transplant 2004; 19 (8): 2101–2106.PubMedCrossRefGoogle Scholar
  59. 59.
    Haas S, Schmitt CP, Arbeiter K, et al. Improved acidosis correction and recovery of mesothelial cell mass with neutral-pH bicarbonate dialysis solution among children undergoing automated peritoneal dialysis. J Am Soc Nephrol 2003; 14 (10): 2632–2638.PubMedCrossRefGoogle Scholar
  60. 60.
    Vande Walle JG, Raes AM, Dehoorne J, Mauel R. Use of bicarbonate/lactate-buffered dialysate with a nighttime cycler, associated with a daytime dwell with icodextrin, may result in alkalosis in children. Adv Perit Dial 2004; 20: 222–225.PubMedGoogle Scholar
  61. 61.
    Goodship TH, Lloyd S, McKenzie PW, et al. Short-term studies on the use of amino acids as an osmotic agent in continuous ambulatory peritoneal dialysis. Clin Sci (Lond) 1987; 73 (5): 471–478.Google Scholar
  62. 62.
    Li FK, Chan LY, Woo JC, et al. A 3-year, prospective, randomized, controlled study on amino acid dialysate in patients on CAPD. Am J Kidney Dis 2003; 42 (1): 173–183.PubMedCrossRefGoogle Scholar
  63. 63.
    Misra M, Ashworth J, Reaveley DA, Muller B, Brown EA. Nutritional effects of amino acid dialysate (Nutrineal) in CAPD patients. Adv Perit Dial 1996; 12: 311–314.PubMedGoogle Scholar
  64. 64.
    Faller B, Shockley T, Genestier S, Martis L. Polyglucose and amino acids: preliminary results. Perit Dial Int 1997;17 (Suppl 2): S63–S67.PubMedGoogle Scholar
  65. 65.
    Tjiong HL, van den Berg JW, Wattimena JL, et al. Dialysate as food: combined amino acid and glucose dialysate improves protein anabolism in renal failure patients on automated peritoneal dialysis. J Am Soc Nephrol 2005; 16 (5): 1486–1493.PubMedCrossRefGoogle Scholar
  66. 66.
    Ronco C, Amerling R, Dell'aquila R, Rodighiero MP, Di Loreto P. Evolution of technology for automated peritoneal dialysis. Contrib Nephrol 2006; 150: 291–309.PubMedCrossRefGoogle Scholar
  67. 67.
    Ronco C, Kliger AS, Amici G, Virga G. Automated peritoneal dialysis: clinical prescription and technology. Perit Dial Int 2000; 20 (Suppl 2): S70–S76.PubMedGoogle Scholar
  68. 68.
    Popovich RP, Moncrief JW. Kinetic modeling of peritoneal transport. Contrib Nephrol 1979; 17: 59–72.PubMedGoogle Scholar
  69. 69.
    Twardowski Z, Nolph K, Khanna R, et al. Peritoneal equilibration test. Perit Dial Bull 1987; 7: 138–147.Google Scholar
  70. 70.
    Twardowski ZJ. Clinical value of standardized equilibration tests in CAPD patients. Blood Purif 1989; 7 (2–3): 95–108.PubMedCrossRefGoogle Scholar
  71. 71.
    Kush RD, Hallett MD, Ota K, et al. Long-term continuous ambulatory peritoneal dialysis. Mass transfer and nutritional and metabolic stability. Blood Purif 1990; 8 (1): 1–13.PubMedCrossRefGoogle Scholar
  72. 72.
    Pyle WK, Popovich RP, Moncrief JW: Mass transfer in peritoneal dialysis, in Advances in Peritoneal Dialysis, edited by Gahl GM, Kessel M, Nolph KD, Amsterdam, Holland, Excerpta Medica, 1981, pp 41–46.Google Scholar
  73. 73.
    Krediet RT, Struijk DG, Koomen GC, Arisz L. Peritoneal fluid kinetics during CAPD measured with intraperitoneal dextran 70. ASAIO Trans 1991; 37 (4): 662–667.PubMedGoogle Scholar
  74. 74.
    Twardowski ZJ. Nightly peritoneal dialysis. Why, who, how, and when? ASAIO Trans 1990; 36 (1): 8–16.PubMedGoogle Scholar
  75. 75.
    Brandes JC, Packard WJ, Watters SK, Fritsche C. Optimization of dialysate flow and mass transfer during automated peritoneal dialysis. Am J Kidney Dis 1995; 25 (4): 603–610.PubMedCrossRefGoogle Scholar
  76. 76.
    Curatola G, Zoccali C, Crucitti S. Effect of posture on peritoneal clearance in CAPD patients. Perit Dial Int 1988; 8: 58–59.Google Scholar
  77. 77.
    Flessner MF. Impact of the liver on peritoneal transport. Perit Dial Int 1996; 16(suppl 1): S205–S206.PubMedGoogle Scholar
  78. 78.
    Fukudome Y, Ozawa K, Shoji T. How is the portal vein flow in CAPD? Evaluation of postural change by colour flow-doppler ultrasound (CFDU). Perit Dial Int 1992; 12(suppl 2): S4 (abstract).Google Scholar
  79. 79.
    Chagnac A, Herskovitz P, Ori Y, et al. Effect of increased dialysate volume on peritoneal surface area among peritoneal dialysis patients. J Am Soc Nephrol 2002; 13 (10): 2554–2559.PubMedCrossRefGoogle Scholar
  80. 80.
    Schoenfeld P, Diaz-Buzo J, Keen M, Gotch F. The effect of body position, surface area, and intraperitoneal exchange volume on the peritoneal transport constant (KoA). J Am Soc Nephrol 1993; 4: 416 (abstact).Google Scholar
  81. 81.
    Keshaviah P, Emerson PF, Vonesh EF, Brandes JC. Relationship between body size, fill volume, and mass transfer area coefficient in peritoneal dialysis. J Am Soc Nephrol 1994; 4 (10): 1820–1826.PubMedGoogle Scholar
  82. 82.
    Ronco C, Clark W. Factors affecting hemodialysis and peritoneal dialysis efficiency. Semin Dial 2001; 14 (4): 257–262.PubMedCrossRefGoogle Scholar
  83. 83.
    Ronco C. Limitations of peritoneal dialysis. Kidney Int Suppl 1996; 56: S69–S74.PubMedGoogle Scholar
  84. 84.
    Ronco C. Continuous flow peritoneal dialysis: is there a need for it? Semin Dial 2001; 14 (5): 395–400.PubMedCrossRefGoogle Scholar
  85. 85.
    Twardowski ZJ. Pathophysiology of peritoneal transport. Contrib Nephrol 2006; 150: 13–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Amici G. Solute kinetics in automated peritoneal dialysis. Perit Dial Int 2000; 20(suppl 2): S77–S82.PubMedGoogle Scholar
  87. 87.
    Heimburger O, Waniewski J, Werynski A, Lindholm B. A quantitative description of solute and fluid transport during peritoneal dialysis. Kidney Int 1992; 41 (5): 1320–1332.PubMedCrossRefGoogle Scholar
  88. 88.
    Shen FH, Sherrard DJ, Scollard D, Merritt A, Curtis FK. Thirst, relative hypernatremia, and excessive weight gain in maintenance peritoneal dialysis. Trans Am Soc Artif Intern Organs 1978; 24: 142–145.PubMedGoogle Scholar
  89. 89.
    Ortega O, Gallar P, Carreno A, et al. Peritoneal sodium mass removal in continuous ambulatory peritoneal dialysis and automated peritoneal dialysis: influence on blood pressure control. Am J Nephrol 2001; 21 (3): 189–193.PubMedCrossRefGoogle Scholar
  90. 90.
    Davies SJ. Overfill or ultrafiltration? We need to be clear. Perit Dial Int 2006; 26 (4): 449–451.PubMedGoogle Scholar
  91. 91.
    Rodríguez-Carmona A, Fontán MP. Sodium removal in patients undergoing CAPD and automated peritoneal dialysis. Perit Dial Int 2002; 22 (6): 705–713.PubMedGoogle Scholar
  92. 92.
    Rippe B, Venturoli D, Simonsen O, de Arteaga J. Fluid and electrolyte transport across the peritoneal membrane during CAPD according to the three-pore model. Perit Dial Int 2004; 24 (1): 10–27.PubMedGoogle Scholar
  93. 93.
    Krediet RT, Lindholm B, Rippe B. Pathophysiology of peritoneal membrane failure. Perit Dial Int 2000; 20(suppl 4): S22–S42.PubMedGoogle Scholar
  94. 94.
    Mujais S. Ultrafiltration management in automated peritoneal dialysis. Contrib Nephrol 1999; 129: 255–266.PubMedCrossRefGoogle Scholar
  95. 95.
    Rose B. Clinical Physiology of Acid-Base and Electrolyte Disorders. 2nd edition. New York: McGraw Hill, 1984: 33.Google Scholar
  96. 96.
    Twardowski ZJ, Khanna R, Nolph KD, et al. Intraabdominal pressures during natural activities in patients treated with continuous ambulatory peritoneal dialysis. Nephron 1986; 44 (2): 129–135.PubMedCrossRefGoogle Scholar
  97. 97.
    Twardowski ZJ, Prowant BF, Nolph KD, Martinez AJ, Lampton LM. High volume, low frequency continuous ambulatory peritoneal dialysis. Kidney Int 1983; 23 (1): 64–70.PubMedCrossRefGoogle Scholar
  98. 98.
    Imholz AL, Koomen GC, Struijk DG, Arisz L, Krediet RT. Effect of an increased intraperitoneal pressure on fluid and solute transport during CAPD. Kidney Int 1993; 44 (5): 1078–1085.PubMedCrossRefGoogle Scholar
  99. 99.
    Flessner MF. Peritoneal transport physiology: insights from basic research. J Am Soc Nephrol 1991; 2 (2): 122–135.PubMedGoogle Scholar
  100. 100.
    Flessner MF. Net ultrafiltration in peritoneal dialysis: role of direct fluid absorption into peritoneal tissue. Blood Purif 1992; 10 (3–4): 136–147.PubMedCrossRefGoogle Scholar
  101. 101.
    Zakaria ER, Simonsen O, Rippe A, Rippe B. Transport of tracer albumin from peritoneum to plasma: role of diaphragmatic, visceral, and parietal lymphatics. Am J Physiol 1996; 270 (5 Pt 2): H1549–H1556.PubMedGoogle Scholar
  102. 102.
    Flessner MF, Schwab A. Pressure threshold for fluid loss from the peritoneal cavity. Am J Physiol 1996; 270 (2 Pt 2): F377–F390.PubMedGoogle Scholar
  103. 103.
    Courtice FC, Steinbeck AW. The effects of lymphatic obstruction and of posture on the absorption of protein from the peritoneal cavity. Aust J Exp Biol Med Sci 1951; 29 (6): 451–458.PubMedCrossRefGoogle Scholar
  104. 104.
    Imholz AL, Koomen GC, Voorn WJ, Struijk DG, Arisz L, Krediet RT. Day-to-day variability of fluid and solute transport in upright and recumbent positions during CAPD. Nephrol Dial Transplant 1998; 13 (1): 146–153.PubMedCrossRefGoogle Scholar
  105. 105.
    Schurig R, Gahl G, Schartl M, Becker H, Kessel M. Central and peripheral haemodynamics in longterm peritoneal dialysis patients. Proc Eur Dial Transplant Assoc 1979; 16: 165–170.PubMedGoogle Scholar
  106. 106.
    Odriozola J, Bahlmann J, Fabel H. [Effect of peritoneal dialysis on pulmonary function]. Klin Wochenschr 1971; 49 (8): 484–488.PubMedCrossRefGoogle Scholar
  107. 107.
    Gotloib L, Mines M, Garmizo L, Varka I. Hemodynamic effects of increased intra-abdominal pressure in peritoneal dialysis. Perit Dial Bull 1981; 1: 41–43.Google Scholar
  108. 108.
    Durand PY, Chanliau J, Gamberoni J, Hestin D, Kessler M. APD: clinical measurement of the maximal acceptable intraperitoneal volume. Adv Perit Dial 1994; 10: 63–67.PubMedGoogle Scholar
  109. 109.
    de Jesus Ventura M, Amato D, Correa-Rotter R, Paniagua R. Relationship between fill volume, intraperitoneal pressure, body size, and subjective discomfort perception in CAPD patients. Mexican Nephrology Collaborative Study Group. Perit Dial Int 2000; 20 (2): 188–193.PubMedGoogle Scholar
  110. 110.
    Durand PY, Balteau P, Chanliau J, Kessler M. Optimization of fill volumes in automated peritoneal dialysis. Perit Dial Int 2000; 20 (suppl 2): S83–S88.PubMedGoogle Scholar
  111. 111.
    Durand PY, Chanliau J, Gamberoni J, Hestin D, Kessler M. Intraperitoneal pressure, peritoneal permeability and volume of ultrafiltration in CAPD. Adv Perit Dial 1992; 8: 22–25.PubMedGoogle Scholar
  112. 112.
    Scanziani R, Dozio B, Baragetti I, Maroni S. Intraperitoneal hydrostatic pressure and flow characteristics of peritoneal catheters in automated peritoneal dialysis. Nephrol Dial Transplant 2003; 18 (11): 2391–2398.PubMedCrossRefGoogle Scholar
  113. 113.
    Amici G, Thomaseth K. Role of drain and fill profile in automated peritoneal dialysis. Contrib Nephrol 1999; 129: 44–53.PubMedCrossRefGoogle Scholar
  114. 114.
    Diaz-Buxo JA. Peritoneal dialysis modality selection for the adult, the diabetic, and the geriatric patient. Perit Dial Int 1997; 17 (Suppl 3): S28–S31.PubMedGoogle Scholar
  115. 115.
    Ellis EN, Watts K, Wells TG, Arnold WC. Use of the peritoneal equilibration test in pediatric dialysis patients. Adv Perit Dial 1991; 7: 259–261.PubMedGoogle Scholar
  116. 116.
    Salusky IB, Holloway M. Selection of peritoneal dialysis for pediatric patients. Perit Dial Int 1997; 17 (suppl 3): S35–S37.PubMedGoogle Scholar
  117. 117.
    Cancarini GC. The future of peritoneal dialysis: problems and hopes. Nephrol Dial Transplant 1997; 12 (suppl 1): 84–88.PubMedGoogle Scholar
  118. 118.
    Hiroshige K, Iwamoto M, Ohtani A. Clinical benefits and problems in recent automated peritoneal dialysis treatment. Int J Artif Organs 1998; 21 (7): 367–370.PubMedGoogle Scholar
  119. 119.
    Nissenson AR. Dialysis modality selection: harsh realities. Perit Dial Int 1996; 16 (4): 343–344.PubMedGoogle Scholar
  120. 120.
    Cheng YL, Chau KF, Choi KS, Wong FK, Cheng HM, Li CS. Peritoneal catheter-related complications: a comparison between hemodialysis and intermittent peritoneal dialysis in the break-in period. Adv Perit Dial 1996; 12: 231–234.PubMedGoogle Scholar
  121. 121.
    Kleinpeter MA, Krane NK. Perioperative management of peritoneal dialysis patients: review of abdominal surgery. Adv Perit Dial 2006; 22: 119–123.PubMedGoogle Scholar
  122. 122.
    Ryckelynck JP, Lobbedez T, Valette B, et al. Peritoneal ultrafiltration and treatment-resistant heart failure. Nephrol Dial Transplant 1998; 13 (suppl 4): 56–59.PubMedCrossRefGoogle Scholar
  123. 123.
    Freida P, Ryckelynck J, Potier J. Place de l’ultrafiltration peritoneale dans le traitement medical de l’insuffisance cardiaque au stade IV de la NYHA. Bull Dial Perit 1995; 5: 7–18.Google Scholar
  124. 124.
    Gotloib L, Fudin R, Yakubovich M, Vienken J. Peritoneal dialysis in refractory end-stage congestive heart failure: a challenge facing a no-win situation. Nephrol Dial Transplant 2005; 20 (suppl 7): vii32–vii36.PubMedCrossRefGoogle Scholar
  125. 125.
    Mehrotra R, Kathuria P. Place of peritoneal dialysis in the management of treatment-resistant congestive heart failure. Kidney Int Suppl 2006; 70(103): S67–S71.Google Scholar
  126. 126.
    Goel S, Saran R, Nolph K, Moran J, Vonesh E, Dunham T. Dry days in chronic peritoneal dialysis: whether whither or wither? Semin Dial 1997; 10: 134–136.CrossRefGoogle Scholar
  127. 127.
    Gahl GM, Jorres A. Nightly intermittent peritoneal dialysis: targets and prescriptions. Perit Dial Int 2000; 20 (suppl 2): S89–S92.PubMedGoogle Scholar
  128. 128.
    Brophy DF, Sowinski KM, Kraus MA, Moe SM, Klaunig JE, Mueller BA. Small and middle molecular weight solute clearance in nocturnal intermittent peritoneal dialysis. Perit Dial Int 1999; 19 (6): 534–539.PubMedGoogle Scholar
  129. 129.
    Keshaviah P. Establishing kinetic guidelines for peritoneal dialysis modality selection. Perit Dial Int 1997; 17 (suppl 3): S53–S57.PubMedGoogle Scholar
  130. 130.
    Blake P, Burkart JM, Churchill DN, et al. Recommended clinical practices for maximizing peritoneal dialysis clearances. Perit Dial Int 1996; 16 (5): 448–456.PubMedGoogle Scholar
  131. 131.
    Diaz-Buxo JA. Enhancement of peritoneal dialysis: the PD Plus concept. Am J Kidney Dis 1996; 27 (1): 92–98.PubMedCrossRefGoogle Scholar
  132. 132.
    Flanigan MJ, Doyle C, Lim VS, Ullrich G. Tidal peritoneal dialysis: preliminary experience. Perit Dial Int 1992; 1 2(3): 304–308.Google Scholar
  133. 133.
    Fernandez Rodriguez AM, Vega Diaz N, Palop Cubillo L, et al. Adequacy of dialysis in automated peritoneal dialysis: a clinical experience. Perit Dial Int 1997; 17 (5): 442–448.PubMedGoogle Scholar
  134. 134.
    Rodriguez AM, Diaz NV, Cubillo LP, et al. Automated peritoneal dialysis: a Spanish multicentre study. Nephrol Dial Transplant 1998; 13 (9): 2335–2340.PubMedCrossRefGoogle Scholar
  135. 135.
    Aasarod K, Wideroe TE, Flakne SC. A comparison of solute clearance and ultrafiltration volume in peritoneal dialysis with total or fractional (50%) intraperitoneal volume exchange with the same dialysate flow rate. Nephrol Dial Transplant 1997; 12 (10): 2128–2132.PubMedGoogle Scholar
  136. 136.
    Piraino B, Bender F, Bernardini J. A comparison of clearances on tidal peritoneal dialysis and intermittent peritoneal dialysis. Perit Dial Int 1994; 14 (2): 145–148.PubMedGoogle Scholar
  137. 137.
    Quellhorst E, Solf A, Hildebrand U. Tidal peritoneal dialysis (TPD) is superior to ntermittent peritoneal dialysis (IPD) in long term treatment of patients with chronic renal insufficency (CRI). Perit Dial Int 1991; 11 (suppl 1): 217.Google Scholar
  138. 138.
    Vychytil A, Lilaj T, Schneider B, Horl WH, Haag-Weber M. Tidal peritoneal dialysis for home-treated patients: should it be preferred? Am J Kidney Dis 1999; 33 (2): 334–343.PubMedCrossRefGoogle Scholar
  139. 139.
    Vychytil A, Horl WH. The role of tidal peritoneal dialysis in modern practice: a European perspective. Kidney Int Suppl 2006; 70(103): S96–S103.Google Scholar
  140. 140.
    Perez RA, Blake PG, McMurray S, Mupas L, Oreopoulos DG. What is the optimal frequency of cycling in automated peritoneal dialysis? Perit Dial Int 2000; 20 (5): 548–556.PubMedGoogle Scholar
  141. 141.
    Balaskas EV, Izatt S, Chu M, Oreopoulos DG. Tidal volume peritoneal dialysis versus intermittent peritoneal dialysis. Adv Perit Dial 1993; 9: 105–109.PubMedGoogle Scholar
  142. 142.
    Twardowski ZJ. Influence of different automated peritoneal dialysis schedules on solute and water removal. Nephrol Dial Transplant 1998; 13 (suppl 6): 103–111.PubMedCrossRefGoogle Scholar
  143. 143.
    Agrawal A, Nolph KD. Advantages of tidal peritoneal dialysis. Perit Dial Int 2000; 20 (suppl 2): S98–S100.PubMedGoogle Scholar
  144. 144.
    Vychytil A. Automated peritoneal dialysis – actual clinical aspects. Wien Klin Wochenschr 2005; 117 (suppl 6): 98–108.PubMedCrossRefGoogle Scholar
  145. 145.
    Durand PY. APD schedules and clinical results. Contrib Nephrol 2006; 150: 285–290.PubMedCrossRefGoogle Scholar
  146. 146.
    Bargman JM. Continuous flow peritoneal dialysis: ideal peritoneal dialysis or second-rate hemodialysis? Contrib Nephrol 2006; 150: 321–325.PubMedCrossRefGoogle Scholar
  147. 147.
    Ronco C, Amerling R. Continuous flow peritoneal dialysis: current state-of-the-art and obstacles to further development. Contrib Nephrol 2006; 150: 310–320.PubMedCrossRefGoogle Scholar
  148. 148.
    Cruz C, Melendez A, Gotch FA, Folden T, Crawford TL, Diaz-Buxo JA. Single-pass continuous flow peritoneal dialysis using two catheters. Semin Dial 2001; 14 (5): 391–394.PubMedCrossRefGoogle Scholar
  149. 149.
    Raj DS, Self M, Work J. Hybrid dialysis: recirculation peritoneal dialysis revisited. Am J Kidney Dis 2000; 36 (1): 58–67.PubMedCrossRefGoogle Scholar
  150. 150.
    Page DE. CAPD with a night-exchange device is the only true CAPD? Adv Perit Dial 1998; 14: 60–63.PubMedGoogle Scholar
  151. 151.
    Abu-Alfa AK, Burkart J, Piraino B, Pulliam J, Mujais S. Approach to fluid management in peritoneal dialysis: a practical algorithm. Kidney Int Suppl 2002; 62(81): S8–S16.Google Scholar
  152. 152.
    Brown EA, Davies SJ, Rutherford P, et al. Survival of functionally anuric patients on automated peritoneal dialysis: the European APD Outcome Study. J Am Soc Nephrol 2003; 14 (11): 2948–2957.PubMedCrossRefGoogle Scholar
  153. 153.
    Gotch FA, Sargent JA. A mechanistic analysis of the National Cooperative Dialysis Study (NCDS). Kidney Int 1985; 28 (3): 526–534.PubMedCrossRefGoogle Scholar
  154. 154.
    Maiorca R, Brunori G, Zubani R, et al. Predictive value of dialysis adequacy and nutritional indices for mortality and morbidity in CAPD and HD patients. A longitudinal study. Nephrol Dial Transplant 1995; 10 (12): 2295–2305.PubMedGoogle Scholar
  155. 155.
    Adequacy of dialysis and nutrition in continuous peritoneal dialysis: association with clinical outcomes. Canada-USA (CANUSA) Peritoneal Dialysis Study Group. J Am Soc Nephrol 1996; 7 (2): 198–207.Google Scholar
  156. 156.
    NKF-DOQI. Clinical practice guidelines for peritoneal dialysis adequacy. National Kidney Foundation. Am J Kidney Dis 1997; 30 (3 Suppl 2): S67–S136.Google Scholar
  157. 157.
    NKF-K/DOQI. Clinical practice guidelines for peritoneal dialysis adequacy: update 2000. Am J Kidney Dis 2001; 37 (1 suppl 1): S65–S136.Google Scholar
  158. 158.
    Bargman JM, Thorpe KE, Churchill DN. Relative contribution of residual renal function and peritoneal clearance to adequacy of dialysis: a reanalysis of the CANUSA study. J Am Soc Nephrol 2001; 12 (10): 2158–2162.PubMedGoogle Scholar
  159. 159.
    Paniagua R, Amato D, Vonesh E, et al. Effects of increased peritoneal clearances on mortality rates in peritoneal dialysis: ADEMEX, a prospective, randomized, controlled trial. J Am Soc Nephrol 2002; 13 (5): 1307–1320.PubMedGoogle Scholar
  160. 160.
    Lo WK, Ho YW, Li CS, et al. Effect of Kt/V on survival and clinical outcome in CAPD patients in a randomized prospective study. Kidney Int 2003; 64 (2): 649–656.PubMedCrossRefGoogle Scholar
  161. 161.
    Jansen MA, Termorshuizen F, Korevaar JC, et al. Predictors of survival in anuric peritoneal dialysis patients. Kidney Int 2005; 68: 1199–1205.PubMedCrossRefGoogle Scholar
  162. 162.
    Lo WK, Lui SL, Chan TM, et al. Minimal and optimal peritoneal Kt/V targets: results of an anuric peritoneal dialysis patient's survival analysis. Kidney Int 2005; 67: 2032–2038.PubMedCrossRefGoogle Scholar
  163. 163.
    Bhaskaran S, Schaubel DE, Jassal SV, et al. The effect of small solute clearances on survival of anuric peritoneal dialysis patients. Perit Dial Int 2000; 20 (2): 181–187.PubMedGoogle Scholar
  164. 164.
    Rocco MV, Frankenfield DL, Prowant B, Frederick P, Flanigan MJ. Risk factors for early mortality in U.S. peritoneal dialysis patients: impact of residual renal function. Perit Dial Int 2002; 22 (3): 371–379.PubMedGoogle Scholar
  165. 165.
    Konings CJ, Kooman JP, Schonck M, et al. Fluid status, blood pressure, and cardiovascular abnormalities in patients on peritoneal dialysis. Perit Dial Int 2002; 22 (4): 477–487.PubMedGoogle Scholar
  166. 166.
    Lameire N, Van Biesen W. Importance of blood pressure and volume control in peritoneal dialysis patients. Perit Dial Int 2001; 21 (2): 206–211.PubMedGoogle Scholar
  167. 167.
    Ates K, Nergizoglu G, Keven K, et al. Effect of fluid and sodium removal on mortality in peritoneal dialysis patients. Kidney Int 2001; 60 (2): 767–776.PubMedCrossRefGoogle Scholar
  168. 168.
    Davies SJ, Brown EA, Reigel W, et al. What is the link between poor ultrafiltration and increased mortality in anuric patients on automated peritoneal dialysis? Analysis of data from EAPOS. Perit Dial Int 2006; 26 (4): 458–465.PubMedGoogle Scholar
  169. 169.
    Sharma AP, Blake PG. Should “fluid removal” be used as an adequacy target in peritoneal dialysis? Perit Dial Int 2003; 23 (2): 107–108.PubMedGoogle Scholar
  170. 170.
    National Kidney Foundation I, Kidney-Dialysis Outcome Quality Initiative. Clinical practice guidelines and clinical practice recommendations. 2006 updates. Hemodialysis adequacy, peritoneal dialysis adequacy, vascular access. Am J Kidney Dis 2006; 48 (suppl 1): S1–S322.Google Scholar
  171. 171.
    Lo WK, Bargman J, Burkart J, et al. Guideline on targets for solute and fluid removal in adult patients on chronic peritoneal dialysis. Perit Dial Int 2006; 26: 520–522.PubMedGoogle Scholar
  172. 172.
    Dombros N, Dratwa M, Feriani M, et al. European best practice guidelines for peritoneal dialysis. Nephrol Dial Transplant 2005; 20 (suppl 9): ix21–ix23.Google Scholar
  173. 173.
    Johnson D, Brown F, Lammi H, Walker R, Caring for Australians with Renal Impairment (CARI). The CARI guidelines. Dialysis adequacy (PD) guidelines. Nephrology (Carlton) 2005; 10 (Suppl 4): S81–S107.CrossRefGoogle Scholar
  174. 174.
    Vonesh EF, Story KO, O'Neill WT. A multinational clinical validation study of PD ADEQUEST 2.0. PD ADEQUEST International Study Group. Perit Dial Int 1999; 19 (6): 556–571.PubMedGoogle Scholar
  175. 175.
    Gotch FA, Lipps BJ, Keen ML, Panlilio F. Computerized urea kinetic modeling to prescribe and monitor delivered Kt/V (pKt/V, dKt/V) in peritoneal dialysis. Fresenius Randomized Dialysis Prescriptions and Clinical Outcome Study (RDP/CO). Adv Perit Dial 1996; 12: 43–45.PubMedGoogle Scholar
  176. 176.
    Rippe B. Personal dialysis capacity. Perit Dial Int 1997; 17 (suppl 2): S131–S134.PubMedGoogle Scholar
  177. 177.
    Van Biesen W, Van Der Tol A, Veys N, Lameire N, Vanholder R. Evaluation of the peritoneal membrane function by three letter word acronyms: PET, PDC, SPA, PD-Adequest, POL: what to do? Contrib Nephrol 2006; 150: 37–41.PubMedCrossRefGoogle Scholar
  178. 178.
    Sarkar S, Bernardini J, Fried L, Johnston JR, Piraino B. Tolerance of large exchange volumes by peritoneal dialysis patients. Am J Kidney Dis 1999; 33 (6): 1136–1141.PubMedCrossRefGoogle Scholar
  179. 179.
    Harty J, Boulton H, Venning M, Gokal R. Impact of increasing dialysis volume on adequacy targets: a prospective study. J Am Soc Nephrol 1997; 8 (8): 1304–1310.PubMedGoogle Scholar
  180. 180.
    Twardowski Z, Janicka L. Three exchanges with a 2.5-L volume for continuous ambulatory peritoneal dialysis. Kidney Int 1981; 20 (2): 281–284.PubMedCrossRefGoogle Scholar
  181. 181.
    Juergensen PH, Murphy AL, Kliger AS, Finkelstein FO. Increasing the dialysis volume and frequency in a fixed period of time in CPD patients: the effect on Kpt/V and creatinine clearance. Perit Dial Int 2002; 22 (6): 693–697.PubMedGoogle Scholar
  182. 182.
    Demetriou D, Habicht A, Schillinger M, Horl WH, Vychytil A. Adequacy of automated peritoneal dialysis with and without manual daytime exchange: A randomized controlled trial. Kidney Int 2006; 70 (9): 1649–1655.PubMedCrossRefGoogle Scholar
  183. 183.
    Diaz-Buxo JA. Continuous cycling peritoneal dialysis, PD plus, and high-flow automated peritoneal dialysis: a spectrum of therapies. Perit Dial Int 2000; 20 (suppl 2): S93–S97.PubMedGoogle Scholar
  184. 184.
    Mujais S, Nolph K, Gokal R, et al. Evaluation and management of ultrafiltration problems in peritoneal dialysis. International Society for Peritoneal Dialysis Ad Hoc Committee on Ultrafiltration Management in Peritoneal Dialysis. Perit Dial Int 2000; 20 (suppl 4): S5–S21.PubMedGoogle Scholar
  185. 185.
    Wang T, Heimburger O, Cheng H, Waniewski J, Bergstrom J, Lindholm B. Effect of increased dialysate fill volume on peritoneal fluid and solute transport. Kidney Int 1997; 52 (4): 1068–1076.PubMedCrossRefGoogle Scholar
  186. 186.
    Wrenger E, Krautzig S, Brunkhorst R. Adequacy and quality of life with automated peritoneal dialysis. Perit Dial Int 1996; 16 (suppl 1): S153–S157.PubMedGoogle Scholar
  187. 187.
    Friedlander MA, Rahman M, Tessman MJ, Hanslik TM, Ferrara KA, Newman LN. Variability in calculations of dialysis adequacy in patients using nightly intermittent peritoneal dialysis compared to CAPD. Adv Perit Dial 1995; 11: 93–96.PubMedGoogle Scholar
  188. 188.
    Diaz-Buxo J, Walker P, Burgess W, Chandler J, Farmer C, Holt K. Current status of CCPD in prevention of peritonitis. Adv Perit Dial 1985; 2: 145–148.Google Scholar
  189. 189.
    Levy M, Balfe JW, Geary D, Fryer-Keene SP. Factors predisposing and contributing to peritonitis during chronic peritoneal dialysis in children: a ten-year experience. Perit Dial Int 1990; 10 (4): 263–269.PubMedGoogle Scholar
  190. 190.
    Walls J, Smith B, Feehally J, et al. CCPD - an improvement on CAPD, in Advances in Peritoneal Dialysis, edited by Gahl G, Kessel M, Nolph K, Amsterdam, Holland, Excerpta Medica, 1981, pp 141–143.Google Scholar
  191. 191.
    de Fijter CW, Oe LP, Nauta JJ, et al. Clinical efficacy and morbidity associated with continuous cyclic compared with continuous ambulatory peritoneal dialysis. Ann Intern Med 1994; 120 (4): 264–271.PubMedGoogle Scholar
  192. 192.
    Rodriguez-Carmona A, Perez Fontan M, Garcia Falcon T, Fernandez Rivera C, Valdes F. A comparative analysis on the incidence of peritonitis and exit-site infection in CAPD and automated peritoneal dialysis. Perit Dial Int 1999; 19 (3): 253–258.PubMedGoogle Scholar
  193. 193.
    Burkart JM, Jordan JR, Durnell TA, Case LD. Comparison of exit-site infections in disconnect versus nondisconnect systems for peritoneal dialysis. Perit Dial Int 1992; 12 (3): 317–320.PubMedGoogle Scholar
  194. 194.
    Williams P, Cartmel L, Hollis J. The role of automated peritoneal dialysis (APD) in an integrated dialysis programme. Br Med Bull 1997; 53 (4): 697–705.PubMedGoogle Scholar
  195. 195.
    Yishak A, Bernardini J, Fried L, Piraino B. The outcome of peritonitis in patients on automated peritoneal dialysis. Adv Perit Dial 2001; 17: 205–208.PubMedGoogle Scholar
  196. 196.
    Oo TN, Roberts TL, Collins AJ. A comparison of peritonitis rates from the United States Renal Data System database: CAPD versus continuous cycling peritoneal dialysis patients. Am J Kidney Dis 2005; 45 (2): 372–380.PubMedCrossRefGoogle Scholar
  197. 197.
    Wrenger E, Baumann C, Behrend M, Zamore E, Schindler R, Brunkhorst R. Peritoneal mononuclear cell differentiation and cytokine production in intermittent and continuous automated peritoneal dialysis. Am J Kidney Dis 1998; 31 (2): 234–241.PubMedCrossRefGoogle Scholar
  198. 198.
    Piraino B, Bailie GR, Bernardini J, et al. Peritoneal dialysis-related infections recommendations: 2005 update. Perit Dial Int 2005; 25 (2): 107–131.PubMedGoogle Scholar
  199. 199.
    Steele M, Kwan JT. Potential problem: delayed detection of peritonitis by patients receiving home automated peritoneal dialysis (APD). Perit Dial Int 1997; 17 (6): 617.PubMedGoogle Scholar
  200. 200.
    Troidle L, Gorban-Brennan N, Kliger A, Finkelstein F. Differing outcomes of gram-positive and gram-negative peritonitis. Am J Kidney Dis 1998; 32 (4): 623–628.PubMedCrossRefGoogle Scholar
  201. 201.
    Cooke FJ, Kodjo A, Clutterbuck EJ, Bamford KB. A case of Pasteurella multocida peritoneal dialysis-associated peritonitis and review of the literature. Int J Infect Dis 2004; 8 (3): 171–174.PubMedCrossRefGoogle Scholar
  202. 202.
    Manley HJ, Bailie GR. Treatment of peritonitis in APD: pharmacokinetic principles. Semin Dial 2002; 15 (6): 418–421.PubMedCrossRefGoogle Scholar
  203. 203.
    Manley HJ, Bailie GR, Frye R, Hess LD, McGoldrick MD. Pharmacokinetics of intermittent intravenous cefazolin and tobramycin in patients treated with automated peritoneal dialysis. J Am Soc Nephrol 2000; 11 (7): 1310–1316.PubMedGoogle Scholar
  204. 204.
    Manley HJ, Bailie GR, Frye R, McGoldrick MD. Intermittent intravenous piperacillin pharmacokinetics in automated peritoneal dialysis patients. Perit Dial Int 2000; 20 (6): 686–693.PubMedGoogle Scholar
  205. 205.
    Manley HJ, Bailie GR, Frye RF, McGoldrick MD. Intravenous vancomycin pharmacokinetics in automated peritoneal dialysis patients. Perit Dial Int 2001; 21 (4): 378–385.PubMedGoogle Scholar
  206. 206.
    Low CL, Gopalakrishna K, Lye WC. Pharmacokinetics of once daily intraperitoneal cefazolin in continuous ambulatory peritoneal dialysis patients. J Am Soc Nephrol 2000; 11 (6): 1117–1121.PubMedGoogle Scholar
  207. 207.
    Elwell RJ, Frye RF, Bailie GR. Pharmacokinetics of intraperitoneal cefipime in automated peritoneal dialysis. Perit Dial Int 2005; 25: 380–386.PubMedGoogle Scholar
  208. 208.
    Elwell RJ, Manley HJ, Bailie GR. Comparison of intraperitoneal ceftazidime pharmacokinetics in CAPD and APD patients [abstract]. J Am Soc Nephrol 2002; 13: 383A.Google Scholar
  209. 209.
    Yeung SM, Walker SE, Tailor SA, Awdishu L, Tobe S, Yassa T. Pharmacokinetics of oral ciprofloxacin in continuous cycling peritoneal dialysis. Perit Dial Int 2004; 24 (5): 447–453.PubMedGoogle Scholar
  210. 210.
    Troidle L, Finkelstein FO. Peritonitis and automated peritoneal dialysis: a therapeutic conundrum? Perit Dial Int 2005; 25 (2): 142–145.PubMedGoogle Scholar
  211. 211.
    Holley JL, Bernardini J, Piraino B. Continuous cycling peritoneal dialysis is associated with lower rates of catheter infections than continuous ambulatory peritoneal dialysis. Am J Kidney Dis 1990; 16 (2): 133–136.PubMedGoogle Scholar
  212. 212.
    Van Dijk CM, Ledesma SG, Teitelbaum I. Patient characteristics associated with defects of the peritoneal cavity boundary. Perit Dial Int 2005; 25 (4): 367–373.PubMedGoogle Scholar
  213. 213.
    Rocco M, Stone J. Abdominal hernias in chronic peritoneal dialysis patients: a review. Perit Dial Bull 1985; 5: 171.Google Scholar
  214. 214.
    Bargman JM. Complications of peritoneal dialysis related to increased intraabdominal pressure. Kidney Int Suppl 1993; 40: S75–S80.PubMedGoogle Scholar
  215. 215.
    Del Peso G, Bajo MA, Costero O, et al. Risk factors for abdominal wall complications in peritoneal dialysis patients. Perit Dial Int 2003; 2 3(3): 249–254.Google Scholar
  216. 216.
    Hussain SI, Bernardini J, Piraino B. The risk of hernia with large exchange volumes. Adv Perit Dial 1998; 14: 105–107.PubMedGoogle Scholar
  217. 217.
    Durand PY, Chanliau J, Gamberoni J, Hestin D, Kessler M. Routine measurement of hydrostatic intraperitoneal pressure. Adv Perit Dial 1992; 8: 108–112.PubMedGoogle Scholar
  218. 218.
    O'Connor JP, Rigby RJ, Hardie IR, et al. Abdominal hernias complicating continuous ambulatory peritoneal dialysis. Am J Nephrol 1986; 6 (4): 271–274.PubMedCrossRefGoogle Scholar
  219. 219.
    Leblanc M, Ouimet D, Pichette V. Dialysate leaks in peritoneal dialysis. Semin Dial 2001; 14(1): 50–54.PubMedCrossRefGoogle Scholar
  220. 220.
    Scanziani R, Pozzi M, Pisano L, et al. Imaging work-up for peritoneal access care and peritoneal dialysis complications. Int J Artif Organs 2006; 29 (1): 142–152.PubMedGoogle Scholar
  221. 221.
    Thieler H, Riedel E, Pielesch W, Berzon R, von Paris V. Continuous ambulatory peritoneal dialysis and pulmonary function. Proc Eur Dial Transplant Assoc 1980; 17: 333–336.PubMedGoogle Scholar
  222. 222.
    Szeto CC, Chow KM. Pathogenesis and management of hydrothorax complicating peritoneal dialysis. Curr Opin Pulm Med 2004; 10 (4): 315–319.PubMedCrossRefGoogle Scholar
  223. 223.
    Moist LM, Port FK, Orzol SM, et al. Predictors of loss of residual renal function among new dialysis patients. J Am Soc Nephrol 2000; 11 (3): 556–564.PubMedGoogle Scholar
  224. 224.
    Hamada C, Osada S, Inoue S, et al. Effects of automated peritoneal dialysis on residual urinary volume. Perit Dial Int 2000; 20 (2): 239–241.PubMedGoogle Scholar
  225. 225.
    Rodriguez-Carmona A, Perez-Fontan M, Garca-Naveiro R, Villaverde P, Peteiro J. Compared time profiles of ultrafiltration, sodium removal, and renal function in incident CAPD and automated peritoneal dialysis patients. Am J Kidney Dis 2004; 44 (1): 132–145.PubMedCrossRefGoogle Scholar
  226. 226.
    Hiroshige K, Yuu K, Soejima M, Takasugi M, Kuroiwa A. Rapid decline of residual renal function in patients on automated peritoneal dialysis. Perit Dial Int 1996; 16 (3): 307–315.PubMedGoogle Scholar
  227. 227.
    Hufnagel G, Michel C, Queffeulou G, Skhiri H, Damieri H, Mignon F. The influence of automated peritoneal dialysis on the decrease in residual renal function. Nephrol Dial Transplant 1999; 14 (5): 1224–1228.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.University of Oklahoma College of MedicineOklahoma

Personalised recommendations