Cyclin-Dependent Kinase 5: A Critical Regulator of Neurotransmitter Release



Neurotransmitter release is tightly regulated through the specific control of the synaptic vesicle cycle, which is composed of Ca++-triggered exocytosis, endocytosis, and recycling. Various protein kinases have been implicated in the regulation of neurotransmitter release. Accumulating evidence indicates that cyclin-dependent kinase 5 (Cdk5) controls the multiple steps of neurotransmitter release through phosphorylation of the various substrates involved in synaptic vesicle exocytosis, endocytosis, neurotransmitter synthesis, Ca++ influx, and lipid signaling at presynaptic terminals—the distal ends of axons that specialize in neurotransmitter release. This study is an overview of the most recent information available concerning Cdk5-mediated phosphorylation as a critical regulatory mechanism for neurotransmitter release at presynaptic terminals.


PC12 Cell Tyrosine Hydroxylase Synaptic Vesicle Neurotransmitter Release Presynaptic Terminal 



This work was supported by KOSEF (R01-2007-000-11910-0) funded by the Korean government (MOST). This work was also supported by a Korea Research Foundation grant funded by the Korean Government (MOEHRD) (KRF-2007-331-E00198) and by the IBST Grant 2006 and 2007 from Inje University. Due to space limitation, the author regrets not being able to cite all relevant publications in this review.


  1. Angelo M, Plattner F, Giese KP (2006) Cyclin-dependent kinase 5 in synaptic plasticity, learning and memory. J Neurochem 99:353–370.PubMedCrossRefGoogle Scholar
  2. Barclay JW, Aldea M, Craig TJ, Morgan A, Burgoyne RD (2004) Regulation of the fusion pore conductance during exocytosis by cyclin-dependent kinase 5. J Biol Chem 279:41495–41503.PubMedCrossRefGoogle Scholar
  3. Beites CL, Campbell KA, Trimble WS (2005) The septin Sept5/CDCrel-1 competes with alpha-SNAP for binding to the SNARE complex. Biochem J 385:347–353.PubMedCrossRefGoogle Scholar
  4. Beites CL, Xie H, Bowser R, Trimble WS (1999) The septin CDCrel-1 binds syntaxin and inhibits exocytosis. Nat Neurosci 2:434–439.PubMedCrossRefGoogle Scholar
  5. Bellen H (1999) Neurotransmitter release: Oxford university press, Oxford.Google Scholar
  6. Besset V, Rhee K, Wolgemuth DJ (1999) The cellular distribution and kinase activity of the Cdk family member Pctaire1 in the adult mouse brain and testis suggest functions in differentiation. Cell Growth Differ 10:173–181.PubMedGoogle Scholar
  7. Bhalla A, Chicka MC, Tucker WC, Chapman ER (2006) Ca(2+)-synaptotagmin directly regulates t-SNARE function during reconstituted membrane fusion. Nat Struct Mol Biol 13:323–330.PubMedCrossRefGoogle Scholar
  8. Brunger AT (2005) Structure and function of SNARE and SNARE-interacting proteins. Q Rev Biophys 38:1–47.PubMedCrossRefGoogle Scholar
  9. Chapman ER (2002) Synaptotagmin: a Ca(2+) sensor that triggers exocytosis? Nat Rev Mol Cell Biol 3:498–508.PubMedCrossRefGoogle Scholar
  10. Cheng K, Li Z, Fu WY, Wang JH, Fu AK, Ip NY (2002) Pctaire1 interacts with p35 and is a novel substrate for Cdk5/p35. J Biol Chem 277:31988–31993.PubMedCrossRefGoogle Scholar
  11. Chergui K, Svenningsson P, Greengard P (2004) Cyclin-dependent kinase 5 regulates dopaminergic and glutamatergic transmission in the striatum. Proc Natl Acad Sci U S A 101:2191–2196.PubMedCrossRefGoogle Scholar
  12. Cheung ZH, Fu AK, Ip NY (2006) Synaptic roles of Cdk5: implications in higher cognitive functions and neurodegenerative diseases. Neuron 50:13–18.PubMedCrossRefGoogle Scholar
  13. Cousin MA, Robinson PJ (2001) The dephosphins: dephosphorylation by calcineurin triggers synaptic vesicle endocytosis. Trends Neurosci 24:659–665.PubMedCrossRefGoogle Scholar
  14. Cowan WM, Sudhof TC, Stevens CF, Davies K (2001) Synapses: The Johns Hopkins University Press, Maryland.Google Scholar
  15. Dhavan R, Tsai LH (2001) A decade of CDK5. Nat Rev Mol Cell Biol 2:749–759.PubMedCrossRefGoogle Scholar
  16. Di Paolo G, Moskowitz HS, Gipson K, Wenk MR, Voronov S, Obayashi M, Flavell R, Fitzsimonds RM, Ryan TA, De Camilli P (2004) Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking. Nature 431:415–422.PubMedCrossRefGoogle Scholar
  17. Dong Z, Ferger B, Paterna JC, Vogel D, Furler S, Osinde M, Feldon J, Bueler H (2003) Dopamine-dependent neurodegeneration in rats induced by viral vector-mediated overexpression of the parkin target protein, CDCrel-1. Proc Natl Acad Sci U S A 100:12438–12443.PubMedCrossRefGoogle Scholar
  18. Dulubova I, Sugita S, Hill S, Hosaka M, Fernandez I, Sudhof TC, Rizo J (1999) A conformational switch in syntaxin during exocytosis: role of munc18. EMBO J 18:4372–4382.PubMedCrossRefGoogle Scholar
  19. Evans GJ, Cousin MA (2007) Activity-dependent control of slow synaptic vesicle endocytosis by cyclin-dependent kinase 5. J Neurosci 27:401–411.PubMedCrossRefGoogle Scholar
  20. Fisher RJ, Pevsner J, Burgoyne RD (2001) Control of fusion pore dynamics during exocytosis by Munc18. Science 291:875–878.PubMedCrossRefGoogle Scholar
  21. Fletcher AI, Shuang R, Giovannucci DR, Zhang L, Bittner MA, Stuenkel EL (1999) Regulation of exocytosis by cyclin-dependent kinase 5 via phosphorylation of Munc18. J Biol Chem 274:4027–4035.PubMedCrossRefGoogle Scholar
  22. Floyd SR, Porro EB, Slepnev VI, Ochoa GC, Tsai LH, De Camilli P (2001) Amphiphysin 1 binds the cyclin-dependent kinase (cdk) 5 regulatory subunit p35 and is phosphorylated by cdk5 and cdc2. J Biol Chem 276:8104–8110.PubMedCrossRefGoogle Scholar
  23. Fu AK, Ip FC, Fu WY, Cheung J, Wang JH, Yung WH, Ip NY (2005) Aberrant motor axon projection, acetylcholine receptor clustering, and neurotransmission in cyclin-dependent kinase 5 null mice. Proc Natl Acad Sci U S A 102:15224–15229.PubMedCrossRefGoogle Scholar
  24. Gallwitz D, Jahn R (2003) The riddle of the Sec1/Munc-18 proteins - new twists added to their interactions with SNAREs. Trends Biochem Sci 28:113–116.PubMedCrossRefGoogle Scholar
  25. Giovedi S, Darchen F, Valtorta F, Greengard P, Benfenati F (2004a) Synapsin is a novel Rab3 effector protein on small synaptic vesicles. II. Functional effects of the Rab3A-synapsin I interaction. J Biol Chem 279:43769–43779.CrossRefGoogle Scholar
  26. Giovedi S, Vaccaro P, Valtorta F, Darchen F, Greengard P, Cesareni G, Benfenati F (2004b) Synapsin is a novel Rab3 effector protein on small synaptic vesicles. I. Identification and characterization of the synapsin I-Rab3 interactions in vitro and in intact nerve terminals. J Biol Chem 279:43760–43768.CrossRefGoogle Scholar
  27. Gonzalez L, Jr., Scheller RH (1999) Regulation of membrane trafficking: structural insights from a Rab/effector complex. Cell 96:755–758.PubMedCrossRefGoogle Scholar
  28. Graham ME, Anggono V, Bache N, Larsen MR, Craft GE, Robinson PJ (2007) The in vivo phosphorylation sites of rat brain dynamin I. J Biol Chem 282: 14695–14707.PubMedCrossRefGoogle Scholar
  29. Jahn R, Scheller RH (2006) SNAREs–engines for membrane fusion. Nat Rev Mol Cell Biol 7:631–643.PubMedCrossRefGoogle Scholar
  30. Jarousse N, Kelly RB (2001) Endocytotic mechanisms in synapses. Curr Opin Cell Biol 13:461–469.PubMedCrossRefGoogle Scholar
  31. Kansy JW, Daubner SC, Nishi A, Sotogaku N, Lloyd MD, Nguyen C, Lu L, Haycock JW, Hope BT, Fitzpatrick PF, Bibb JA (2004) Identification of tyrosine hydroxylase as a physiological substrate for Cdk5. J Neurochem 91:374–384.PubMedCrossRefGoogle Scholar
  32. Lee MS, Kwon YT, Li M, Peng J, Friedlander RM, Tsai LH (2000) Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405:360–364.PubMedCrossRefGoogle Scholar
  33. Lee SY, Wenk MR, Kim Y, Nairn AC, De Camilli P (2004) Regulation of synaptojanin 1 by cyclin-dependent kinase 5 at synapses. Proc Natl Acad Sci U S A 101:546–551.PubMedCrossRefGoogle Scholar
  34. Lee SY, Voronov S, Letinic K, Nairn AC, Di Paolo G, De Camilli P (2005) Regulation of the interaction between PIPKI gamma and talin by proline-directed protein kinases. J Cell Biol 168:789–799.PubMedCrossRefGoogle Scholar
  35. Leenders AG, Sheng ZH (2005) Modulation of neurotransmitter release by the second messenger-activated protein kinases: implications for presynaptic plasticity. Pharmacol Ther 105:69–84.PubMedCrossRefGoogle Scholar
  36. Liang S, Wei FY, Wu YM, Tanabe K, Abe T, Oda Y, Yoshida Y, Yamada H, Matsui H, Tomizawa K, Takei K (2007) Major Cdk5-dependent phosphorylation sites of amphiphysin 1 are implicated in the regulation of the membrane binding and endocytosis. J Neurochem 102: 1466-1476.PubMedCrossRefGoogle Scholar
  37. Lilja L, Yang SN, Webb DL, Juntti-Berggren L, Berggren PO, Bark C (2001) Cyclin-dependent kinase 5 promotes insulin exocytosis. J Biol Chem 276:34199–34205.PubMedCrossRefGoogle Scholar
  38. Lilja L, Johansson JU, Gromada J, Mandic SA, Fried G, Berggren PO, Bark C (2004) Cyclin-dependent kinase 5 associated with p39 promotes Munc18-1 phosphorylation and Ca(2+)-dependent exocytosis. J Biol Chem 279:29534–29541.PubMedCrossRefGoogle Scholar
  39. Littleton JT, Chapman ER, Kreber R, Garment MB, Carlson SD, Ganetzky B (1998) Temperature-sensitive paralytic mutations demonstrate that synaptic exocytosis requires SNARE complex assembly and disassembly. Neuron 21:401–413.PubMedCrossRefGoogle Scholar
  40. Liu Y, Cheng K, Gong K, Fu AK, Ip NY (2006) Pctaire1 phosphorylates N-ethylmaleimide-sensitive fusion protein: implications in the regulation of its hexamerization and exocytosis. J Biol Chem 281:9852–9858.PubMedCrossRefGoogle Scholar
  41. Matsubara M, Kusubata M, Ishiguro K, Uchida T, Titani K, Taniguchi H (1996) Site-specific phosphorylation of synapsin I by mitogen-activated protein kinase and Cdk5 and its effects on physiological functions. J Biol Chem 271:21108–21113.PubMedCrossRefGoogle Scholar
  42. Matsuuchi L, Kelly RB (1991) Constitutive and basal secretion from the endocrine cell line, AtT-20. J Cell Biol 112:843–852.PubMedCrossRefGoogle Scholar
  43. Misura KM, Scheller RH, Weis WI (2000) Three-dimensional structure of the neuronal-Sec1-syntaxin 1a complex. Nature 404:355–362.Google Scholar
  44. Monaco EA, 3rd, Vallano ML (2005) Roscovitine triggers excitotoxicity in cultured granule neurons by enhancing glutamate release. Mol Pharmacol 68:1331–1342.PubMedCrossRefGoogle Scholar
  45. Morgan JR, Di Paolo G, Werner H, Shchedrina VA, Pypaert M, Pieribone VA, De Camilli P (2004) A role for talin in presynaptic function. J Cell Biol 167:43–50.PubMedCrossRefGoogle Scholar
  46. Moy LY, Tsai LH (2004) Cyclin-dependent kinase 5 phosphorylates serine 31 of tyrosine hydroxylase and regulates its stability. J Biol Chem 279:54487–54493.PubMedCrossRefGoogle Scholar
  47. Nguyen C, Bibb JA (2003) Cdk5 and the mystery of synaptic vesicle endocytosis. J Cell Biol 163:697–699.PubMedCrossRefGoogle Scholar
  48. Rizo J, Chen X, Arac D (2006) Unraveling the mechanisms of synaptotagmin and SNARE function in neurotransmitter release. Trends Cell Biol 16:339–350.PubMedCrossRefGoogle Scholar
  49. Rosales JL, Lee KY (2006) Extraneuronal roles of cyclin-dependent kinase 5. Bioessays 28:1023–1034.PubMedCrossRefGoogle Scholar
  50. Rosales JL, Ernst JD, Hallows J, Lee KY (2004) GTP-dependent secretion from neutrophils is regulated by Cdk5. J Biol Chem 279:53932–53936.PubMedCrossRefGoogle Scholar
  51. Sahin B, Bibb JA (2004) Protein kinases talk to lipid phosphatases at the synapse. Proc Natl Acad Sci U S A 101:1112–1113.PubMedCrossRefGoogle Scholar
  52. Schmidt A, Wolde M, Thiele C, Fest W, Kratzin H, Podtelejnikov AV, Witke W, Huttner WB, Soling HD (1999) Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature 401:133–141.PubMedCrossRefGoogle Scholar
  53. Shen J, Tareste DC, Paumet F, Rothman JE, Melia TJ (2007) Selective activation of cognate SNAREpins by Sec1/Munc18 proteins. Cell 128:183–195.PubMedCrossRefGoogle Scholar
  54. Shuang R, Zhang L, Fletcher A, Groblewski GE, Pevsner J, Stuenkel EL (1998) Regulation of Munc-18/syntaxin 1A interaction by cyclin-dependent kinase 5 in nerve endings. J Biol Chem 273:4957–4966.PubMedCrossRefGoogle Scholar
  55. Sollner T, Bennett MK, Whiteheart SW, Scheller RH, Rothman JE (1993) A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75:409–418.PubMedCrossRefGoogle Scholar
  56. Sudhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547.PubMedCrossRefGoogle Scholar
  57. Takahashi M, Itakura M, Kataoka M (2003) New aspects of neurotransmitter release and exocytosis: regulation of neurotransmitter release by phosphorylation. J Pharmacol Sci 93:41–45.PubMedCrossRefGoogle Scholar
  58. Takei K, Haucke V (2001) Clathrin-mediated endocytosis: membrane factors pull the trigger. Trends Cell Biol 11:385–391.PubMedCrossRefGoogle Scholar
  59. Tan TC, Valova VA, Malladi CS, Graham ME, Berven LA, Jupp OJ, Hansra G, McClure SJ, Sarcevic B, Boadle RA, Larsen MR, Cousin MA, Robinson PJ (2003) Cdk5 is essential for synaptic vesicle endocytosis. Nat Cell Biol 5:701–710.PubMedCrossRefGoogle Scholar
  60. Taniguchi M, Taoka M, Itakura M, Asada A, Saito T, Kinoshita M, Takahashi M, Isobe T, Hisanaga S (2007) Phosphorylation of adult type Sept5 (CDCrel-1) by cyclin-dependent kinase 5 inhibits interaction with syntaxin-1. J Biol Chem 282:7869–7876.PubMedCrossRefGoogle Scholar
  61. Tomizawa K, Ohta J, Matsushita M, Moriwaki A, Li ST, Takei K, Matsui H (2002) Cdk5/p35 regulates neurotransmitter release through phosphorylation and downregulation of P/Q-type voltage-dependent calcium channel activity. J Neurosci 22:2590–2597.PubMedGoogle Scholar
  62. Tomizawa K, Sunada S, Lu YF, Oda Y, Kinuta M, Ohshima T, Saito T, Wei FY, Matsushita M, Li ST, Tsutsui K, Hisanaga S, Mikoshiba K, Takei K, Matsui H (2003) Cophosphorylation of amphiphysin I and dynamin I by Cdk5 regulates clathrin-mediated endocytosis of synaptic vesicles. J Cell Biol 163:813–824.PubMedCrossRefGoogle Scholar
  63. Voets T, Toonen RF, Brian EC, de Wit H, Moser T, Rettig J, Sudhof TC, Neher E, Verhage M (2001) Munc18-1 promotes large dense-core vesicle docking. Neuron 31:581–591.PubMedCrossRefGoogle Scholar
  64. Wang L, Li G, Sugita S (2005) A central kinase domain of type I phosphatidylinositol phosphate kinases is sufficient to prime exocytosis: isoform specificity and its underlying mechanism. J Biol Chem 280:16522–16527.PubMedCrossRefGoogle Scholar
  65. Wenk MR, De Camilli P (2004) Protein-lipid interactions and phosphoinositide metabolism in membrane traffic: insights from vesicle recycling in nerve terminals. Proc Natl Acad Sci U S A 101:8262–8269.PubMedCrossRefGoogle Scholar
  66. Wenk MR, Pellegrini L, Klenchin VA, Di Paolo G, Chang S, Daniell L, Arioka M, Martin TF, De Camilli P (2001) PIP kinase Igamma is the major PI(4,5)P(2) synthesizing enzyme at the synapse. Neuron 32:79–88.PubMedCrossRefGoogle Scholar
  67. Wu MN, Littleton JT, Bhat MA, Prokop A, Bellen HJ (1998) ROP, the Drosophila Sec1 homolog, interacts with syntaxin and regulates neurotransmitter release in a dosage-dependent manner. EMBO J 17:127–139.PubMedCrossRefGoogle Scholar
  68. Xin X, Ferraro F, Back N, Eipper BA, Mains RE (2004) Cdk5 and Trio modulate endocrine cell exocytosis. J Cell Sci 117:4739–4748.PubMedCrossRefGoogle Scholar
  69. Yan Z, Chi P, Bibb JA, Ryan TA, Greengard P (2002) Roscovitine: a novel regulator of P/Q-type calcium channels and transmitter release in central neurons. J Physiol 540:761–770.PubMedCrossRefGoogle Scholar
  70. Yang B, Steegmaier M, Gonzalez LC, Jr., Scheller RH (2000) nSec1 binds a closed conformation of syntaxin1A. J Cell Biol 148:247–252.PubMedCrossRefGoogle Scholar
  71. Zilly FE, Sorensen JB, Jahn R, Lang T (2006) Munc18-bound syntaxin readily forms SNARE complexes with synaptobrevin in native plasma membranes. PLoS Biol 4:e330.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Graduate Program in NeuroscienceInstitute for Brain Science and Technology, Inje UniversityBusanjin-guSouth Korea

Personalised recommendations