Skip to main content

New Peritoneal Dialysis Solutions and Solutions on the Horizon

  • Chapter

Magnesium is an important cation involved in several enzymatic reactions. The serum concentration of magnesium in dialysis patients depends on dietary intake and on the concentration of the cation in the dialysis solution. Normal values of total serum magnesium range from 0.65 to 0.98 mmol/L, while its diffusible fraction is about 55–60% of the total. Commercially available continuous ambulatory peritoneal dialysis (CAPD) solutions contain 0.25–0.75 mmol/L of magnesium. In such conditions, when 0.75 mmol/L magnesium and 1.5% glucose solutions are used in CAPD, a slight magnesium uptake from the dialysis solution usually occurs by diffusive gradient [1]. Kwong et al., however, have reported a negative dialytic balance with the same solution [2].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Parker A, Nolph KD. Magnesium and calcium mass transfer during continuous ambulatory peritoneal dialysis. Trans Am Soc Artif Int Org 1980 26: 194–196.

    CAS  Google Scholar 

  2. Kwong MBL, Lee JSK, Chan MK. Transperitoneal calcium and magnesium transfer during an 8-hour dialysis. Perit Dial Bull 1987; 7: 85–89.

    Google Scholar 

  3. Gokal R, Fryer R, McHugh M, Ward MK, Kerr DNS. Calcium and phosphate control in patients on continuous ambulatory peritoneal dialysis. In: Legrain M, editor. Continuous Ambulatory Peritoneal Dialysis. Amsterdam: Excerpta Medica, 1980: 283–291.

    Google Scholar 

  4. Nolph KD, Prowant B, Serkes KD, et al. Multicentric evaluation of a new peritoneal dialysis solution with a high lactate and low magnesium concentration. Perit Dial Bull 1983; 3: 63–65.

    Google Scholar 

  5. Kohaut EC, Balfe JW, Potter D, Alexandre S, Lum G. Hypermagnesemia and mild hypocarbia in pediatric patients on CAPD. Perit Dial Bull 1983; 3: 41–42.

    Google Scholar 

  6. Rahman R, Heaton A, Goodship T, et al. Renal osteodystrophy in patients on CAPD: a five year study. Perit Dial Bull 1987; 7: 1–4.

    Google Scholar 

  7. Randall RE, Cohen MD, Spray CC, Rossmeisl EC. Hypermagnaesemia in renal failure: etiology and toxic manifestation. Ann Intern Med 1964; 61: 73–78.

    CAS  PubMed  Google Scholar 

  8. Navarro-Gonzalez JF. Magnesium in dialysis patients: serum levels and clinical implication. Clin Nephrol 1998; 49: 373–378.

    CAS  PubMed  Google Scholar 

  9. Charmichel A, Dickinson F, McHugh MI, Martin AM, Farrow M. Magnesium free dialysis for uremic pruritus. Br Med J 1988; 297: 1584–1585.

    Article  Google Scholar 

  10. Cisari C, Gasco P, Calabrese G, Pratesi G, Gonnella M. Serum magnesium and nerve conduction velocity in uremic patients on chronic hemodialysis. Magnes Res 1989; 4: 267–269.

    Google Scholar 

  11. Gonnella M. Plasma and tissue levels of magnesium in chronically hemodialyzed patients: effects of dialysate magnesium levels. Nephron 1983; 34: 141–145.

    Article  Google Scholar 

  12. Meema HE, Oreopoulos DG, Rapoport A. Serum magnesium level and arterial calcification in end-stage renal disease. Kidney Int 1987; 32: 388–394.

    Article  CAS  PubMed  Google Scholar 

  13. Massry SG, Coburn JW, Kleeman CR. Evidence for suppression of parathyroid gland activity by hypermagnesemia. J Clin Invest 1970; 49: 1619–1629.

    Article  CAS  PubMed  Google Scholar 

  14. Navarro JF, Mora C, Marcia M, Garcia J. Serum magnesium concentration is an independent predictor of parathyroid hormone levels in peritoneal dialysis patients. Perit Dial Int 1999; 19: 455–461.

    CAS  PubMed  Google Scholar 

  15. Lindholm B, Alvestrand A, Hultman F, Bergstrom J. Muscle water and electrolytes in patients undergoing continuous ambulatory peritoneal dialysis. Acta Med Scand 1986; 219: 323–330.

    Article  CAS  PubMed  Google Scholar 

  16. Nolph KD, Parker A. The composition of dialysis solution for continuous ambulatory peritoneal dialysis. In: Legrain M, editor. Continuous Ambulatory Peritoneal Dialysis. Amsterdam: Excerpta Medica, 1980: 341–346.

    Google Scholar 

  17. Hutchison AJ, Freemont AJ, Boulton HF, Gokal R. Low-calcium dialysis fluid and oral calcium carbonate in CAPD. A method of controlling hyperphosphataemia whilst minimizing aluminium exposure and hypercalcaemia. Nephrol Dial Transplant 1992; 7: 1219–1225.

    CAS  PubMed  Google Scholar 

  18. Ejaz AA, McShane AP, Ghandi VC, Leehey DJ, Ing TS. Hypomagnesemia in continuous ambulatory peritoneal dialysis patients dialyzed with a low magnesium peritoneal dialysis solution. Perit Dial Int 1995; 15: 61–64.

    CAS  PubMed  Google Scholar 

  19. Whang R. Magnesium deficiency: pathogenesis, prevalence and clinical implications. Am J Med 1987; 82 (Suppl 3A): 24–29.

    Article  CAS  PubMed  Google Scholar 

  20. Hollifield J. Magnesium depletion, diuretics and arrhythmias. Am J Med 1987; 82 (Suppl 3A): 30–37.

    Article  CAS  PubMed  Google Scholar 

  21. Selling M. Electrocardiographic patterns of magnesium depletion appearing in alcoholic heart disease. Ann N Y Acad Sci 1969; 162: 906–917.

    Article  Google Scholar 

  22. Saha HT, Harmoinen APT, Pasternack AI. Measurement of serum ionized magnesium in CAPD patients. Perit Dial Int 1997; 17: 347–352.

    CAS  PubMed  Google Scholar 

  23. Hutchinson AJ. Serum magnesium and end-stage renal disease. Perit Dial Int 1997; 17: 327–329.

    CAS  PubMed  Google Scholar 

  24. Hutchison AJ, Gokal R. Improved solutions for peritoneal dialysis: physiological calcium solutions, osmotic agents and buffers. Kidney Int 1992; 42 (Suppl 38): S153–S159.

    Google Scholar 

  25. Breuer J, Moniz C, Baldwin D, Parsons V. The effects of zero magnesium dialysate and magnesium supplements on ionized calcium concentration in patients on regular dialysis treatment. Nephrol Dial Transplant 1987; 2: 347–350.

    CAS  PubMed  Google Scholar 

  26. Shah G, Winer R, Cutler R, et al. Effects of a magnesium-free dialysate on magnesium. Am J Kidney Dis 1987; 10: 268–275.

    Google Scholar 

  27. Digenis G, Khanna R, Pierratos A, et al. Renal osteodystrophy in patients maintained on CAPD for more than three years. Perit Dial Bull 1983; 3: 81–86.

    Google Scholar 

  28. Delmez JA, Slatopolsky E, Martin KJ, Gearing BN, Harter HR. Minerals, vitamin D, and parathyroid hormone in continuous ambulatory peritoneal dialysis. Kidney Int 1982; 21: 862–867.

    Article  CAS  PubMed  Google Scholar 

  29. Gokal R, Ramos JM, Ellis HA, et al. Histological renal osteodystrophy and 25 hydroxycholecalciferol and aluminum levels in patients on continuous ambulatory peritoneal dialysis. Kidney Int 1983; 23: 15–21.

    Article  CAS  PubMed  Google Scholar 

  30. Delmez JA, Fallon M, Bergfeld M, Gearing BN, Dougan C, Teitelbaum S. Continuous ambulatory peritoneal dialysis and bone. Kidney Int 1986; 30: 379–384.

    Article  CAS  PubMed  Google Scholar 

  31. Bucciante G, Bianchi M, Valenti G. Progress of renal osteodystrophy during CAPD. Clin Nephrol 1984; 6: 279–283.

    Google Scholar 

  32. Blumenkrantz MJ, Kopple JD, Moran JK, Coburn JW. Metabolic balance studies and dietary protein requirements in patients undergoing continuous ambulatory peritoneal dialysis. Kidney Int 1982; 21: 849–861.

    Article  CAS  PubMed  Google Scholar 

  33. Rubin J. Comments on dialysis solution, antibiotic transport, poisonings and novel uses of peritoneal dialysis. In: Nolph KD, editor. Peritoneal Dialysis. Dordrecht: Kluwer Academic Publishers, 1989: 199–221.

    Google Scholar 

  34. Joffe P, Olsen F, Heaf J, Gammelgaard B, Pondephant J. Aluminium concentrations in serum, dialysate, urine and bone among patients undergoing continuous ambulatory peritoneal dialysis. Clin Nephrol 1989; 32: 133–138.

    CAS  PubMed  Google Scholar 

  35. Andreoli S, Briggs J, Junior B. Aluminium intoxication from aluminium containing phosphate binders in children with azotemia not undergoing dialysis. N Engl J Med 1984; 310: 1074–1084.

    Article  Google Scholar 

  36. Ackrill P, Day J, Ahmed R. Aluminium and iron overload in chronic dialysis. Kidney Int 1988; 33 (Suppl 24): S163–S167.

    Google Scholar 

  37. Altmannn P, Dhanesha U, Hamon C, Cunningham J, Blair J, Marsch F. Disturbance of cerebral function by aluminium in hemodialysis patients without overt aluminium toxicity. Lancet 1989; 2: 7–12.

    Article  Google Scholar 

  38. Block GA, Klassen PS, Lazarus JM, et al. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J Am Soc Nephrol 2004; 15: 2208–2218.

    Article  CAS  PubMed  Google Scholar 

  39. Lindholm B, Bergstrom J. Nutritional aspects of CAPD. In: Gokal R, editor. Continuous Ambulatory Peritoneal Dialysis. Edinburgh: Churchill Livingstone, 1986: 228–264.

    Google Scholar 

  40. Sheikh MS, Maguire JA, Emmett M, et al. Reduction of dietary phosphorus absorption by phosphorus binders. A theoretical, in vitro, and in vivo study. J Clin Invest 1989; 83: 66–73.

    Article  CAS  PubMed  Google Scholar 

  41. Ramirez JA, Emmett M, White MG, et al. The absorption of dietary phosphorus and calcium in hemodialysis patients. Kidney Int 1986; 30: 753–759.

    Article  CAS  PubMed  Google Scholar 

  42. Davenport A, Goel S, MacKenzie JC. Audit of the use of calcium carbonate as phosphate binder in 100 patients treated with continuous ambulatory peritoneal dialysis. Nephrol Dial Transplant 1992; 7: 632–635.

    CAS  PubMed  Google Scholar 

  43. Martis L, Serkes KD, Nolph KD. Calcium as a phosphate binder: is there a need to adjust peritoneal dialysate calcium concentration for patients using CaCO3. Perit Dial Int 1989; 9: 325–328.

    CAS  PubMed  Google Scholar 

  44. Weinreich T, Passlick-Deetjen J, Ritz E, collaborators of the peritoneal dialysis multicenter study group. Low dialysate calcium in continuous ambulatory peritoneal dialysis: a randomized controlled multicenter trial. Am J Kidney Dis 1995; 25: 452–460.

    Article  CAS  PubMed  Google Scholar 

  45. Weinreich T. Low or high calcium dialysate solutions in peritoneal dialysis? Kidney Int 1996; 50 (Suppl 56): S92–S96.

    Google Scholar 

  46. Cunningham J, Beer J, Coldwell RD, Noonan K, Sawyer N, Makin HLJ. Dialysate calcium reduction in CAPD patients treated with calcium carbonate and alfacalcidol. Nephrol Dial Transplant 1992; 7: 63–68.

    CAS  PubMed  Google Scholar 

  47. Ritz E, Weinreich T, Matthias S. Is it necessary to readjust dialysis calcium concentration. J Nephrol 1992; 5: 70–74.

    Google Scholar 

  48. Brown CB, Hamdy NAT, Boletis J, Kanis JA. Rationale for the use of low calcium solution in CAPD. In: La Greca G, Ronco C, Feriani M, Chiaramonte S, Conz P, editors. Peritoneal Dialysis. Milano: Wichtig Editore, 1991: 125–137.

    Google Scholar 

  49. Piraino B, Perlmutter JA, Holley JL, Johnston JR, Bernardini J. The use of dialysate containing 2.5 mEq/l calcium in peritoneal dialysis patients. Perit Dial Int 1992; 12: 75–76.

    CAS  PubMed  Google Scholar 

  50. Hutchison AJ, Gokal R. Towards tailored dialysis fluids in CAPD the role of reduced calcium and magnesium in dialysis solution. Perit Dial Int 1992; 12: 199–205.

    CAS  PubMed  Google Scholar 

  51. Beer J, Tailor D, Noonan K, Cunningham J. Rapid exacerbation of hyperparathyroidism in patients converted to low calcium dialysate without adequate calcium supplementation. Perit Dial Int 1993; 13 (Suppl 1): S30.

    Google Scholar 

  52. Moe SM. Management of renal osteodystrophy in peritoneal dialysis patients. Perit Dial Int 2004; 24: 209–216.

    PubMed  Google Scholar 

  53. Hruska K. New concepts in renal osteodystrophy. Nephrol Dial Transplant 1998; 13: 2755–2760.

    Article  CAS  PubMed  Google Scholar 

  54. Kurz P, Monier-Faugere MC, Bognar B, et al. Evidence for abnormal calcium homeostasis in patients with adynamic bone disease. Kidney Int 1994; 46: 855–861.

    Article  CAS  PubMed  Google Scholar 

  55. Kurz P, Tsobanelis T, Roth P, et al. Differences in calcium kinetic pattern between CAPD and HD patients. Clin Nephrol 1995; 44: 255–261.

    CAS  PubMed  Google Scholar 

  56. London GM, Pannier B, Marchais SJ, Guerin A. Calcification of the aortic valve in the dialysed patients. J Am Soc Nephrol 2000; 11: 778–783.

    CAS  PubMed  Google Scholar 

  57. Sherrard DJ, Hercz G, Pei Y, et al. The spectrum of bone disease in end-stage renal failure – an evolving disorder. Kidney Int 1993; 43: 436–442.

    Article  CAS  PubMed  Google Scholar 

  58. Carmen Sanchez M, Auxiliadora Bajo M, Selgas R, et al. Parathormone secretion in peritoneal dialysis patients with adynamic bone disease. Am J Kidney Dis 2000; 36: 953–961.

    Article  CAS  PubMed  Google Scholar 

  59. Pei Y, Hercz G, Greenwood C, et al. Risk factors for renal osteodystrpphy: a multivariate analysis. J bone Min Res 1995; 10: 149–156.

    Article  CAS  Google Scholar 

  60. Malluche HH, Monier-Faugere MC. Risk of adynamic bone disease in dialysis patients. Kidney Int Suppl 1992; 38: S62–S67.

    CAS  PubMed  Google Scholar 

  61. Hernandez D, Concepcion MT, Lorenzo V, et al. Adynamic bone disease with negative aluminium staining in predialysis patients: prevalence and evolution after maintenance dialysis. Nephrol Dial Transplant 1994; 9: 517–523.

    CAS  PubMed  Google Scholar 

  62. K/DOQI NKF. Clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis 2003; 42 (Suppl 3): S1–S201.

    Article  Google Scholar 

  63. Sanchez C, Lopez-Barea F, Sanchez-Cabezudo J, et al. Low vs standard calcium dialysate in peritoneal dialysis: differences in treatment, biochemistry and bone histomorphometry. A randomized multicentre study. Nephrol Dial Transplant 2004; 19: 1587–1593.

    Article  CAS  PubMed  Google Scholar 

  64. Haris A, Sherrard DJ, Hercz G. Reversal of adynamic bone disease by lowering of dialysate calcium. Kidney Int 2006; 70: 931–937.

    Article  CAS  PubMed  Google Scholar 

  65. Andersen KEH. Calcium transfer during intermittent peritoneal dialysis. Nephron 1981; 29: 63–67.

    Article  CAS  PubMed  Google Scholar 

  66. Schmitt H, Ittel TH, Schafer L, Sieberth HG. Effect of a low calcium dialysis solution on serum parathyroid hormone in automated peritoneal dialysis. Perit Dial Int 1993; 13 Suppl 1): S59.

    Google Scholar 

  67. Hutchison A, Gokal R. Calcium content in automated peritoneal dialysis. Contrib Nephrol 1999; 129: 168–176.

    Article  CAS  PubMed  Google Scholar 

  68. Wang T, Waniewski J, Heimburger O, Werynski A, Lindholm B. A quantitative analysis of sodium transport and removal during peritoneal dialysis. Kidney Int 1997; 52: 1609–1615.

    Article  CAS  PubMed  Google Scholar 

  69. Amici G, Virga G, Darin G, Teodivi T, Calzavara P, Bocci C. Low sodium concentration solution in normohydrated CAPD patients. Adv Perit Dial 1995; 11: 78–82.

    CAS  PubMed  Google Scholar 

  70. Heimburger O, Waniewski J, Werynski A, Lindholm B. A quantitative description of solute and fluid transport during peritoneal dialysis. Kidney Int 1992; 41: 1320–1332.

    Article  CAS  PubMed  Google Scholar 

  71. Imbolz ALT, Koomen GCM, Struijck DG, Arisz L, Krediet RT. Fluid and solute transport in CAPD patients using ultralow sodium dialysate. Kidney Int 1994; 46: 333–340.

    Article  Google Scholar 

  72. Leypoldt IK, Charvey DI, Cheung AK, Naprestek CL, Akin BH, Shockley TR. Ultrafiltration and solute kinetics using low sodium peritoneal dialysate. Kidney Int 1994; 46: 333–340.

    Article  Google Scholar 

  73. Nakayama M, Yokoyama K, Kubo H, Matsumoto T, Hasegawa T, Shigematsu T, Kawaguchi Y, Sakai O. The effect of ultralow sodium dialysate in CAPD. A kinetic and clinical analysis. Clin Nephrol 1996; 45: 188–193.

    CAS  PubMed  Google Scholar 

  74. Young GA, Kopple JD, Lindholm B, et al. Nutritional assessment of continuous ambulatory peritoneal dialysis patients: an international study. Am J Kidney Dis 1991; 17: 462–471.

    CAS  PubMed  Google Scholar 

  75. Kopple JD, Blumenkrantz MJ, Jones MR, Moran JK, Coburn JW. Plasma amino acid levels and amino acid losses during continuous ambulatory peritoneal dialysis. Am J Clin Nutr 1982; 36: 395–402.

    CAS  PubMed  Google Scholar 

  76. Lindholm B, Bergstrom J. Nutritional aspects on peritoneal dialysis. Kidney Int 1992; 42 (Suppl 38): S165–S171.

    Google Scholar 

  77. Gjessing J. Addition of amino acids to peritoneal dialysis fluid. Lancet 1968; 2: 812.

    Article  CAS  PubMed  Google Scholar 

  78. Oreopoulos DG, Crassweller P, Katirtzoglou A, et al. Amino acids as an osmotic agent (instead of glucose) in continuous ambulatory peritoneal dialysis. In: Legrain M, editor. Continuous Ambulatory Peritoneal Dialysis. Amsterdam: Excerpta Medica, 1980: 335–340.

    Google Scholar 

  79. Oreopoulos DG, Marliss E, Anderson, et al. Nutritional aspects of CAPD and the potential use of amino acid containing dialysis solutions. Perit Dial Bull 1983; 3: 10–15.

    Google Scholar 

  80. Williams PF, Marliss EB, Harvey Anderson G, et al. Amino acid absorption following intraperitoneal administration in CAPD patients. Perit Dial Bull 1982; 2: 124–130.

    Google Scholar 

  81. Twardowski ZJ, Khanna R, Nolph KD. Osmotic agents and ultrafiltration in peritoneal dialysis. Nephron 1986; 42: 93–101.

    Article  CAS  PubMed  Google Scholar 

  82. Nakao T, Ogura M, Takahashi H, Okada T. Charge-affected transperitoneal movement of amino acids in CAPD. Peri Dial Int 1996; 16 (Suppl 1): S88–S90.

    Google Scholar 

  83. Oren A, Wu G, Harvey Anderson G, et al. Effective use of amino acid dialysate over four weeks in CAPD patients. Perit Dial Bull 1983; 3: 66–73.

    Google Scholar 

  84. Goodship THJ, Lloyd S, McKenzie PW, et al. Short-term studies on the use of amino acids as an osmotic agent in continuous ambulatory peritoneal dialysis. Clin Sci 1987; 73: 471–8.

    CAS  PubMed  Google Scholar 

  85. Lindholm B, Werynsky A, Bergstrom J. Peritoneal dialysis with amino acid solutions: fluid and solute transport kinetics. Artif Organs 1988; 12: 2–10.

    Article  CAS  PubMed  Google Scholar 

  86. Young GA, Dibble JB, Taylor AE, Kendall S, Brownjohn AM. A longitudinal study of the effects of amino acid-based CAPD fluid on amino acid retention and protein losses. Nephrol Dial Transplant 1989; 4: 900–905.

    CAS  PubMed  Google Scholar 

  87. Young GA, Kendall S, Brownjohn AM. Complement activation during CAPD. Nephrol Dial Transplant 1993; 8: 1372–1375.

    Google Scholar 

  88. Steinhauer HB, Lubrich-Birker I, Kluthe R, Baumann G, Schollmeyer P. Effects of amino acid based dialysis solution on peritoneal permeability and prostanoid generation in patients undergoing continuous ambulatory peritoneal dialysis. Am J Nephrol 1992; 12: 61–67.

    Article  CAS  PubMed  Google Scholar 

  89. Douma CE, de Waart DR, Struijk DG, Krediet RT. Effect of amino acid based dialysate on peritoneal blood flow and permeability in stable CAPD patients: a potential role for nitric oxide? Clin Nephrol 1996; 45: 295–302.

    PubMed  Google Scholar 

  90. Pedersen FB. Alternate use of amino acid and glucose solutions in CAPD. Contr Nephrol 1991; 89: 147–154.

    CAS  Google Scholar 

  91. Schilling H, Wu G, Pettit J, et al. Effects of prolonged CAPD with amino acid containing solutions in three patients. In: Khanna R, Nolph KD, Prowant BF, Twardowski ZJ, Oreopoulos DG, editors. Advances in Continuous Ambulatory Peritoneal Dialysis. Toronto: University of Toronto Press, 1985: 49–51.

    Google Scholar 

  92. Schilling H, Wu G, Pettit J, et al. Use of amino acid containing solutions in continuous ambulatory peritoneal dialysis patients after peritonitis: results of a prospective controlled trial. Proc EDTA-ERA 1985; 22: 421–424.

    Google Scholar 

  93. Dombros NV, Prutis K, Tong M, et al. Six-month overnight intraperitoneal amino-acid infusion in continuous ambulatory peritoneal dialysis (CAPD) patients. No effect on nutritional status. Perit Dial Int 1990; 10: 79–84.

    CAS  PubMed  Google Scholar 

  94. Lindholm B, Bergstrom J. Amino acids in CAPD solutions: lights and shadows. In: La Greca G, Ronco C, Feriani M, Chiaramonte S, Conz P, editors. Peritoneal Dialysis. Milano: Wichtig editore, 1991: 139–143.

    Google Scholar 

  95. Alvestrand A, Furst P, Bergstrom J. Plasma and muscle free amino acids in uremia: influence of nutrition with amino acids. Clin Nephrol 1982; 18: 297–305.

    CAS  PubMed  Google Scholar 

  96. Young GA, Dibble JB, Hobson SM, et al. The use of an amino-acid-based CAPD fluid over 12 weeks. Nephrol Dial Transplant 1989; 4: 285–292.

    CAS  PubMed  Google Scholar 

  97. Dibble JB, Young GA, Hobson SM, Brownjohn AM. Amino-acid-based continuous ambulatory peritoneal dialysis (CAPD) fluid over twelve weeks: effects on carbohydrate and lipid metabolism. Perit Dial Int 1990; 10: 71–77.

    CAS  PubMed  Google Scholar 

  98. Scanziani R, Dozio B, Iacuitti G. CAPD in diabetics: use of amino acids. In: Ota K, Maher J, Winchester J, Hirszel P, editors. Current Concepts in Peritoneal Dialysis. Amsterdam: Excerpta Medica, 1992: 628–630.

    Google Scholar 

  99. Bruno M, Bagnis C, Marangella M, et al. CAPD with an amino acid solution: a long-term, cross-over study. Kidney Int 1989; 35: 1189–1194.

    Article  CAS  PubMed  Google Scholar 

  100. Arfeen S, Goodship THJ, Kirkwood A, Ward MK. The nutritional/metabolic and hormonal effects of 8 weeks of continuous ambulatory peritoneal dialysis with a 1% amino acid solution. Clin Nephrol 1990; 33: 192–199.

    CAS  PubMed  Google Scholar 

  101. Jones MR, Martis L, Algrim CE, et al. Amino acid solutions for CAPD: rationale and clinical experience. Miner Electrolyte Metab 1992; 18: 309–315.

    CAS  PubMed  Google Scholar 

  102. Kopple JD, Bernard D, Messana J, et al. Treatment of malnourished CAPD patients with an amino acid based dialysate. Kidney Int 1995; 47: 1148–1157.

    Article  CAS  PubMed  Google Scholar 

  103. Faller B, Aparicio M, Faict D, et al. Clinical evaluation of an optimized 1.1% amino acid solution for peritoneal dialysis. Nephrol Dial Transplant 1995; 10: 1432–1437.

    CAS  PubMed  Google Scholar 

  104. Jones MR, Hagen T, Vonesh E, Moran J, the Nutrineal study group. Use of a 1.1% amino acid solution to treat malnutrition in peritoneal dialysis patients (abstract). J Am Soc Nephrol 1995; 6: 580.

    Google Scholar 

  105. Jones MR, Gehr TW, Burkart JM, et al. Replacement of amino acid and protein losses with 1.1% amino acid peritoneal dialysis solution. Perit Dial Int 1998; 18: 210–216.

    CAS  PubMed  Google Scholar 

  106. Makku A, Kirsi V, Kjell N, et al. Amino acid based peritoneal dialysis solution improves amino acid transport into skeletal muscle. J Am Soc Nephrol 2002; 13: 205A.

    Google Scholar 

  107. Garibotto G, Sofia A, Canepa A, et al. Acute effects of peritoneal dialysis with dialysates containing dextrose or dextrose and amino acids on muscle protein turnover. J Am Soc Nephrol 2001; 12: 557–567.

    CAS  PubMed  Google Scholar 

  108. Tjiong HL, van den Berg JW, Wattimena JL, et al. Dialysate as food: combined amino acid and glucose dialysate improves protein anabolism in renal failure patients on automated peritoneal dialysis. J Am Soc Nephrol 2005; 16: 486–493.

    Article  CAS  Google Scholar 

  109. Grzegorzewska AE, Mariak I, Dobrowolska-Zachwieja A, Szajdak L. Effects of amino acid dialysis solution on the nutrition of continuous ambulatory peritoneal dialysis patients. Perit Dial Int 1999; 19: 462–470.

    CAS  PubMed  Google Scholar 

  110. Misra M, Reaveley D, Ashwaorth, et al. Six-month prospective cross-over study to determine the effects of 1.1% amino acid dialysate in lipid metabolism in patients on continuous ambulatory peritoneal dialysis. Perit Dial Int 1997; 17: 279–286.

    CAS  PubMed  Google Scholar 

  111. Li FK, Chan LY, Woo JC, et al. A 3-year, prospective, randomized, controlled study on amino acid dialysis in patients on CAPD. Am J Kidney Dis 2003; 42: 173–183.

    Article  CAS  PubMed  Google Scholar 

  112. Park MS, Choi SR, Song YS, Yoon SY, Lee SY, Han DS. New insight of amino acid-based dialysis solutions. Kidney Int 2006; 70 (Suppl 103): S110–S114.

    Article  CAS  Google Scholar 

  113. Jones M, Kalil R, Blake P, Martis L, Oreopoulos DG. Modification of an amino acid solution for peritoneal dialysis to reduce risk of acidemia. Perit Dial Int 1997; 17: 66–71.

    CAS  PubMed  Google Scholar 

  114. Alsop RM. History, chemical and pharmaceutical development of icodextrin. Perit Dial Int 1994; 14 (Suppl 2): S5–S12.

    Google Scholar 

  115. Mistry CD, Mallick NP, Gokal R. Ultrafiltration with an isosmotic solution during long peritoneal dialysis exchanges. Lancet 1987; 2: 178–182.

    Article  CAS  PubMed  Google Scholar 

  116. Mistry CD, Gokal R. Can ultrafiltration occur with a hypo-osmolar solution in peritoneal dialysis?: the role for “colloid” osmosis. Clin Sci 1993; 85: 495–500.

    CAS  PubMed  Google Scholar 

  117. Ho-dac-Pannekeet MM, Schouten N, Langedijk MJ, Hiralall JK, De Waart DR, Struijk DG, Krediet RT. Peritoneal transport characteristics with glucose polymer based dialysate. Kidney Int 1996; 50: 979–986.

    Article  CAS  PubMed  Google Scholar 

  118. Douma CE, Hiralall JK, De Waart DR, Struijk DG, Krediet RT. Icodextrin with nitroprusside increases ultrafiltration and peritoneal transport during long CAPD dwells. Kidney Int 1998; 53: 1014–1021.

    Article  CAS  PubMed  Google Scholar 

  119. Mistry C, O’Donoghue DJ, Nelson S, Gokal R, Ballardie FW. Kinetic and clinical studies of beta-2-microglobulin in continuous ambulatory peritoneal dialysis: influence of renal and enhanced peritoneal clearances using glucose polymer. Nephrol Dial Transplant 1990; 5: 513–519.

    CAS  PubMed  Google Scholar 

  120. Imholz ALT, Brown CB, Koomen GCM, Arisz L, Krediet RT. The effect of glucose polymers on water removal and protein clearances during CAPD. Adv Perit Dial 1993; 9: 25–30.

    CAS  PubMed  Google Scholar 

  121. Rippe B, Levin L. Computer simulations of ultrafiltration profiles for an icodextrin-based peritoneal fluid in CAPD. Kidney Int 2000; 57: 2546–2556.

    Article  CAS  PubMed  Google Scholar 

  122. Gokal R, Mistry CD, Peers EM for the MIDAS study group. Peritonitis occurrence in a multicenter study of icodextrin and glucose in CAPD. Perit Dial Int 1995; 15: 226–230.

    CAS  PubMed  Google Scholar 

  123. Posthuma N, ter Wee PM, Donker AJM, Peers EM, Oe PL, Verburgh HA. Icodextrin use in CCPD patients during peritonitis: ultrafiltration and serum dissacharide concentrations. Nephrol Dial Transplant 1998; 13: 2341–2344.

    Article  CAS  PubMed  Google Scholar 

  124. Vonesh EF, Story KO, Douma CE, Krediet RT. Modelling of icodextrin in PD Adequest 2.0. Perit Dial Int 2006; 26: 475–481.

    CAS  PubMed  Google Scholar 

  125. Wang T, Heimburger O, Cheng HH, Bergström J, Lindholm B. Peritoneal fluid and solute transport with different polyglucose formulations. Perit Dial Int 1998; 18: 193–203.

    CAS  PubMed  Google Scholar 

  126. Wang T, Cheng HH, Heimburger O, Waniewski J, Bergström J, Lindholm B. Effects of peritonitis on peritoneal transport characteristics: glucose solution versus polyglucose solutions. Kidney Int 2000; 57: 1704–1712.

    Article  CAS  PubMed  Google Scholar 

  127. De Waart DR, Zweers MM, Struijk DG, Krediet RT. Icodextrin degradation products in spent dialysate of CAPD patients and the rat, and its relation with dialysate osmolality. Perit Dial Int 2001; 21: 269–274.

    PubMed  Google Scholar 

  128. Peers EM, Scrimgeour AC, Haycox AR. Cost-containment in CAPD patients with ultrafiltration failure. Clin Drug Invest 1995; 10: 53–58.

    Google Scholar 

  129. Wilkie ME, Plant MJ, Edwards L, Brown CB. Icodextrin 7.5% dialysate solution (glucose polymer) in patients with ultrafiltration failure: extension of CAPD technique survival. Perit Dial Int 1997; 17: 84–97.

    CAS  PubMed  Google Scholar 

  130. Johnson DW, Arndt M, O’Shea A, Watt R, Hamilton J, Vincent K. Icodextrin as salvage therapy in peritoneal dialysis patients with refractory fluid overload. BMC Nephrol 2001; 2: 2.

    Article  CAS  PubMed  Google Scholar 

  131. Schalwijk CG, ter Wee PM, Teerlink T. Reduced 1,2-dicarbonyl compounds in bicarbonate/lactate-buffered peritoneal dialysis (PD) fluid and PD fluids based on glucose polymer or amino acids. Perit Dial Int 2000; 20: 796–798.

    Google Scholar 

  132. Liberek T, Topley N, Mistry CD, Coles GA, Morgan T, Quirk RA, Williams JD. Cell function and viability in glucose polymer peritoneal dialysis fluids. Perit Dial Int 1993; 13: 104–111.

    CAS  PubMed  Google Scholar 

  133. Jörres A, Gahl GM, Topley N, Neubauer A, Ludat K, Müller C, Passlick-Deetjen J. In vitro biocompatibility of alternative CAPD fluids; comparison of bicarbonate-buffered and glucose-polymer based solutions. Nephrol Dial Transplant 1994; 9: 785–790.

    PubMed  Google Scholar 

  134. Thomas S, Schenk U, Fisher EP, Mettang T, Passlick-Deetjen J, Kuhlmann U. In vitro effects of glucose polymer-containing peritoneal dialysis fluids on phagocytic activity. Am J Kidney Dis 1997; 29: 246–253.

    Article  CAS  PubMed  Google Scholar 

  135. De Fijter CWH, Verburgh HA, Oe LP, Heezius E, Donker AJ, Verhoef J, Gokal R. Biocompatibility of a glucose-polymer-containing peritoneal dialysis fluid. Am J Kidney Dis 1993; 21: 411–418.

    PubMed  Google Scholar 

  136. Bajo MA, Selgas R, Castro MA, Del Peso G, Diaz C, Sanchez-Tomero JA, Fernandez de Castro M, Alvarez V, Corbi A. Icodextrin effluent leads to a greater proliferation than glucose effluent of human mesothelial cells studied ex vivo. Perit Dial Int 2000; 20: 742–747.

    CAS  PubMed  Google Scholar 

  137. Krediet RT. Dialysate cancer antigen concentration as marker of peritoneal membrane status in patients treated with chronic peritoneal dialysis. Perit Dial Int 2001; 21: 560–567.

    CAS  PubMed  Google Scholar 

  138. Ho-dac-Pannekeet MM, Hiralall JK, Struijk DG, Krediet RT. Longitudinal follow-up of CA125 in peritoneal effluent. Kidney Int 1997; 51: 888–893.

    Article  CAS  PubMed  Google Scholar 

  139. Posthuma N, Verbrugh HA, Donker AJM, Van Dorp W, Dekker HAT, Peers EM, Oe PL, ter Wee PM. Peritoneal kinetics and mesothelial markers in CCPD using icodextrin for daytime dwell for two years. Perit Dial Int 2000; 20: 174–180.

    CAS  PubMed  Google Scholar 

  140. Mistry CD, Gokal R, Peers EM for the MIDAD Study Group. A randomized multicenter clinical trial comparing isosmolar icodextrin with hyperosmolar glucose solutions in CAPD. Kidney Int 1994; 46: 497–503.

    Article  Google Scholar 

  141. Wolfson M, Piraino B, Hamburger RJ, Morton AK for the icodextrin study group. A randomized controlled trial to evaluate the efficacy and safety of icodextrin in peritoneal dialysis. Am J Kidney Dis 2002; 40: 1055–1065.

    Article  CAS  PubMed  Google Scholar 

  142. Posthuma N, ter Wee PM, Verbrugh HA, Oe PL, Peers E, Sayers J, Donker AJM. Icodextrin instead of glucose during the daytime dwell in CCPD increases ultrafiltration and 240 h dialysate creatinine clearance. Nephrol Dial Transplant 1997; 12: 550–553.

    Article  CAS  PubMed  Google Scholar 

  143. Plum J, Gentile E, Verger C, Brunkhorst R, Bahner U, Faller B, Peelers J, Freida P, Struijk DG, Krediet RT, Graabensee B, Tranaens A, Divino Fielho JC. Efficacy and safety of a 75% icodextrin peritoneal dialysis solution in patients treated with automated peritoneal dialysis. Am J Kidney Dis 2002; 39: 862–871.

    Article  CAS  PubMed  Google Scholar 

  144. Finkelstein F, Healy H, Abu-Alfa A, Ahmad S, Brown F, Gehr T, Nash K, Sorkin M, Mujais S on behalf of the icodextrin high transporter trial group. Superiority of icodextrin compared with 4.25% dextrose for peritoneal ultrafiltration. J Am Soc Nephrol 2005; 16: 546–554.

    Article  CAS  PubMed  Google Scholar 

  145. Davies SJ, Woodrow G, Donovan K, Plum J, Williams P, Johansson C, Bosselmann H-P, Heimburger O, Simonsen O, Davenport A, Traneaus A, Divino Filho JC. Icodextrin improves the fluid status of peritoneal dialysis patients: results of a double-blind randomized controlled trial. J Am Soc Nephrol 2003; 14: 2338–2344.

    Article  CAS  PubMed  Google Scholar 

  146. Konings CCJAM, Kooman JP, Schonk M, Gladriwa U, Wirtz J, van den Wall Bake W, Gerlag PGG, Hoorntje SJ, Wolters J, van den Sande FM, Leunissen KML. Effect of icodextrin on volume status, blood pressure and echocardiographic parameters: a randomized study. Kidney Int 2003; 63: 1556–1563.

    Article  CAS  PubMed  Google Scholar 

  147. Woodrow G, Oldroyd B, Stables G, Gibson J, Turney JH, Brownjohn AM. Effects of icodextrin in automated peritoneal dialysis on blood pressure and bioelectrical impedance analysis. Nephrol Dial Transplant 2000; 15: 862–866.

    Article  CAS  PubMed  Google Scholar 

  148. Bredie SJH, Bosch FH, Demackes PNM, Stallenhoef AFH, van Leusen R. Effects of peritoneal dialysis with an overnight icodextrin dwell on parameters of glucose and lipid metabolism. Perit Dial Int 2001; 21: 275–281.

    CAS  PubMed  Google Scholar 

  149. Delarue J, Maingourd C, Lamisse F, Garrigue MA, Bagros P, Couet C. Glucose oxidation after a peritoneal and oral glucose load in dialyzed patients. Kidney Int 1994; 45: 1147–1152.

    Article  CAS  PubMed  Google Scholar 

  150. Adachi Y, Nakagawa Y, Nishio A. Icodextrin preserves residual renal function in patients treated with automated peritoneal dialysis. Perit Dial Int 2006; 26: 405–407.

    CAS  PubMed  Google Scholar 

  151. Wens R, Taminne M, De Vriendt J, Collart F, Broeders N, Mestrez F, Germanos H, Dratwa M. A previously undescribed side effect of icodextrin: overestimation of glycemia by glucose analyzer. Perit Dial Int 1998; 18: 603–609.

    CAS  PubMed  Google Scholar 

  152. Oyibo SO, Pritchard GM, McLay L, James E, Laing I, Gokal R, Boulton AJM. Blood glucose overestimation in diabetic patients on continuous ambulatory peritoneal dialysis for end-stage renal disease. Diabet Med 2002; 19: 693–696.

    Article  PubMed  Google Scholar 

  153. Schoenicke G, Grabensee B, Plum J. Dialysis with icodextrin interferes with measurement of serum alpha-amylase activity. Nephrol Dial Transplant 2002; 17: 1988–1992.

    Article  CAS  PubMed  Google Scholar 

  154. Anderstam B, Garcia-Lopez E, Heimbürger O, Lindholm B. Determination of α-amylase activity in serum and dialysate from patients using icodextrin-based peritoneal dialysis fluid. Perit Dial Int 2003; 23: 140–150.

    PubMed  Google Scholar 

  155. Wilkie D, Brown CB. Polyglucose solution in CAPD. Perit Dial Int 1997; 17 (Suppl 2): S47–S50.

    PubMed  Google Scholar 

  156. Goldmith D, Jayawardene S, Sabharwal N, Cooney K. Allergic reactions to polymeric glucose-based PD fluid icodextrin in patients with renal failure. Lancet 2000; 355: 897.

    Article  Google Scholar 

  157. Queffeulou G, Leburn-Vignes B, Wheatley P, Montagnac R, Mignon F. Allergy to icodextrin. Lancet 2000; 356: 75.

    Article  CAS  PubMed  Google Scholar 

  158. Divino Filho JC. Allergic reaction to icodextrin in patients with renal failure. Lancet 2000; 355: 1365.

    Google Scholar 

  159. Aanen MC, de Waart DR, Williams PF, Out TA, Zweers MM, Krediet RT. Dextran antibodies in peritoneal dialysis patients treated with icodextrin. Perit Dial Int 2002; 22: 513–537.

    PubMed  Google Scholar 

  160. Pinerolo MC, Porri MT, D’Amico G. Recurrent sterile peritonitis at onset of treatment with icodextrin solution. Perit Dial Int 1999; 19: 491–496.

    CAS  PubMed  Google Scholar 

  161. Williams PF, Foggensteiner L. Sterile/allergic peritonitis with icodextrin in CAPD patients. Perit Dial Int 2002; 22: 89–90.

    CAS  PubMed  Google Scholar 

  162. Tintillies M, Pocket JM, Christophe JL, Scheiff JM, Goffin E. Transient sterile chemical peritonitis with icodextrin: clinical presentation, prevalence and literature review. Perit Dial Int 2002; 22: 534–537.

    Google Scholar 

  163. Boer WH, Vos PF, Fieren MWJA. Culture-negative peritonitis associated with the use of icodextrin-containing dialysate in twelve patients treated with peritoneal dialysis. Perit Dial Int 2003; 23: 33–38.

    PubMed  Google Scholar 

  164. Poulopoulos V, Lam L, Cugelman A. Sterile peritonitis due to icodextrin: experience from a Canadian Center. Perit Dial Int 2004; 24: 88–89.

    CAS  PubMed  Google Scholar 

  165. Toure F, Lavaud E, Mohajer M, Lavaud F, Canivet E, Nguyen P. Icodextrin-induced peritonitis: study of five cases and comparison with bacterial peritonitis. Kidney Int 2004; 65: 654–660.

    Article  CAS  PubMed  Google Scholar 

  166. Martis L, Patel M, Giertych J, Mongoven J, Taminne M, Perrier M, Mendoza O, Goud N, Costigan A, Denjoy N. Aseptic peritonitis due to peptidoglycan contamination of pharmacopoeia standard dialysis solution. Lancet 2005; 365: 588–594.

    CAS  PubMed  Google Scholar 

  167. Parikova A, Zweers MM, Struijk DG, Krediet RT. Peritoneal effluent markers of inflammation in patients treated with icodextrin and glucose-based dialysis solutions. Adv Perit Dial 2003; 19: 186–190.

    PubMed  Google Scholar 

  168. Mistry CD, Gokal R. Single daily overnight (12-h dwell) use of 7.5% glucose polymer (MD 1800; Mn 7300) + 0.35% glucose solution: 3 months study. Nephrol Dial Transplant 1993; 8: 443–447.

    CAS  PubMed  Google Scholar 

  169. Jenkins SB, Wilkie ME. An exploratory study of a novel peritoneal combination dialysate (1.36% glucose/7.5% icodextrin), demonstrating improved ultrafiltration compared to either component studied alone. Perit Dial Int 2003; 23: 475–480.

    PubMed  Google Scholar 

  170. Dallas F, Jenkins SB, Wilkie ME. Enhanced ultrafiltration using 7.5% icodextrin /1.36% glucose combination dialysate: a pilot study. Perit Dial Int 2004; 24: 542–546.

    PubMed  Google Scholar 

  171. Freida P, Galach M, Divino Filho JC, Werynski A, Lindholm B. Combination of crystalloid (glucose) and colloid (icodextrin) osmotic agents markedly enhances peritoneal fluid and solute transport during the long PD dwell. Perit Dial Int 2007; 27: 267–276.

    CAS  PubMed  Google Scholar 

  172. Rodriguez-Carmona A, Perez Fontan M, Garcia Lopez E, Garcia Falcon T, Diaz Cambre H. Use of icodextrin during nocturnal automated peritoneal dialysis allows sustained ultrafiltration while reducing the peritoneal glucose load: a randomized crossover study. Perit Dial Int 2007; 27: 260–266.

    CAS  PubMed  Google Scholar 

  173. Topley N, Coles G, Williams JD. Biocompatibility studies on peritoneal cells. Perit Dial Int 2004; 14 (Suppl 3): S21–S28.

    Google Scholar 

  174. Liberek T, Topley N, Jörres A, GA, Petersen MM, Coles GA, Gahl GM, Williams JD. Peritoneal dialysis fluid inhibition of polymorphonuclear leukocyte respiratory burst activation is related to the lowering of intracellular pH. Nephron 1993; 65: 260–265.

    Article  CAS  PubMed  Google Scholar 

  175. Wieslander AP, Nordin MK, Kjellstrand PTT, Boberg UC. Toxicity of peritoneal dialysis fluids on cultured fibroblasts, L-929. Kidney Int 1991; 40: 77–79.

    Article  CAS  PubMed  Google Scholar 

  176. Wieslander AP, Andreu AHG, Nilson-Thorell C, Muscalu N, Kjellstrand PTT, Rippe B. Are aldehydes in heat sterilized peritoneal dialysis fluids toxic in vitro? Perit Dial Int 1995; 15: 348–352.

    CAS  PubMed  Google Scholar 

  177. Jörres A, Gahl GM. Effect of peritoneal dialysis fluids on leukocyte function. Perit Dial Int 1994; 14 (Suppl 3): S29–S32.

    PubMed  Google Scholar 

  178. Topley N, Kaur D, Petersen MM, Jöress A, Williams JD, Faict D, Holmes CJ. In vitro effects of bicarbonate and bicarbonate-lactate buffered peritoneal dialysis solutions on mesothelial and neutrophic function. J Am Soc Nephrol 1996; 7: 218–224.

    CAS  PubMed  Google Scholar 

  179. Plum J, Fusshöller A, Schoenicke G, Busch T, Evven C, Fieseler C, Kïrchgessner J, Passlick-Deetjen J, Grabensee B. In vivo and in vitro effects of amino-acid-based and bicarbonate-buffered peritoneal dialysis solutions with regard to peritoneal transport and cytokines/prostanoids dialysate concentrations. Nephrol Dial Transplant 1997; 12: 1652–1660.

    Article  CAS  PubMed  Google Scholar 

  180. Topley N. In vitro biocompatibility of bicarbonate-based peritoneal dialysis solutions. Perit Dial Int 1997; 17: 42–47.

    CAS  PubMed  Google Scholar 

  181. Schambye HT, Pedersen FB, Wang P. Bicarbonate is not the ultimate answer to the biocompatibility problems of CAPD solutions: a cytotoxicity test of CAPD solutions and effluents. Adv Perit Dial 1992; 8: 42–46.

    CAS  PubMed  Google Scholar 

  182. Plum J, Lordnejat MR, Grabensee B. Effect of alternative peritoneal dialysis solutions on cell viability, apoptosis/necrosis and cytokine expression in human monocytes. Kidney Int 1998; 54: 224–235.

    Article  CAS  PubMed  Google Scholar 

  183. Wieslander AP, Deppisch R, Svensson E, Forsbäck G, Speidel R, Rippe B. In vitro biocopatibility of a heat-sterilized, less-toxic, and less acidic fluid for peritoneal dialysis. Perit Dial Int 1995; 15: 158–164.

    CAS  PubMed  Google Scholar 

  184. Topley N, Kaur D, Petersen MI, Jorres A, Passlick-Deetjen, Coles GA, Williams JD. Biocompatiblity of bicarbonate buffered peritoneal dialysis fluids: influence on mesothelial cell and neutrophil function. Kidney Int 1996; 49: 1447–1456.

    Article  CAS  PubMed  Google Scholar 

  185. Cooker LA, Luneburg P, Faict D, Choo C, Holmes CJ. Reduced glucose degradation products in bicarbonate/lactate-buffered peritoneal dialysis solutions produced in two-chambered bags. Perit Dial Int 1997; 17: 373–378.

    CAS  PubMed  Google Scholar 

  186. Grossin N, Wautier MP, Wautier JL, Gane P, Taamma R, Boulanger E. Improved in vitro biocompatibility of bicarbonate-buffered peritoneal dialysis fluid. Perit Dial Int 2006; 26: 664–670.

    CAS  PubMed  Google Scholar 

  187. Hoff CM. In vitro biocompatibility performance of Physioneal. Kidney Int 2003; 64: (suppl 88): S57–S74.

    Article  Google Scholar 

  188. Skoufos L, Topley N, Cooker L, Dawnay A, Millar DJ, Holmes CJ, Faict D. The in vitro biocompatibility performance of a 25 mmol/L bicarbonate 10 mmol/L lactate-buffered peritoneal dialysis fluid. Kidney Int 2003; 64(suppl 88): S94–S99.

    Article  Google Scholar 

  189. Mortier S, DeVriese AS, Van de Voorde J, Schaub TP, Passlick-Deetjen J, Lameire N. Hemodynamic effect of peritoneal dialysis solutions on the rat peritoneal membrane: role of acidity, buffer choice, glucose concentration and glucose degradation products. J Am Soc Nephrol 2002; 13: 480–489.

    CAS  PubMed  Google Scholar 

  190. Mortier S, De Vriese AS, McLoughlin RM, Topley N, Schaub TP, Passlick-Deetjen J, Lameire N. Effects of conventional and new peritoneal dialysis fluids on leukocyte recruitment in the rat peritoneal membrane. J Am Soc Nephrol 2003; 14: 1296–1306.

    Article  PubMed  Google Scholar 

  191. Gotloib L, Wajshbrot V, Shostek A, Kushnier R. Population analysis of mesothelium in situ and in vivo exposed to bicarbonate buffered peritoneal dialysis fluid. Nephron 1996; 73: 219–227.

    Article  CAS  PubMed  Google Scholar 

  192. Di Paolo N, Garosi G, Petrini G, Moutaci G. Morphological and morphometric changes in mesothelial cells during peritoneal dialysis in the rabbit. Nephron 1996; 74: 594–9.

    Article  PubMed  Google Scholar 

  193. Zareie M, Hekking LHP, Wolten AGA, Driesprong BAJ, Schadee-Eestermans IL, Faict D, Leyssens A, Schalkwijk CG, Beelen RHJ, ter Wee PM, van den Born J. Contribution of lactate buffer, glucose and glucose degradation products to peritoneal injury in vivo. Nephrol Dial Transplant 2003; 18: 2629–2637.

    Article  CAS  PubMed  Google Scholar 

  194. Park MS, Kim JK, Holmes C, Weiss MF. Effects of bicarbonate/lactate solution on peritoneal advanced glycosylation end-product accumulation. Perit Dial Int 2000; 20 (suppl 5): S33–S38.

    PubMed  Google Scholar 

  195. Hekking LH, Zareic M, Driesprong BA, Faict D, Welten AGA, de Greeuw I, Schadee-Eestermans IL, Havenith CEG, van den Born J, ter Wee PM, Beelen RHJ. Better preservation of peritoneal morphologic features and defense in rats after long-term exposure to a bicarbonate lactate-buffered solution. J Am Soc Nephrol 2001; 12: 2775–2786.

    CAS  PubMed  Google Scholar 

  196. Zweers MM, Splint LJ, de Waart DR, van der Wal AC, Struijk DG, Krediet RT. Effects of a bicarbonate/lactate (BL) of lactate (L) buffered glucose dialysis solution on the peritoneum in a chronic i.p. infusion model in the rat. Perit Dial Int 2001; 21 (suppl 1): S21.

    Google Scholar 

  197. Mortier S, Faict D, Schalkwijk CG, Lameire N, De Vriese AS. Long-term exposure to new peritoneal dialysis solutions: effects on the peritoneal membrane. Kidney Int 2004; 66: 1257–1265.

    Article  CAS  PubMed  Google Scholar 

  198. Ter Wee PM, Beelen RHJ, van den Born J. The application of animal models to study the biocompatibility of bicarbonate-buffered peritoneal dialysis solutions. Kidney Int 2003; 64 (suppl 88): S75–S83.

    Article  Google Scholar 

  199. Mckenzie RK, Holmes CJ, Moseley A, Jenkins JP, Williams JD, Coles GA, Faict D, Topley N. Bicarbonate/lactate- and bicarbonate-buffered peritoneal dialysis fluids improve ex vivo peritoneal TNF alpha secretion. J Am Soc Nephrol 1998; 9: 1499–1506.

    Google Scholar 

  200. Jones S, Holmes CJ, Mackenzie RK, Stead R, Coles GA, Wiliams JD, Faict D, Topley N. Continuous dialysis with bicarbonate/lactate-buffered peritoneal dialysis fluid results in a long-term improvement in ex vivo peritoneal macrophage function. J Am Soc Nephrol 2002; 13 (suppl 1): S97–S103.

    CAS  PubMed  Google Scholar 

  201. Do JY, Kim YL, Park JW, Cho KH, Kim TW, Yoon KW, Kim CD, Park SH, Han JH, Song IH. The effect of low glucose degradation product dialysis solution on epithelial-to-mesenchymal transition in continuous ambulatory peritoneal dialysis patients. Perit Dial Int 2005; 25 (suppl 3): S22–S25.

    CAS  PubMed  Google Scholar 

  202. Rippe B, Simonsen O, Heimburger O, Christensson A, Haraldsson B, Stelin G, Weiss L, Nielsen FD, Bro S, Friedberg M, Wieslander A. Long-term clinical effects of a peritoneal dialysis fluid with less glucose degradation products. Kidney Int 2001; 59: 348–357.

    Article  CAS  PubMed  Google Scholar 

  203. Jones S, Holmes CJ, Krediet RT, Mackenzie R, Faict D, Tranaeus A, Williams JD, Coles GA, Topley N. Bicarbonate/lactate-based peritoneal dialysis solution increases cancer antigen 125 and decreases hyaluronic acid levels. Kidney Int 2001; 59: 1529–1538.

    Article  CAS  PubMed  Google Scholar 

  204. Williams JD, Topley N, Craig KJ, Mackenzie RK, Pischetsrieder M, Cage C, Passlick-Deetjen J. The Eurobalance trial: the effect of a new biocompatible peritoneal dialysis fluid (Balance) on the peritoneal membrane. Kidney Int 2004; 66: 408–418.

    Article  PubMed  Google Scholar 

  205. Haas S, Schmitt CP, Arbeiter K, Bonzel KE, Fischbach M, John U, Pieper AK, Schaub TP, Passlick-Deetjen J, Mehls O, Schaefer F. For the Mid European pediatric peritoneal dialysis study group. J Am Soc Nephrol 2003; 14: 2632–2638.

    Article  PubMed  Google Scholar 

  206. Mactier RA, Sprosen TS, Gokal R, Williams PF, Lindbergh M, Naik RB, Wiege U, Grontoft KC, Larsson R, Berglund J, Tranaeus AP, Faict D. Bicarbonate and bicarbonate/lactate PD solutions for the treatment of infusion pain. Kidney Int 1998; 53: 1061–1067.

    Article  CAS  PubMed  Google Scholar 

  207. Ferriani M, Dissegna D, LaGreca G, Passlick-Deetjen J. Short-term clinical study with bicarbonate-containing peritoneal dialysis solution. Perit Dial Int 1993; 13: 296–301.

    Google Scholar 

  208. Feriani M, Passlick-Deetjen J, la Greca G. Factors affecting bicarbonate transfer with bicarbonate-containing CAPD solution. Perit Dial Int 1995; 15: 336–341.

    CAS  PubMed  Google Scholar 

  209. Coles GA, Gokal R, Ogg C, Jani F, O’Donoghue DT, Cancarini CC, Maiorca R, Tranaeus A, Faict D, de Vos C. A randomizing controlled trial of a bicarbonate- and a bicarbonate/lactate containing dialysis solution in CAPD. Perit Dial Int 1997; 17: 48–51.

    CAS  PubMed  Google Scholar 

  210. Coles GA, O’Donoghue DJ, Prichard N, Ogg CS, Jani FM, Gokal R, Cancarini CC, Maiorca R, Tranaeus A, de Vos C, Hopwood A, Faict D. A controlled trial of two bicarbonate-containing dialysis fluids for CAPD-Final report. Nephrol Dial Transplant 1998; 13: 3165–3171.

    Article  CAS  PubMed  Google Scholar 

  211. Tranaeus A for the Bicarbonate/lactate Study Group. A long-term study of a bicarbonate/lactate-based peritoneal dialysis solution-clinical benefits. Perit Dial Int 2000; 20: S16–S23.

    Google Scholar 

  212. Otte K, Gonzalez T, Bajo MA, del Peso G, Heaf J, Erauzkin GG, Sanchez Tomero JA, Dieperink H, Povlsen J, Hopwood AM, Divino Fielho JC, Faict D. Clinical experience with a new bicarbonate (25 mmol/L)/lactate (10 mmol/L) peritoneal dialysis solution. Perit Dial Int 2003; 23: 138–145.

    CAS  PubMed  Google Scholar 

  213. Parikova A, Struijk DG, Zweers MM, Langedijk M, Schouten N, van den Berg N, Duis S, Krediet RT. Does the biocompatibility of the PD solution matter for the assessment of peritoneal function? Perit Dial Int 2007; 27: 691–696.

    CAS  PubMed  Google Scholar 

  214. Zeier M, Schwenger V, Deppisch R, Hang U, Weigel K, Bahner U, Wanner C, Schneider H, Henle T, Ritz E. Glucose degradation products in PD fluids: do they disappear form the peritoneal cavity and enter the systemic circulation? Kidney Int 2003; 63: 298–305.

    Article  CAS  PubMed  Google Scholar 

  215. Lee HY, Park HC, Seo BJ, Bo SY, Yun SR, Song HY, Kim YH, Kim YL, Kim DJ, Kim YS, Ahn C, Kim MJ, Shin SK. Superior patient survival for continuous ambulatory peritoneal dialysis patients treated with a peritoneal dialysis fluid with neutral pH and low glucose degradation product concentration (Balance)®. Perit Dial Int 2005; 25: 248–255.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Feriani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Feriani, M., Krediet, R.T. (2009). New Peritoneal Dialysis Solutions and Solutions on the Horizon. In: Khanna, R., Krediet, R.T. (eds) Nolph and Gokal's Textbook of Peritoneal Dialysis. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-78940-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-78940-8_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-78939-2

  • Online ISBN: 978-0-387-78940-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics