Skip to main content

Cyclin-Dependent Kinase 5: A Critical Regulator of Neurotransmitter Release

  • Chapter
  • First Online:
Book cover Cyclin Dependent Kinase 5 (Cdk5)

Abstract

Neurotransmitter release is tightly regulated through the specific control of the synaptic vesicle cycle, which is composed of Ca++-triggered exocytosis, endocytosis, and recycling. Various protein kinases have been implicated in the regulation of neurotransmitter release. Accumulating evidence indicates that cyclin-dependent kinase 5 (Cdk5) controls the multiple steps of neurotransmitter release through phosphorylation of the various substrates involved in synaptic vesicle exocytosis, endocytosis, neurotransmitter synthesis, Ca++ influx, and lipid signaling at presynaptic terminals—the distal ends of axons that specialize in neurotransmitter release. This study is an overview of the most recent information available concerning Cdk5-mediated phosphorylation as a critical regulatory mechanism for neurotransmitter release at presynaptic terminals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angelo M, Plattner F, Giese KP (2006) Cyclin-dependent kinase 5 in synaptic plasticity, learning and memory. J Neurochem 99:353–370.

    Article  PubMed  CAS  Google Scholar 

  • Barclay JW, Aldea M, Craig TJ, Morgan A, Burgoyne RD (2004) Regulation of the fusion pore conductance during exocytosis by cyclin-dependent kinase 5. J Biol Chem 279:41495–41503.

    Article  PubMed  CAS  Google Scholar 

  • Beites CL, Campbell KA, Trimble WS (2005) The septin Sept5/CDCrel-1 competes with alpha-SNAP for binding to the SNARE complex. Biochem J 385:347–353.

    Article  PubMed  CAS  Google Scholar 

  • Beites CL, Xie H, Bowser R, Trimble WS (1999) The septin CDCrel-1 binds syntaxin and inhibits exocytosis. Nat Neurosci 2:434–439.

    Article  PubMed  CAS  Google Scholar 

  • Bellen H (1999) Neurotransmitter release: Oxford university press, Oxford.

    Google Scholar 

  • Besset V, Rhee K, Wolgemuth DJ (1999) The cellular distribution and kinase activity of the Cdk family member Pctaire1 in the adult mouse brain and testis suggest functions in differentiation. Cell Growth Differ 10:173–181.

    PubMed  CAS  Google Scholar 

  • Bhalla A, Chicka MC, Tucker WC, Chapman ER (2006) Ca(2+)-synaptotagmin directly regulates t-SNARE function during reconstituted membrane fusion. Nat Struct Mol Biol 13:323–330.

    Article  PubMed  CAS  Google Scholar 

  • Brunger AT (2005) Structure and function of SNARE and SNARE-interacting proteins. Q Rev Biophys 38:1–47.

    Article  PubMed  CAS  Google Scholar 

  • Chapman ER (2002) Synaptotagmin: a Ca(2+) sensor that triggers exocytosis? Nat Rev Mol Cell Biol 3:498–508.

    Article  PubMed  CAS  Google Scholar 

  • Cheng K, Li Z, Fu WY, Wang JH, Fu AK, Ip NY (2002) Pctaire1 interacts with p35 and is a novel substrate for Cdk5/p35. J Biol Chem 277:31988–31993.

    Article  PubMed  CAS  Google Scholar 

  • Chergui K, Svenningsson P, Greengard P (2004) Cyclin-dependent kinase 5 regulates dopaminergic and glutamatergic transmission in the striatum. Proc Natl Acad Sci U S A 101:2191–2196.

    Article  PubMed  CAS  Google Scholar 

  • Cheung ZH, Fu AK, Ip NY (2006) Synaptic roles of Cdk5: implications in higher cognitive functions and neurodegenerative diseases. Neuron 50:13–18.

    Article  PubMed  CAS  Google Scholar 

  • Cousin MA, Robinson PJ (2001) The dephosphins: dephosphorylation by calcineurin triggers synaptic vesicle endocytosis. Trends Neurosci 24:659–665.

    Article  PubMed  CAS  Google Scholar 

  • Cowan WM, Sudhof TC, Stevens CF, Davies K (2001) Synapses: The Johns Hopkins University Press, Maryland.

    Google Scholar 

  • Dhavan R, Tsai LH (2001) A decade of CDK5. Nat Rev Mol Cell Biol 2:749–759.

    Article  PubMed  CAS  Google Scholar 

  • Di Paolo G, Moskowitz HS, Gipson K, Wenk MR, Voronov S, Obayashi M, Flavell R, Fitzsimonds RM, Ryan TA, De Camilli P (2004) Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking. Nature 431:415–422.

    Article  PubMed  Google Scholar 

  • Dong Z, Ferger B, Paterna JC, Vogel D, Furler S, Osinde M, Feldon J, Bueler H (2003) Dopamine-dependent neurodegeneration in rats induced by viral vector-mediated overexpression of the parkin target protein, CDCrel-1. Proc Natl Acad Sci U S A 100:12438–12443.

    Article  PubMed  CAS  Google Scholar 

  • Dulubova I, Sugita S, Hill S, Hosaka M, Fernandez I, Sudhof TC, Rizo J (1999) A conformational switch in syntaxin during exocytosis: role of munc18. EMBO J 18:4372–4382.

    Article  PubMed  CAS  Google Scholar 

  • Evans GJ, Cousin MA (2007) Activity-dependent control of slow synaptic vesicle endocytosis by cyclin-dependent kinase 5. J Neurosci 27:401–411.

    Article  PubMed  CAS  Google Scholar 

  • Fisher RJ, Pevsner J, Burgoyne RD (2001) Control of fusion pore dynamics during exocytosis by Munc18. Science 291:875–878.

    Article  PubMed  CAS  Google Scholar 

  • Fletcher AI, Shuang R, Giovannucci DR, Zhang L, Bittner MA, Stuenkel EL (1999) Regulation of exocytosis by cyclin-dependent kinase 5 via phosphorylation of Munc18. J Biol Chem 274:4027–4035.

    Article  PubMed  CAS  Google Scholar 

  • Floyd SR, Porro EB, Slepnev VI, Ochoa GC, Tsai LH, De Camilli P (2001) Amphiphysin 1 binds the cyclin-dependent kinase (cdk) 5 regulatory subunit p35 and is phosphorylated by cdk5 and cdc2. J Biol Chem 276:8104–8110.

    Article  PubMed  CAS  Google Scholar 

  • Fu AK, Ip FC, Fu WY, Cheung J, Wang JH, Yung WH, Ip NY (2005) Aberrant motor axon projection, acetylcholine receptor clustering, and neurotransmission in cyclin-dependent kinase 5 null mice. Proc Natl Acad Sci U S A 102:15224–15229.

    Article  PubMed  CAS  Google Scholar 

  • Gallwitz D, Jahn R (2003) The riddle of the Sec1/Munc-18 proteins - new twists added to their interactions with SNAREs. Trends Biochem Sci 28:113–116.

    Article  PubMed  CAS  Google Scholar 

  • Giovedi S, Darchen F, Valtorta F, Greengard P, Benfenati F (2004a) Synapsin is a novel Rab3 effector protein on small synaptic vesicles. II. Functional effects of the Rab3A-synapsin I interaction. J Biol Chem 279:43769–43779.

    Article  CAS  Google Scholar 

  • Giovedi S, Vaccaro P, Valtorta F, Darchen F, Greengard P, Cesareni G, Benfenati F (2004b) Synapsin is a novel Rab3 effector protein on small synaptic vesicles. I. Identification and characterization of the synapsin I-Rab3 interactions in vitro and in intact nerve terminals. J Biol Chem 279:43760–43768.

    Article  CAS  Google Scholar 

  • Gonzalez L, Jr., Scheller RH (1999) Regulation of membrane trafficking: structural insights from a Rab/effector complex. Cell 96:755–758.

    Article  PubMed  CAS  Google Scholar 

  • Graham ME, Anggono V, Bache N, Larsen MR, Craft GE, Robinson PJ (2007) The in vivo phosphorylation sites of rat brain dynamin I. J Biol Chem 282: 14695–14707.

    Article  PubMed  CAS  Google Scholar 

  • Jahn R, Scheller RH (2006) SNAREs–engines for membrane fusion. Nat Rev Mol Cell Biol 7:631–643.

    Article  PubMed  CAS  Google Scholar 

  • Jarousse N, Kelly RB (2001) Endocytotic mechanisms in synapses. Curr Opin Cell Biol 13:461–469.

    Article  PubMed  CAS  Google Scholar 

  • Kansy JW, Daubner SC, Nishi A, Sotogaku N, Lloyd MD, Nguyen C, Lu L, Haycock JW, Hope BT, Fitzpatrick PF, Bibb JA (2004) Identification of tyrosine hydroxylase as a physiological substrate for Cdk5. J Neurochem 91:374–384.

    Article  PubMed  CAS  Google Scholar 

  • Lee MS, Kwon YT, Li M, Peng J, Friedlander RM, Tsai LH (2000) Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405:360–364.

    Article  PubMed  CAS  Google Scholar 

  • Lee SY, Wenk MR, Kim Y, Nairn AC, De Camilli P (2004) Regulation of synaptojanin 1 by cyclin-dependent kinase 5 at synapses. Proc Natl Acad Sci U S A 101:546–551.

    Article  PubMed  CAS  Google Scholar 

  • Lee SY, Voronov S, Letinic K, Nairn AC, Di Paolo G, De Camilli P (2005) Regulation of the interaction between PIPKI gamma and talin by proline-directed protein kinases. J Cell Biol 168:789–799.

    Article  PubMed  CAS  Google Scholar 

  • Leenders AG, Sheng ZH (2005) Modulation of neurotransmitter release by the second messenger-activated protein kinases: implications for presynaptic plasticity. Pharmacol Ther 105:69–84.

    Article  PubMed  CAS  Google Scholar 

  • Liang S, Wei FY, Wu YM, Tanabe K, Abe T, Oda Y, Yoshida Y, Yamada H, Matsui H, Tomizawa K, Takei K (2007) Major Cdk5-dependent phosphorylation sites of amphiphysin 1 are implicated in the regulation of the membrane binding and endocytosis. J Neurochem 102: 1466-1476.

    Article  PubMed  CAS  Google Scholar 

  • Lilja L, Yang SN, Webb DL, Juntti-Berggren L, Berggren PO, Bark C (2001) Cyclin-dependent kinase 5 promotes insulin exocytosis. J Biol Chem 276:34199–34205.

    Article  PubMed  CAS  Google Scholar 

  • Lilja L, Johansson JU, Gromada J, Mandic SA, Fried G, Berggren PO, Bark C (2004) Cyclin-dependent kinase 5 associated with p39 promotes Munc18-1 phosphorylation and Ca(2+)-dependent exocytosis. J Biol Chem 279:29534–29541.

    Article  PubMed  CAS  Google Scholar 

  • Littleton JT, Chapman ER, Kreber R, Garment MB, Carlson SD, Ganetzky B (1998) Temperature-sensitive paralytic mutations demonstrate that synaptic exocytosis requires SNARE complex assembly and disassembly. Neuron 21:401–413.

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Cheng K, Gong K, Fu AK, Ip NY (2006) Pctaire1 phosphorylates N-ethylmaleimide-sensitive fusion protein: implications in the regulation of its hexamerization and exocytosis. J Biol Chem 281:9852–9858.

    Article  PubMed  CAS  Google Scholar 

  • Matsubara M, Kusubata M, Ishiguro K, Uchida T, Titani K, Taniguchi H (1996) Site-specific phosphorylation of synapsin I by mitogen-activated protein kinase and Cdk5 and its effects on physiological functions. J Biol Chem 271:21108–21113.

    Article  PubMed  CAS  Google Scholar 

  • Matsuuchi L, Kelly RB (1991) Constitutive and basal secretion from the endocrine cell line, AtT-20. J Cell Biol 112:843–852.

    Article  PubMed  CAS  Google Scholar 

  • Misura KM, Scheller RH, Weis WI (2000) Three-dimensional structure of the neuronal-Sec1-syntaxin 1a complex. Nature 404:355–362.

    CAS  Google Scholar 

  • Monaco EA, 3rd, Vallano ML (2005) Roscovitine triggers excitotoxicity in cultured granule neurons by enhancing glutamate release. Mol Pharmacol 68:1331–1342.

    Article  PubMed  Google Scholar 

  • Morgan JR, Di Paolo G, Werner H, Shchedrina VA, Pypaert M, Pieribone VA, De Camilli P (2004) A role for talin in presynaptic function. J Cell Biol 167:43–50.

    Article  PubMed  CAS  Google Scholar 

  • Moy LY, Tsai LH (2004) Cyclin-dependent kinase 5 phosphorylates serine 31 of tyrosine hydroxylase and regulates its stability. J Biol Chem 279:54487–54493.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen C, Bibb JA (2003) Cdk5 and the mystery of synaptic vesicle endocytosis. J Cell Biol 163:697–699.

    Article  PubMed  CAS  Google Scholar 

  • Rizo J, Chen X, Arac D (2006) Unraveling the mechanisms of synaptotagmin and SNARE function in neurotransmitter release. Trends Cell Biol 16:339–350.

    Article  PubMed  CAS  Google Scholar 

  • Rosales JL, Lee KY (2006) Extraneuronal roles of cyclin-dependent kinase 5. Bioessays 28:1023–1034.

    Article  PubMed  CAS  Google Scholar 

  • Rosales JL, Ernst JD, Hallows J, Lee KY (2004) GTP-dependent secretion from neutrophils is regulated by Cdk5. J Biol Chem 279:53932–53936.

    Article  PubMed  CAS  Google Scholar 

  • Sahin B, Bibb JA (2004) Protein kinases talk to lipid phosphatases at the synapse. Proc Natl Acad Sci U S A 101:1112–1113.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt A, Wolde M, Thiele C, Fest W, Kratzin H, Podtelejnikov AV, Witke W, Huttner WB, Soling HD (1999) Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature 401:133–141.

    Article  PubMed  CAS  Google Scholar 

  • Shen J, Tareste DC, Paumet F, Rothman JE, Melia TJ (2007) Selective activation of cognate SNAREpins by Sec1/Munc18 proteins. Cell 128:183–195.

    Article  PubMed  CAS  Google Scholar 

  • Shuang R, Zhang L, Fletcher A, Groblewski GE, Pevsner J, Stuenkel EL (1998) Regulation of Munc-18/syntaxin 1A interaction by cyclin-dependent kinase 5 in nerve endings. J Biol Chem 273:4957–4966.

    Article  PubMed  CAS  Google Scholar 

  • Sollner T, Bennett MK, Whiteheart SW, Scheller RH, Rothman JE (1993) A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75:409–418.

    Article  PubMed  CAS  Google Scholar 

  • Sudhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547.

    Article  PubMed  Google Scholar 

  • Takahashi M, Itakura M, Kataoka M (2003) New aspects of neurotransmitter release and exocytosis: regulation of neurotransmitter release by phosphorylation. J Pharmacol Sci 93:41–45.

    Article  PubMed  CAS  Google Scholar 

  • Takei K, Haucke V (2001) Clathrin-mediated endocytosis: membrane factors pull the trigger. Trends Cell Biol 11:385–391.

    Article  PubMed  CAS  Google Scholar 

  • Tan TC, Valova VA, Malladi CS, Graham ME, Berven LA, Jupp OJ, Hansra G, McClure SJ, Sarcevic B, Boadle RA, Larsen MR, Cousin MA, Robinson PJ (2003) Cdk5 is essential for synaptic vesicle endocytosis. Nat Cell Biol 5:701–710.

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi M, Taoka M, Itakura M, Asada A, Saito T, Kinoshita M, Takahashi M, Isobe T, Hisanaga S (2007) Phosphorylation of adult type Sept5 (CDCrel-1) by cyclin-dependent kinase 5 inhibits interaction with syntaxin-1. J Biol Chem 282:7869–7876.

    Article  PubMed  CAS  Google Scholar 

  • Tomizawa K, Ohta J, Matsushita M, Moriwaki A, Li ST, Takei K, Matsui H (2002) Cdk5/p35 regulates neurotransmitter release through phosphorylation and downregulation of P/Q-type voltage-dependent calcium channel activity. J Neurosci 22:2590–2597.

    PubMed  CAS  Google Scholar 

  • Tomizawa K, Sunada S, Lu YF, Oda Y, Kinuta M, Ohshima T, Saito T, Wei FY, Matsushita M, Li ST, Tsutsui K, Hisanaga S, Mikoshiba K, Takei K, Matsui H (2003) Cophosphorylation of amphiphysin I and dynamin I by Cdk5 regulates clathrin-mediated endocytosis of synaptic vesicles. J Cell Biol 163:813–824.

    Article  PubMed  CAS  Google Scholar 

  • Voets T, Toonen RF, Brian EC, de Wit H, Moser T, Rettig J, Sudhof TC, Neher E, Verhage M (2001) Munc18-1 promotes large dense-core vesicle docking. Neuron 31:581–591.

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Li G, Sugita S (2005) A central kinase domain of type I phosphatidylinositol phosphate kinases is sufficient to prime exocytosis: isoform specificity and its underlying mechanism. J Biol Chem 280:16522–16527.

    Article  PubMed  CAS  Google Scholar 

  • Wenk MR, De Camilli P (2004) Protein-lipid interactions and phosphoinositide metabolism in membrane traffic: insights from vesicle recycling in nerve terminals. Proc Natl Acad Sci U S A 101:8262–8269.

    Article  PubMed  CAS  Google Scholar 

  • Wenk MR, Pellegrini L, Klenchin VA, Di Paolo G, Chang S, Daniell L, Arioka M, Martin TF, De Camilli P (2001) PIP kinase Igamma is the major PI(4,5)P(2) synthesizing enzyme at the synapse. Neuron 32:79–88.

    Article  PubMed  CAS  Google Scholar 

  • Wu MN, Littleton JT, Bhat MA, Prokop A, Bellen HJ (1998) ROP, the Drosophila Sec1 homolog, interacts with syntaxin and regulates neurotransmitter release in a dosage-dependent manner. EMBO J 17:127–139.

    Article  PubMed  CAS  Google Scholar 

  • Xin X, Ferraro F, Back N, Eipper BA, Mains RE (2004) Cdk5 and Trio modulate endocrine cell exocytosis. J Cell Sci 117:4739–4748.

    Article  PubMed  CAS  Google Scholar 

  • Yan Z, Chi P, Bibb JA, Ryan TA, Greengard P (2002) Roscovitine: a novel regulator of P/Q-type calcium channels and transmitter release in central neurons. J Physiol 540:761–770.

    Article  PubMed  CAS  Google Scholar 

  • Yang B, Steegmaier M, Gonzalez LC, Jr., Scheller RH (2000) nSec1 binds a closed conformation of syntaxin1A. J Cell Biol 148:247–252.

    Article  PubMed  CAS  Google Scholar 

  • Zilly FE, Sorensen JB, Jahn R, Lang T (2006) Munc18-bound syntaxin readily forms SNARE complexes with synaptobrevin in native plasma membranes. PLoS Biol 4:e330.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by KOSEF (R01-2007-000-11910-0) funded by the Korean government (MOST). This work was also supported by a Korea Research Foundation grant funded by the Korean Government (MOEHRD) (KRF-2007-331-E00198) and by the IBST Grant 2006 and 2007 from Inje University. Due to space limitation, the author regrets not being able to cite all relevant publications in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sul-Hee Chung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chung, SH. (2008). Cyclin-Dependent Kinase 5: A Critical Regulator of Neurotransmitter Release. In: Ip, N.Y., Tsai, LH. (eds) Cyclin Dependent Kinase 5 (Cdk5). Springer, Boston, MA. https://doi.org/10.1007/978-0-387-78887-6_4

Download citation

Publish with us

Policies and ethics