Skip to main content

Cdk5 May Be an Atypical Kinase, but Not in the Way You Think

  • Chapter
  • First Online:
  • 436 Accesses

Abstract

Cyclin-dependent kinase 5 (Cdk5) is a non-traditional CDK. It relies on two specific activators––p35 and p39––that are structurally similar to cyclins but genetically distinct. Analysis of the Cdk5 knockout (or the double p35/p39 knockout) has led to the view that the primary function of Cdk5 is in the migration and maturation of embryonic post-mitotic neurons. The literature has no reference to a role of Cdk5 in normal cell cycle regulation. Recent data from our lab, however, suggest that while it may not function as a traditional CDK and facilitate cell cycle progression, it does play a crucial role as a cell cycle suppressor in normal post-mitotic neurons. In this chapter, we review the evidence that this unique function is important for neuronal cell survival and differentiation. The action of Cdk5 in neurons appears to have sub-cellular specificity as well. We present early evidence that it is the nuclear form of Cdk5 that is crucial for holding the cell cycle in check. Cdk5 is found to exit the nucleus in stressed neurons at risk for death. The shift in sub-cellular location is accompanied by cell cycle re-entry and neuronal death. This “new” function of Cdk5 raises cautions in the design of Cdk5-directed drugs for the therapy of neurodegenerative diseases

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahlijanian MK, Barrezueta NX, Williams RD, Jakowski A, Kowsz KP, McCarthy S, Coskran T, Carlo A, Seymour PA, Burkhardt JE, Nelson RB, McNeish JD (2000) Hyperphosphorylated tau and neurofilament and cytoskeletal disruptions in mice overexpressing human p25, an activator of cdk5. Proc Natl Acad Sci U S A 97:2910–2915.

    PubMed  CAS  Google Scholar 

  • Akoulitchev S, Chuikov S, Reinberg D (2000) TFIIH is negatively regulated by cdk8-containing mediator complexes. Nature 407:102–106.

    PubMed  CAS  Google Scholar 

  • Al-Ubaidi MR, Font RL, Quiambao AB, Keener MJ, Liou GI, Overbeek PA, Baehr W (1992) Bilateral retinal and brain tumors in transgenic mice expressing simian virus 40 large T antigen under control of the human interphotoreceptor retinoid-binding protein promoter. J Cell Biol 119:1681–1687.

    PubMed  CAS  Google Scholar 

  • Al-Ubaidi MR, Mangini NJ, Quiambao AB, Myers KM, Abler AS, Chang CJ, Tso MO, Butel JS, Hollyfield JG (1997) Unscheduled DNA replication precedes apoptosis of photoreceptors expressing SV40 T antigen. Exp Eye Res 64:573–585.

    PubMed  CAS  Google Scholar 

  • Appert-Collin A, Hugel B, Levy R, Niederhoffer N, Coupin G, Lombard Y, Andre P, Poindron P, Gies JP (2006) Cyclin dependent kinase inhibitors prevent apoptosis of postmitotic mouse motoneurons. Life Sci 79:484–490.

    PubMed  CAS  Google Scholar 

  • Bian F, Nath R, Sobocinski G, Booher RN, Lipinski WJ, Callahan MJ, Pack A, Wang KK, Walker LC (2002) Axonopathy, tau abnormalities, and dyskinesia, but no neurofibrillary tangles in p25-transgenic mice. J Comp Neurol 446:257–266.

    CAS  Google Scholar 

  • Bibb JA, Snyder GL, Nishi A, Yan Z, Meijer L, Fienberg AA, Tsai LH, Kwon YT, Girault JA, Czernik AJ, Huganir RL, Hemmings HC, Jr., Nairn AC, Greengard P (1999) Phosphorylation of DARPP-32 by Cdk5 modulates dopamine signalling in neurons. Nature 402:669–671.

    PubMed  CAS  Google Scholar 

  • Bloom J, Cross FR (2007) Multiple levels of cyclin specificity in cell-cycle control. Nat Rev Mol Cell Biol 8:149–160.

    PubMed  CAS  Google Scholar 

  • Busser J, Geldmacher DS, Herrup K (1998) Ectopic cell cycle proteins predict the sites of neuronal cell death in Alzheimer's disease brain. J Neurosci 18:2801–2807.

    PubMed  CAS  Google Scholar 

  • Chen P, Zindy F, Abdala C, Liu F, Li X, Roussel MF, Segil N (2003) Progressive hearing loss in mice lacking the cyclin-dependent kinase inhibitor Ink4d. Nat Cell Biol 5:422–426.

    PubMed  CAS  Google Scholar 

  • Cheng M, Olivier P, Diehl JA, Fero M, Roussel MF, Roberts JM, Sherr CJ (1999) The p21(Cip1) and p27(Kip1) CDK ‘inhibitors' are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J 18:1571–1583.

    PubMed  CAS  Google Scholar 

  • Chergui K, Svenningsson P, Greengard P (2004) Cyclin-dependent kinase 5 regulates dopaminergic and glutamatergic transmission in the striatum. Proc Natl Acad Sci U S A 101:2191–2196.

    PubMed  CAS  Google Scholar 

  • Cicero S, Herrup K (2005) Cyclin-dependent kinase 5 is essential for neuronal cell cycle arrest and differentiation. J Neurosci 25:9658–9668.

    PubMed  CAS  Google Scholar 

  • Clarke AR, Maandag ER, van Roon M, van der Lugt NM, van der Valk M, Hooper ML, Berns A, te Riele H (1992) Requirement for a functional Rb-1 gene in murine development. Nature 359:328–330.

    PubMed  CAS  Google Scholar 

  • Cruz JC, Tseng HC, Goldman JA, Shih H, Tsai LH (2003) Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron 40:471–483.

    PubMed  CAS  Google Scholar 

  • Desai D, Wessling HC, Fisher RP, Morgan DO (1995) Effects of phosphorylation by CAK on cyclin binding by CDC2 and CDK2. Mol Cell Biol 15:345–350.

    PubMed  CAS  Google Scholar 

  • Dinarina A, Perez LH, Davila A, Schwab M, Hunt T, Nebreda AR (2005) Characterization of a new family of cyclin-dependent kinase activators. Biochem J 386:349–355.

    PubMed  CAS  Google Scholar 

  • Ding XL, Husseman J, Tomashevski A, Nochlin D, Jin LW, Vincent I (2000) The cell cycle Cdc25A tyrosine phosphatase is activated in degenerating postmitotic neurons in Alzheimer's disease. Am J Pathol 157:1983–1990.

    PubMed  CAS  Google Scholar 

  • Farinelli SE, Park DS, Greene LA (1996) Nitric oxide delays the death of trophic factor-deprived PC12 cells and sympathetic neurons by a cGMP-mediated mechanism. J Neurosci 16:2325–2334.

    PubMed  CAS  Google Scholar 

  • Feddersen RM, Clark HB, Yunis WS, Orr HT (1995) In vivo viability of postmitotic Purkinje neurons requires pRb family member function. Mol Cell Neurosci 6:153–167.

    PubMed  CAS  Google Scholar 

  • Feddersen RM, Ehlenfeldt R, Yunis WS, Clark HB, Orr HT (1992) Disrupted cerebellar cortical development and progressive degeneration of Purkinje cells in SV40 T antigen transgenic mice. Neuron 9:955–966.

    PubMed  CAS  Google Scholar 

  • Fu AK, Fu WY, Cheung J, Tsim KW, Ip FC, Wang JH, Ip NY (2001) Cdk5 is involved in neuregulin-induced AChR expression at the neuromuscular junction. Nat Neurosci 4:374–381.

    PubMed  CAS  Google Scholar 

  • Fu WY, Fu AK, Lok KC, Ip FC, Ip NY (2002) Induction of Cdk5 activity in rat skeletal muscle after nerve injury. Neuroreport 13:243–247.

    PubMed  CAS  Google Scholar 

  • Fu X, Choi YK, Qu D, Yu Y, Cheung NS, Qi RZ (2006) Identification of nuclear import mechanisms for the neuronal Cdk5 activator. J Biol Chem 281(51):39017–39021.

    Google Scholar 

  • Giese KP, Ris L, Plattner F (2005) Is there a role of the cyclin-dependent kinase 5 activator p25 in Alzheimer's disease? Neuroreport 16:1725–1730.

    PubMed  CAS  Google Scholar 

  • Gilmore EC, Herrup K (2001) Neocortical cell migration: GABAergic neurons and cells in layers I and VI move in a cyclin-dependent kinase 5-independent manner. J Neurosci 21:9690–9700.

    PubMed  CAS  Google Scholar 

  • Gilmore EC, Ohshima T, Goffinet AM, Kulkarni AB, Herrup K (1998) Cyclin-dependent kinase 5-deficient mice demonstrate novel developmental arrest in cerebral cortex. J Neurosci 18:6370–6377.

    PubMed  CAS  Google Scholar 

  • Giovanni A, Wirtz-Brugger F, Keramaris E, Slack R, Park DS (1999) Involvement of cell cycle elements, cyclin-dependent kinases, pRb, and E2F x DP, in B-amyloid-induced neuronal death. J Biol Chem 274:19011–19016.

    PubMed  CAS  Google Scholar 

  • Grynspan F, Griffin WR, Cataldo A, Katayama S, Nixon RA (1997) Active site-directed antibodies identify calpain II as an early-appearing and pervasive component of neurofibrillary pathology in Alzheimer's disease. Brain Res 763:145–158.

    PubMed  CAS  Google Scholar 

  • Hallows JL, Chen K, DePinho RA, Vincent I (2003) Decreased cyclin-dependent kinase 5 (cdk5) activity is accompanied by redistribution of cdk5 and cytoskeletal proteins and increased cytoskeletal protein phosphorylation in p35 null mice. J Neurosci 23:10633–10644.

    PubMed  CAS  Google Scholar 

  • Hallows JL, Iosif RE, Biasell RD, Vincent I (2006) p35/p25 is not essential for tau and cytoskeletal pathology or neuronal loss in Niemann-Pick type C disease. J Neurosci 26:2738–2744.

    PubMed  CAS  Google Scholar 

  • Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805–816.

    PubMed  CAS  Google Scholar 

  • Harper JW, Elledge SJ, Keyomarsi K, Dynlacht B, Tsai LH, Zhang P, Dobrowolski S, Bai C, Connell-Crowley L, Swindell E, et al. (1995) Inhibition of cyclin-dependent kinases by p21. Mol Biol Cell 6:387–400.

    PubMed  CAS  Google Scholar 

  • Hayashi T, Warita H, Abe K, Itoyama Y (1999) Expression of cyclin-dependent kinase 5 and its activator p35 in rat brain after middle cerebral artery occlusion. Neurosci Lett 265:37–40.

    PubMed  CAS  Google Scholar 

  • Herrup K, Busser JC (1995) The induction of multiple cell cycle events precedes target-related neuronal death. Development 121:2385–2395.

    PubMed  CAS  Google Scholar 

  • Herrup K, Yang Y (2007) Cell cycle regulation in the postmitotic neuron: oxymoron or new biology? Nat Rev Neurosci 8:368–378.

    PubMed  CAS  Google Scholar 

  • Höglinger G, et al. (2007) The pRb/E2F cell-cycle pathway mediates cell death in Parkinson's disease. Proc Natl Acad Sci U S A 104, 3585–3590.

    PubMed  Google Scholar 

  • Humbert S, Lanier LM, Tsai LH (2000a) Synaptic localization of p39, a neuronal activator of cdk5. Neuroreport 11:2213–2216.

    CAS  Google Scholar 

  • Humbert S, Dhavan R, Tsai L (2000b) p39 activates cdk5 in neurons, and is associated with the actin cytoskeleton. J Cell Sci 113(Pt 6):975–983.

    CAS  Google Scholar 

  • Husseman JW, Nochlin D, Vincent I (2000) Mitotic activation: a convergent mechanism for a cohort of neurodegenerative diseases. Neurobiol Aging 21:815–828.

    PubMed  CAS  Google Scholar 

  • Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA (1992) Effects of an Rb mutation in the mouse. Nature 359:295–300.

    PubMed  CAS  Google Scholar 

  • Kaldis P (2007) Another piece of the p27Kip1 puzzle. Cell 128:241–244.

    PubMed  CAS  Google Scholar 

  • Kasten M, Giordano A (2001) Cdk10, a Cdc2-related kinase, associates with the Ets2 transcription factor and modulates its transactivation activity. Oncogene 20:1832–1838.

    PubMed  CAS  Google Scholar 

  • Kawauchi T, Chihama K, Nabeshima Y, Hoshino M (2006) Cdk5 phosphorylates and stabilizes p27kip1 contributing to actin organization and cortical neuronal migration. Nat Cell Biol 8:17–26.

    PubMed  CAS  Google Scholar 

  • Ko J, Humbert S, Bronson RT, Takahashi S, Kulkarni AB, Li E, Tsai LH (2001) p35 and p39 are essential for cyclin-dependent kinase 5 function during neurodevelopment. J Neurosci 21:6758–6771.

    PubMed  CAS  Google Scholar 

  • Lee EY, Chang CY, Hu N, Wang YC, Lai CC, Herrup K, Lee WH, Bradley A (1992) Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359:288–294.

    PubMed  CAS  Google Scholar 

  • Lee MS, Kwon YT, Li M, Peng J, Friedlander RM, Tsai LH (2000) Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405:360–364.

    PubMed  CAS  Google Scholar 

  • Lees E (1995) Cyclin dependent kinase regulation. Curr Opin Cell Biol 7:773–780.

    PubMed  CAS  Google Scholar 

  • Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–331.

    PubMed  CAS  Google Scholar 

  • Lew J, Beaudette K, Litwin CM, Wang JH (1992) Purification and characterization of a novel proline-directed protein kinase from bovine brain. J Biol Chem 267:13383–13390.

    PubMed  CAS  Google Scholar 

  • Lew J, Huang QQ, Qi Z, Winkfein RJ, Aebersold R, Hunt T, Wang JH (1994) A brain-specific activator of cyclin-dependent kinase 5. Nature 371:423–426.

    PubMed  CAS  Google Scholar 

  • Love S (2003) Neuronal expression of cell cycle-related proteins after brain ischaemia in man. Neurosci Lett 353:29–32.

    PubMed  CAS  Google Scholar 

  • Malumbres M, Barbacid M (2005) Mammalian cyclin-dependent kinases. Trends Biochem Sci 30:630–641.

    PubMed  CAS  Google Scholar 

  • Matsuoka S, Edwards MC, Bai C, Parker S, Zhang P, Baldini A, Harper JW, Elledge SJ (1995) p57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev 9:650–662.

    PubMed  CAS  Google Scholar 

  • Matsushita M, Tomizawa K, Lu YF, Moriwaki A, Tokuda M, Itano T, Wang JH, Hatase O, Matsui H (1996) Distinct cellular compartment of cyclin-dependent kinase 5 (Cdk5) and neuron-specific Cdk5 activator protein (p35nck5a) in the developing rat cerebellum. Brain Res 734:319–322.

    PubMed  CAS  Google Scholar 

  • Matsuura I, Wang JH (1996) Demonstration of cyclin-dependent kinase inhibitory serine/threonine kinase in bovine thymus. J Biol Chem 271:5443–5450.

    PubMed  CAS  Google Scholar 

  • McShea A, Lee HG, Petersen RB, Casadesus G, Vincent I, Linford NJ, Funk JO, Shapiro RA, Smith MA (2007) Neuronal cell cycle re-entry mediates Alzheimer disease-type changes. Biochim Biophys Acta 1772:467–472.

    PubMed  CAS  Google Scholar 

  • Meyerson M, Enders GH, Wu CL, Su LK, Gorka C, Nelson C, Harlow E, Tsai LH (1992) A family of human cdc2-related protein kinases. EMBO J 11:2909–2917.

    PubMed  CAS  Google Scholar 

  • Miyajima M, Nornes HO, Neuman T (1995) Cyclin E is expressed in neurons and forms complexes with cdk5. Neuroreport 6:1130–1132.

    PubMed  CAS  Google Scholar 

  • Morgan DO (1997) Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 13:261–291.

    PubMed  CAS  Google Scholar 

  • Moy LY, Tsai LH (2004) Cyclin-dependent kinase 5 phosphorylates serine 31 of tyrosine hydroxylase and regulates its stability. J Biol Chem 279:54487–54493.

    PubMed  CAS  Google Scholar 

  • Nagy Z, Esiri MM, Cato AM, Smith AD (1997) Cell cycle markers in the hippocampus in Alzheimer's disease. Acta Neuropathol (Berl) 94:6–15.

    CAS  Google Scholar 

  • Nath R, Davis M, Probert AW, Kupina NC, Ren X, Schielke GP, Wang KK (2000) Processing of cdk5 activator p35 to its truncated form (p25) by calpain in acutely injured neuronal cells. Biochem Biophys Res Commun 274:16–21.

    PubMed  CAS  Google Scholar 

  • Neystat M, Rzhetskaya M, Oo TF, Kholodilov N, Yarygina O, Wilson A, El-Khodor BF, Burke RE (2001) Expression of cyclin-dependent kinase 5 and its activator p35 in models of induced apoptotic death in neurons of the substantia nigra in vivo. J Neurochem 77:1611–1625.

    PubMed  CAS  Google Scholar 

  • Nguyen MD, Julien JP (2003) Cyclin-dependent kinase 5 in amyotrophic lateral sclerosis. Neurosignals 12:215–220.

    PubMed  CAS  Google Scholar 

  • Nguyen MD, Lariviere RC, Julien JP (2001) Deregulation of Cdk5 in a mouse model of ALS: toxicity alleviated by perikaryal neurofilament inclusions. Neuron 30:135–147.

    PubMed  CAS  Google Scholar 

  • Nguyen MD, Boudreau M, Kriz J, Couillard-Despres S, Kaplan DR, Julien JP (2003) Cell cycle regulators in the neuronal death pathway of amyotrophic lateral sclerosis caused by mutant superoxide dismutase 1. J Neurosci 23:2131–2140.

    PubMed  CAS  Google Scholar 

  • Niethammer M, Smith DS, Ayala R, Peng J, Ko J, Lee MS, Morabito M, Tsai LH (2000) NUDEL is a novel Cdk5 substrate that associates with LIS1 and cytoplasmic dynein. Neuron 28:697–711.

    PubMed  CAS  Google Scholar 

  • Noble W, Olm V, Takata K, Casey E, Mary O, Meyerson J, Gaynor K, LaFrancois J, Wang L, Kondo T, Davies P, Burns M, Veeranna, Nixon R, Dickson D, Matsuoka Y, Ahlijanian M, Lau LF, Duff K (2003) Cdk5 is a key factor in tau aggregation and tangle formation in vivo. Neuron 38:555–565.

    Google Scholar 

  • Ohshima T, Gilmore EC, Longenecker G, Jacobowitz DM, Brady RO, Herrup K, Kulkarni AB (1999) Migration defects of cdk5(–/–) neurons in the developing cerebellum is cell autonomous. J Neurosci 19:6017–6026.

    PubMed  CAS  Google Scholar 

  • Ohshima T, Ward JM, Huh CG, Longenecker G, Veeranna, Pant HC, Brady RO, Martin LJ, Kulkarni AB (1996) Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc Natl Acad Sci U S A 93:11173–11178.

    Google Scholar 

  • Park DS, Farinelli SE, Greene LA (1996) Inhibitors of cyclin-dependent kinases promote survival of post-mitotic neuronally differentiated PC12 cells and sympathetic neurons. J Biol Chem 271:8161–8169.

    PubMed  Google Scholar 

  • Park KH, Hallows JL, Chakrabarty P, Davies P, Vincent I (2007) Conditional neuronal simian virus 40 T antigen expression induces Alzheimer-like tau and amyloid pathology in mice. J Neurosci 27:2969–2978.

    PubMed  CAS  Google Scholar 

  • Park DS, Levine B, Ferrari G, Greene LA (1997a) Cyclin dependent kinase inhibitors and dominant negative cyclin dependent kinase 4 and 6 promote survival of NGF-deprived sympathetic neurons. J Neurosci 17:8975–8983.

    CAS  Google Scholar 

  • Park DS, Morris EJ, Greene LA, Geller HM (1997b) G1/S cell cycle blockers and inhibitors of cyclin-dependent kinases suppress camptothecin-induced neuronal apoptosis. J Neurosci 17:1256–1270.

    CAS  Google Scholar 

  • Patrick GN, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, Tsai LH (1999) Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402:615–622.

    PubMed  CAS  Google Scholar 

  • Patzke H, Tsai LH (2002) Calpain-mediated cleavage of the cyclin-dependent kinase-5 activator p39 to p29. J Biol Chem 277:8054–8060.

    PubMed  CAS  Google Scholar 

  • Plattner F, Angelo M, Giese KP (2006) The roles of cyclin-dependent kinase 5 and glycogen synthase kinase 3 in tau hyperphosphorylation. J Biol Chem 281:25457–25465.

    PubMed  CAS  Google Scholar 

  • Poon RY, Lew J, Hunter T (1997) Identification of functional domains in the neuronal Cdk5 activator protein. J Biol Chem 272:5703–5708.

    PubMed  CAS  Google Scholar 

  • Ranganathan S, Bowser R (2003) Alterations in G(1) to S phase cell-cycle regulators during amyotrophic lateral sclerosis. Am J Pathol 162:823–835.

    PubMed  CAS  Google Scholar 

  • Rashidian J, Iyirhiaro G, Aleyasin H, Rios M, Vincent I, Callaghan S, Bland RJ, Slack RS, During MJ, Park DS (2005) Multiple cyclin-dependent kinases signals are critical mediators of ischemia/hypoxic neuronal death in vitro and in vivo. Proc Natl Acad Sci U S A 102:14080–14085.

    PubMed  CAS  Google Scholar 

  • Ren S, Rollins BJ (2004) Cyclin C/cdk3 promotes Rb-dependent G0 exit. Cell 117:239–251.

    PubMed  CAS  Google Scholar 

  • Russo AA, Jeffrey PD, Pavletich NP (1996) Structural basis of cyclin-dependent kinase activation by phosphorylation. Nat Struct Biol 3:696–700.

    PubMed  CAS  Google Scholar 

  • Sahlgren CM, Mikhailov A, Vaittinen S, Pallari HM, Kalimo H, Pant HC, Eriksson JE (2003) Cdk5 regulates the organization of Nestin and its association with p35. Mol Cell Biol 23:5090–5106.

    PubMed  CAS  Google Scholar 

  • Sano M, Schneider MD (2003) Cyclins that don't cycle--cyclin T/cyclin-dependent kinase-9 determines cardiac muscle cell size. Cell Cycle 2:99–104.

    PubMed  CAS  Google Scholar 

  • Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13:1501–1512.

    PubMed  CAS  Google Scholar 

  • Shuttleworth J (1995) The regulation and functions of cdk7. Prog Cell Cycle Res 1:229–240.

    PubMed  CAS  Google Scholar 

  • Tan TC, Valova VA, Malladi CS, Graham ME, Berven LA, Jupp OJ, Hansra G, McClure SJ, Sarcevic B, Boadle RA, Larsen MR, Cousin MA, Robinson PJ (2003) Cdk5 is essential for synaptic vesicle endocytosis. Nat Cell Biol 5:701–710.

    PubMed  CAS  Google Scholar 

  • Tanaka T, Serneo FF, Tseng HC, Kulkarni AB, Tsai LH, Gleeson JG (2004) Cdk5 phosphorylation of doublecortin ser297 regulates its effect on neuronal migration. Neuron 41:215–227.

    PubMed  CAS  Google Scholar 

  • Tandon A, Yu H, Wang L, Rogaeva E, Sato C, Chishti MA, Kawarai T, Hasegawa H, Chen F, Davies P, Fraser PE, Westaway D, St George-Hyslop PH (2003) Brain levels of CDK5 activator p25 are not increased in Alzheimer's or other neurodegenerative diseases with neurofibrillary tangles. J Neurochem 86:572–581.

    PubMed  CAS  Google Scholar 

  • Tang D, Yeung J, Lee KY, Matsushita M, Matsui H, Tomizawa K, Hatase O, Wang JH (1995) An isoform of the neuronal cyclin-dependent kinase 5 (Cdk5) activator. J Biol Chem 270:26897–26903.

    PubMed  CAS  Google Scholar 

  • Tarricone C, Dhavan R, Peng J, Areces LB, Tsai LH, Musacchio A (2001) Structure and regulation of the CDK5-p25(nck5a) complex. Mol Cell 8:657–669.

    PubMed  CAS  Google Scholar 

  • Tomizawa K, Ohta J, Matsushita M, Moriwaki A, Li ST, Takei K, Matsui H (2002) Cdk5/p35 regulates neurotransmitter release through phosphorylation and downregulation of P/Q-type voltage-dependent calcium channel activity. J Neurosci 22:2590–2597.

    PubMed  CAS  Google Scholar 

  • Tsai LH, Delalle I, Caviness VS, Jr., Chae T, Harlow E (1994) p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature 371:419–423.

    PubMed  CAS  Google Scholar 

  • Van den Haute C, Spittaels K, Van Dorpe J, Lasrado R, Vandezande K, Laenen I, Geerts H, Van Leuven F (2001) Coexpression of human cdk5 and its activator p35 with human protein tau in neurons in brain of triple transgenic mice. Neurobiol Dis 8:32–44.

    PubMed  Google Scholar 

  • van den Heuvel S, Harlow E (1993) Distinct roles for cyclin-dependent kinases in cell cycle control. Science 262:2050–2054.

    PubMed  Google Scholar 

  • Vincent I, Bu B, Hudson K, Husseman J, Nochlin D, Jin L (2001) Constitutive Cdc25B tyrosine phosphatase activity in adult brain neurons with M phase-type alterations in Alzheimer's disease. Neuroscience 105:639–650.

    PubMed  CAS  Google Scholar 

  • Vincent I, Jicha G, Rosado M, Dickson DW (1997) Aberrant expression of mitotic cdc2/cyclin B1 kinase in degenerating neurons of Alzheimer's disease brain. J Neurosci 17:3588–3598.

    PubMed  CAS  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310.

    PubMed  CAS  Google Scholar 

  • Wang J, Liu S, Fu Y, Wang JH, Lu Y (2003) Cdk5 activation induces hippocampal CA1 cell death by directly phosphorylating NMDA receptors. Nat Neurosci 6:1039–1047.

    PubMed  CAS  Google Scholar 

  • Wen Y, Yang S, Liu R, Simpkins JW (2005) Cell-cycle regulators are involved in transient cerebral ischemia induced neuronal apoptosis in female rats. FEBS Lett 579:4591–4599.

    PubMed  CAS  Google Scholar 

  • Xie Z, Sanada K, Samuels BA, Shih H, Tsai LH (2003) Serine 732 phosphorylation of FAK by Cdk5 is important for microtubule organization, nuclear movement, and neuronal migration. Cell 114:469–482.

    PubMed  CAS  Google Scholar 

  • Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D (1993) p21 is a universal inhibitor of cyclin kinases. Nature 366:701–704.

    PubMed  CAS  Google Scholar 

  • Xiong Y, Zhang H, Beach D (1992) D type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA. Cell 71:505–514.

    PubMed  CAS  Google Scholar 

  • Yang Y, Herrup K (2005) Loss of neuronal cell cycle control in ataxia-telangiectasia: a unified disease mechanism. J Neurosci 25:2522–2529.

    PubMed  CAS  Google Scholar 

  • Yang Y, Geldmacher DS, Herrup K (2001) DNA replication precedes neuronal cell death in Alzheimer's disease. J Neurosci 21:2661–2668.

    PubMed  CAS  Google Scholar 

  • Yang Y, Mufson EJ, Herrup K (2003) Neuronal cell death is preceded by cell cycle events at all stages of Alzheimer's disease. J Neurosci 23:2557–2563.

    PubMed  CAS  Google Scholar 

  • Yang Y, Varvel NH, Lamb BT, Herrup K (2006) Ectopic cell cycle events link human Alzheimer's disease and amyloid precursor protein transgenic mouse models. J Neurosci 26:775–784.

    PubMed  CAS  Google Scholar 

  • Zhang Q, Ahuja HS, Zakeri ZF, Wolgemuth DJ (1997) Cyclin-dependent kinase 5 is associated with apoptotic cell death during development and tissue remodeling. Dev Biol 183:222–233.

    PubMed  CAS  Google Scholar 

  • Zhang J, Krishnamurthy PK, Johnson GV (2002) Cdk5 phosphorylates p53 and regulates its activity. J Neurochem 81:307–313.

    PubMed  CAS  Google Scholar 

  • Zhang H, Xiong Y, Beach D (1993) Proliferating cell nuclear antigen and p21 are components of multiple cell cycle kinase complexes. Mol Biol Cell 4:897–906.

    PubMed  CAS  Google Scholar 

  • Zhu Y, Lin L, Kim S, Quaglino D, Lockshin RA, Zakeri Z (2002) Cyclin dependent kinase 5 and its interacting proteins in cell death induced in vivo by cyclophosphamide in developing mouse embryos. Cell Death Differ 9:421–430.

    PubMed  CAS  Google Scholar 

  • Zukerberg LR, Patrick GN, Nikolic M, Humbert S, Wu CL, Lanier LM, Gertler FB, Vidal M, Van Etten RA, Tsai LH (2000) Cables links Cdk5 and c-Abl and facilitates Cdk5 tyrosine phosphorylation, kinase upregulation, and neurite outgrowth. Neuron 26:633–646.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

All three authors wish to acknowledge support during the writing of this review by grants from the NIH (NS20591 and AG24494).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Herrup .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wang, L., Zhang, J., Herrup, K. (2008). Cdk5 May Be an Atypical Kinase, but Not in the Way You Think. In: Ip, N.Y., Tsai, LH. (eds) Cyclin Dependent Kinase 5 (Cdk5). Springer, Boston, MA. https://doi.org/10.1007/978-0-387-78887-6_9

Download citation

Publish with us

Policies and ethics