Skip to main content

Cyclin-Dependent Kinase 5 (Cdk5): Linking Synaptic Plasticity and Neurodegeneration

  • Chapter
  • First Online:
  • 462 Accesses

Abstract

It is well established that cyclin-dependent kinase 5 (Cdk5) is critically involved in neurodevelopmental processes. In addition, recent data point toward an important role of Cdk5 in regulating synaptic plasticity, learning, and memory in the adult brain. However, aberrant Cdk5 activity has been implicated in various neurodegenerative diseases such as Alzheimer’s disease. Deregulation of Cdk5 has been attributed to calpain-mediated cleavage of the Cdk5 activator p35 to the N-terminally truncated p25 protein. p25 levels are elevated in many neurodegenerative diseases and implicated in neuronal cell death in vitro and in vivo. More importantly, p25/Cdk5 causes hyperphosphorylation of tau and affects processing of APP, leading to increased levels of toxic Aβ-peptides. Surprisingly, recent data indicate that in vivo p25 is not toxic per se but that a transient increase in p25 levels may even facilitate neuroplasticity. Here we will review these recent developments and propose a scenario in which p25 generation during aging and Alzheimer’s disease might initially be a compensatory phenomenon to enhance neuroplasticity but eventually contributes to the pathogenesis of Alzheimer’s disease when chronically elevated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abel, T., Nguyen, P. V., Barad, M., Deuel, T. A., Kandel, E. R., and Bourtchouladze, R. (1997). Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell 88, 615–626.

    PubMed  CAS  Google Scholar 

  • Ahlijanian, M. K., Barrezueta, N. X., Williams, R. D., Jakowski, A., Kowsz, K. P., McCarthy, S., Coskran, T., Carlo, A., Seymour, P. A., Burkhardt, J. E., et al. (2000). Hyperphosphorylated tau and neurofilament and cytoskeletal disruptions in mice overexpressing human p25, an activator of cdk5. Proc Natl Acad Sci U S A 97, 2910–2915.

    PubMed  CAS  Google Scholar 

  • Alberini, C. M. (1999). Genes to remember. J Exp Biol 202, 2887–2891.

    PubMed  CAS  Google Scholar 

  • Angelo, M., Plattner, F., Irvine, E. E., and Giese, K. P. (2003). Improved reversal learning and altered fear conditioning in transgenic mice with regionally restricted p25 expression. Eur J Neurosci 18, 423–431.

    PubMed  Google Scholar 

  • Arber, S., Barbayannis, F. A., H., H., Schneider, C., Stanyon, C. A., Bernard, O., and Caroni, P. (1998). Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393, 739–740.

    Google Scholar 

  • Arendt, T. (2004). Neurodegeneration and plasticity. Int J Dev Neurosci 22, 507–514.

    PubMed  CAS  Google Scholar 

  • Armstrong, D. M., Sheffield, R., Mishizen-Eberz, A. J., Carter, T. L., Rissman, R. A., Mizukami, K., and Ikonomovic, M. D. (2003). Plasticity of glutamate and GABAA receptors in the hippocampus of patients with Alzheimer's disease. Cell Mol Neurobiol 23, 491–505.

    PubMed  CAS  Google Scholar 

  • Atkins, C. M., Selcher, J. C., Petraitis, J. J., Trzaskos, J. M., and Sweatt, J. D. (1998). The MAPK cascade is required for mammalian associative learning. Nat Neurosci 1, 602–609.

    PubMed  CAS  Google Scholar 

  • Avraham, E., Rott, R., Liani, E., Szargel, R., and Engelender, S. (2007). Phosphorylation of Parkin by the cyclin-dependent kinase 5 at the linker region modulates its ubiquitin-ligase activity and aggregation. J Biol Chem 282, 12842–12850.

    PubMed  CAS  Google Scholar 

  • Ayala, R., Shu, T., and Tsai, L. H. (2007). Trekking across the brain: the journey of neuronal migration. Cell 128, 29–43.

    PubMed  CAS  Google Scholar 

  • Bamji, S. X., Shimazu, K., Kimes, N., Huelsken, J., Birchmeier, W., Lu, B., and Reichardt, L. F. (2003). Role of beta-catenin in synaptic vesicle localization and presynaptic assembly. Neuron 40, 719–731.

    PubMed  CAS  Google Scholar 

  • Barco, A., Bailey, C. H., and Kandel, E. R. (2006). Common molecular mechanisms in explicit and implicit memory. J Neurochem 97, 1520–1533.

    PubMed  CAS  Google Scholar 

  • Beffert, U., Weeber, E. J., Morfini, G., Ko, J., Brady, S. T., Tsai, L. H., Sweatt, J. D., and Herz, J. (2004). Reelin and cyclin-dependent kinase 5-dependent signals cooperate in regulating neuronal migration and synaptic transmission. J Neurosci 24, 1897–1906.

    PubMed  CAS  Google Scholar 

  • Bian, F., Nath, R., Sobocinski, G., Booher, R. N., Lipinski, W. J., Callahan, M. J., Pack, A., Wang, K. K., and Walker, L. C. (2002). Axonopathy, tau abnormalities, and dyskinesia, but no neurofibrillary tangles in p25-transgenic mice. J Comp Neurol 446, 257–266.

    PubMed  CAS  Google Scholar 

  • Bibb, J. A., Chen, J., Taylor, J. R., Svenningsson, P., Nishi, A., Snyder, G. L., Yan, Z., Sagawa, Z. K., Ouimet, C. C., and Nairn, A. C., et al. (2001). Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5. Nature 410, 376–380.

    PubMed  CAS  Google Scholar 

  • Bonhoeffer, T., and Yuste, R. (2002). Spine motility. Phenomenology, mechanisms, and function. Neuron 35, 1019–1027.

    PubMed  CAS  Google Scholar 

  • Borghi, R., Giliberto, L., Assini, A., Delacourte, A., Perry, G., Smith, M. A., Strocchi, P., Zaccheo, D., and Tabaton, M. (2002). Increase of cdk5 is related to neurofibrillary pathology in progressive supranuclear palsy. Neurology 58, 589–592.

    PubMed  CAS  Google Scholar 

  • Brion, J. P., and Couck, A. M. (1995). Cortical and brainstem-type Lewy bodies are immunoreactive for the cyclin-dependent kinase 5. Am J Pathol 147, 1465–1476.

    PubMed  CAS  Google Scholar 

  • Brose, N. (1999). Synaptic cell adhesion proteins and synaptogenesis in the mammalian central nervous system. Naturwissenschaften 86, 516–524.

    PubMed  CAS  Google Scholar 

  • Bu, B., Li, J., Davies, P., and Vincent, I. (2002). Deregulation of cdk5, hyperphosphorylation, and cytoskeletal pathology in the Niemann-Pick type C murine model. J Neurosci 22, 6515–6525.

    PubMed  CAS  Google Scholar 

  • Chae, T., Kwon, Y. T., Bronson, R., Dikkes, P., Li, E., and Tsai, L. H. (1997). Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures, and adult lethality. Neuron 18, 29–42.

    PubMed  CAS  Google Scholar 

  • Cheung, Z. H., Chin, W. H., Chen, Y., Ng, Y. P., and Ip, N. Y. (2007). Cdk5 Is Involved in BDNF-stimulated dendritic growth in hippocampal neurons. PLos Biol 5, e63.

    PubMed  Google Scholar 

  • Cheung, Z. H., Fu, A. K., and Ip, N. Y. (2006). Synaptic roles of Cdk5: implications in higher cognitive functions and neurodegenerative diseases. Neuron 50, 13–18.

    PubMed  CAS  Google Scholar 

  • Cotman, C. W., and Anderson, K. J. (1988). Synaptic plasticity and functional stabilization in the hippocampal formation: possible role in Alzheimer's disease. Adv Neurol 47, 12–35.

    Google Scholar 

  • Cruz, J. C., Kim, D., Moy, L. Y., Dobbin, M. M., Sun, X., Bronson, R. T., and Tsai, L. H. (2006a). Free Full Text p25/cyclin-dependent kinase 5 induces production and intraneuronal accumulation of amyloid beta in vivo. J Neurosci 26, 10536–10541.

    CAS  Google Scholar 

  • Cruz, J. C., Kim, D., Moy, L. Y., Dobbin, M. M., Sun, X., Bronson, R. T., and Tsai, L. H. (2006b). p25/cyclin-dependent kinase 5 induces production and intraneuronal accumulation of amyloid beta in vivo. J Neurosci 26, 10536–10541.

    CAS  Google Scholar 

  • Cruz, J. C., and Tsai, L. H. (2004). Jekyll and Hyde kinase: roles for Cdk5 in brain development and disease. Curr Opin Neurobiol 14, 390–394.

    PubMed  CAS  Google Scholar 

  • Cruz, J. C., Tseng, H. C., Goldman, J. A., Shih, H., and Tsai, L. H. (2003). Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron 40, 471–483.

    PubMed  CAS  Google Scholar 

  • Dhavan, R., Greer, P. L., Morabito, M. A., Orlando, L. R., and Tsai, L. H. (2002a). The cyclin-dependent kinase 5 activators p35 and p39 interact with the alpha-subunit of Ca2+/calmodulin-dependent protein kinase II and alpha-actinin-1 in a calcium-dependent manner. J Neurosci 22, 7879–7891.

    CAS  Google Scholar 

  • Dhavan, R., Greer, P. L., Morabito, M. A., Orlando, L. R., and Tsai, L. H. (2002b). The cyclin-dependent kinase 5 activators p35 and p39 interact with the alpha-subunit of Ca2+/calmodulin-dependent protein kinase II and alpha- actinin-1 in a calcium-dependent manner. J Neurosci 22, 7879–7891.

    CAS  Google Scholar 

  • Dhavan, R., and Tsai, L. H. (2001). A decade of CDK5. Nat Rev Mol Cell Biol 2, 749–759.

    PubMed  CAS  Google Scholar 

  • Edwards, D. C., Sanders, L. C., Bokoch, G. M., and Gill, G. N. (1999). Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol 1, 253–259.

    PubMed  CAS  Google Scholar 

  • Fischer, A., Sananbenesi, F., Pang, P. T., Lu, B., and Tsai, L. H. (2005). Opposing roles of transient and prolonged expression of p25 in synaptic plasticity and hippocampus-dependent memory. Neuron 48, 825–838.

    PubMed  CAS  Google Scholar 

  • Fischer, A., Sananbenesi, F., Schrick, C., Spiess, J., and Radulovic, J. (2002). Cyclin-dependent kinase 5 is required for associative learning. J Neurosci 22, 3700–3707.

    PubMed  CAS  Google Scholar 

  • Fischer, A., Sananbenesi, F., Schrick, C., Spiess, J., and Radulovic, J. (2004). Distinct roles of hippocampal de novo protein synthesis and actin rearrangement in extinction of contextual fear. J Neurosci 24, 1962–1966.

    PubMed  CAS  Google Scholar 

  • Fischer, A., Sananbenesi, F., Spiess, J., and Radulovic, J. (2003). Cdk5 in the adult non-demented brain. Curr Drug Targets CNS Neurol Disord 6, 375–381.

    Google Scholar 

  • Fischer, A., Sananbenesi, F., Wang, X., Dobbin, M., and Tsai, L. H. (2007). Recovery of learning and memory after neuronal loss is associated with chromatin remodeling. Nature 447, 178–182

    PubMed  CAS  Google Scholar 

  • Flavell, S. W., Cowan, C. W., Kim, T. K., Greer, P. L., Lin, Y., Paradis, S., Griffith, E. C., Hu, L. S., Chen, C., and Greenberg, M. E. (2006). Activity-dependent regulation of MEF2 transcription factors suppresses excitatory synapse number. Science 311, 1008–1012.

    PubMed  CAS  Google Scholar 

  • Fletcher, A. I., Shuang, R., Giovannucci, D. R., Zhang, L., Bittner, M. A., and Stuenkel, E. L. (1999). Regulation of exocytosis by cyclin-dependent kinase 5 via phosphorylation of Munc18. J Biol Chem 274, 4027–4035.

    PubMed  CAS  Google Scholar 

  • Floyd, S. R., Porro, E. B., Slepnev, V. I., Ochoa, G. C., Tsai, L. H., and De Camilli, P. (2001). Amphiphysin 1 binds the cyclin-dependent kinase (cdk) 5 regulatory subunit p35 and is phosphorylated by cdk5 and cdc2. J Biol Chem 276, 8104–8110.

    PubMed  CAS  Google Scholar 

  • Frey, U., and Morris, R. G. (1998). Synaptic tagging: implications for late maintenance of hippocampal long-term potentiation. Trends Neurosci 21, 181–188.

    PubMed  CAS  Google Scholar 

  • Fu, A. K., Fu, W. Y., Cheung, J., Tsim, K. W., Fanny, F. C. Ip., Wang, J. H., and Ip, N. Y. (2001). Cdk5 is involved in neuregulin-induced AChR expression at the neuromuscular junction. Nat Neurosci 4, 374–381.

    PubMed  CAS  Google Scholar 

  • Fu, W. Y., Chen, Y., Sahin, M., Zhao, X. S., Shi, L., Bikoff, J. B., Lai, K. O., Yung, W. H., Fu, A. K., Greenberg, M. E., and Ip, N. Y.. (2007). Cdk5 regulates EphA4-mediated dendritic spine retraction through an ephexin1-dependent mechanism. Nat Neurosci 10, 67–76.

    PubMed  CAS  Google Scholar 

  • Gong, X., Tang, X., Wiedmann, M., Wang, X., Peng, J., Zheng, D., Blair, L. A., Marshall, J., and Mao, Z. (2003). Cdk5-mediated inhibition of the protective effects of transcription factor MEF2 in neurotoxicity-induced apoptosis. Neuron 38, 33–46.

    PubMed  CAS  Google Scholar 

  • Govindarajan, A., Kelleher, R. J., and Tonegawa, S. (2006). A clustered plasticity model of long-term memory engrams. Nat Rev Neurosci 7, 575–583.

    PubMed  CAS  Google Scholar 

  • Hallows, J. L., Iosif, R. E., Biasell, R. D., and Vincent, I. (2006). p35/p25 is not essential for tau and cytoskeletal pathology or neuronal loss in Niemann-Pick type C disease. J Neurosci 26, 2738–2744.

    PubMed  CAS  Google Scholar 

  • Halpain, S. (2000). Actin and the agile spine: how and why do dendritic spines dance? Trends Neurosci 23, 141–146.

    PubMed  CAS  Google Scholar 

  • Hawasli, A. H., Benavides, D. R., Nguyen, C., Kansy, J. W., Hayashi, K., Chambon, P., Greengard, P., Powell, C. M., Cooper, D. C., and Bibb, J. A. (2007). Cyclin-dependent kinase 5 governs learning and synaptic plasticity via control of NMDAR degradation. Nat Neurosci 10,:880–806.

    PubMed  CAS  Google Scholar 

  • Hayashi, M. L., Choi, S. Y., Rao, B. S., Jung, H. Y., Lee, H. K., Zhang, D., Chattarji, S., Kirkwood, A., and Tonegawa, S. (2004). Altered cortical synaptic morphology and impaired memory consolidation in forebrain- specific dominant-negative PAK transgenic mice. Neuron 42, 773–787.

    PubMed  CAS  Google Scholar 

  • Humbert, S., Dhavan, R., and Tsai, L. (2000). p39 activates cdk5 in neurons, and is associated with the actin cytoskeleton. J Cell Sci 113, 975–983.

    PubMed  CAS  Google Scholar 

  • Kandel, E. R. (2001). The molecular biology of memory storage: a dialogue between genes and synapses. Science 294, 1030–1038.

    PubMed  CAS  Google Scholar 

  • Kaplan, M. S. (1988). Plasticity after brain lesions: contemporary concepts. Arch Phys Med Rehabil 69, 984–991.

    PubMed  CAS  Google Scholar 

  • Kim, D., Nguyen, M. D., Dobbin, M. M., Fischer, A., Sananbenesi, F., Rodgers, J. T., Delalle, I., Baur, J. A., Sui, G., Armour, S. M., et al. (2007). SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis. EMBO J 26, 3169–3179.

    PubMed  CAS  Google Scholar 

  • Kim, J. J., and Fanselow, M. S. (1992). Modality-specific retrograde amnesia of fear. Science 256, 675–677.

    Google Scholar 

  • Kim, Y., Sung, J. Y., Ceglia, I., Lee, K. W., Ahn, J. H., Halford, J. M., Kim, A. M., Kwak, S. P., Park, J. B., Ho Ryu, S., et al. (2006). Phosphorylation of WAVE1 regulates actin polymerization and dendritic spine morphology. Nature 442, 814–817.

    PubMed  CAS  Google Scholar 

  • Klann, E., and Sweatt, J. D. (2007). Altered protein synthesis is a trigger for long-term memory formation. Neurobiol Learn Mem, 89,:247–259.

    PubMed  Google Scholar 

  • Ko, J., Humbert, S., Bronson, R. T., Takahashi, S., Kulkarni, A. B., Li, E., and Tsai, L. H. (2001). p35 and p39 are essential for cyclin-dependent kinase 5 function during neurodevelopment. J Neurosci 21, 6758–6771.

    PubMed  CAS  Google Scholar 

  • Krucker, T., Siggins, G. R., and Halpain, S. (2000). Dynamic actin filaments are required for stable long-term potentiation (LTP) in area CA1 of the hippocampus. Proc Natl Acad Sci U S A 97, 6856–6861.

    PubMed  CAS  Google Scholar 

  • Kwon, Y. T., Gupta, A., Zhou, Y., Nikolic, M., and Tsai, L. H. (2000). Regulation of N-cadherin-mediated adhesion by the p35-Cdk5 kinase. Curr Biol 10, 363–372.

    PubMed  CAS  Google Scholar 

  • Lee, M. S., Kao, S. C., Lemere, C. A., Xia, W., Tseng, H. C., Zhou, Y., Neve, R., Ahlijanian, M. K., and Tsai, L. H. (2003). APP processing is regulated by cytoplasmic phosphorylation. J Cell Biol 163, 83–95.

    PubMed  CAS  Google Scholar 

  • Lee, M. S., Kwon, Y. T., Li, M., Peng, J., Friedlander, R. M., and Tsai, L. H. (2000). Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405, 360–364.

    PubMed  CAS  Google Scholar 

  • Lee, S. Y., Voronov, S., Letinic, K., Nairn, A. C., Di Paolo, G., and De Camilli, P. (2005). Regulation of the interaction between PIPKI gamma and talin by proline-directed protein kinases. J Cell Biol 168, 789–799.

    PubMed  CAS  Google Scholar 

  • Lee, S. Y., Wenk, M. R., Kim, Y., Nairn, A. C., and De Camilli, P. (2004). Regulation of synpatojanin 1 by cyclin-dependent kinase 5 at synapses. Proc Natl Acad Sci U S A 101, 546–551.

    PubMed  CAS  Google Scholar 

  • Leuner, B., Falduto, J., and Shors, T. J. (2003). Associative memory formation increases the observation of dendritic spines in the hippocampus. J Neurosci 23, 659–665.

    PubMed  CAS  Google Scholar 

  • Levenson, J. M., Roth, T. L., Lubin, F. D., Miller, C. A., Huang, I. C., Desai, P., Malone, L. M., and Sweatt, J. D. (2006). Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. J Biol Chem 281, 15763–15773.

    PubMed  CAS  Google Scholar 

  • Li, B. S., Sun, M. K., Zhang, L., Takahashi, S., Ma, W., Vinade, L., Kulkarni, A. B., Brady, R. O., and Pant, H. C. (2001). Regulation of NMDA receptors by cyclin-dependent kinase-5. Proc Natl Acad Sci U S A 98, 12742–12747.

    PubMed  CAS  Google Scholar 

  • Lilja, L., Johansson, J. U., Gromada, J., Mandic, S. A., Fried, G., Berggren, P. O., and Bark, C. (2004). Cyclin-dependent kinase 5 associated with p39 promotes Munc18-1 phosphorylation and Ca(2+)-dependent exocytosis. J Biol Chem 279, 29534–29541.

    PubMed  CAS  Google Scholar 

  • Lin, W., Dominguez, B., Yang, J., Aryal, P., Brandon, E. P., Gage, F. H., and Lee, K. F. (2005). Neurotransmitter acetylcholine negatively regulates neuromuscular synapse formation by a Cdk5-dependent mechanism. Neuron 46, 141–150.

    Google Scholar 

  • Lu, T., Pan, Y., Kao, S. Y., Li, C., Kohane, I., Chan, J., and Yankner, B. A. (2004). Gene regulation and DNA damage in the ageing human brain. Nature 429, 883–891.

    PubMed  CAS  Google Scholar 

  • Malkani, S., and Rosen, J. B. (2000). Specific induction of early growth response gene 1 in the lateral nucleus of the amygdala following contextual fear conditioning in rats. Neuroscience 102, 853–861.

    Google Scholar 

  • Marder, E., and Goaillard, J. M. (2006). Variability, compensation and homeostasis in neuron and network function. Nat Rev Neurosci 7, 563–574.

    PubMed  CAS  Google Scholar 

  • Matsubara, M., Kusubata, M., Ishiguro, K., Uchida, T., Titani, K., and Taniguchi, H. (1996). Site-specific phosphorylation of synapsin I by mitogen-activated protein kinase and Cdk5 and its effects on physiological functions. J Biol Chem 271, 21108–21113.

    PubMed  CAS  Google Scholar 

  • Matus, A. (2000). Actin-based plasticity in dendritic spines. Science 290, 754–758.

    PubMed  CAS  Google Scholar 

  • Mesulam, M. M. (1999). Neuroplasticity failure in Alzheimer's disease: bridging the gap between plaques and tangles. Neuron 24, 521–529.

    PubMed  CAS  Google Scholar 

  • Mitsios, N., Pennucci, R., Krupinski, J., Sanfeliu, C., Gaffney, J., Kumar, P., Kumar, S., Juan-Babot, O., and Slevin, M. (2007). Expression of cyclin-dependent kinase 5 mRNA and protein in the human brain following acute ischemic stroke. Brain Pathol 17, 11–23.

    PubMed  CAS  Google Scholar 

  • Morabito, M. A., Sheng, M., and Tsai, L. H. (2004). Cyclin-dependent kinase 5 phosphorylates the N-terminal domain of the postsynaptic density protein PSD-95 in neurons. J Neurosci 24, 865–876.

    PubMed  CAS  Google Scholar 

  • Murase, S., Mosser, E., and Schuman, E. M. (2002). Depolarization drives beta-Catenin into neuronal spines promoting changes in synaptic structure and function. Neuron 35, 91–105.

    PubMed  CAS  Google Scholar 

  • Nakamura, S., Kawamoto, Y., Nakano, S., Akiguchi, I., and Kimura, J. (1997). p35nck5a and cyclin-dependent kinase 5 colocalize in Lewy bodies of brains with Parkinson's disease. Acta Neuropathol (Berl) 94, 153–157.

    CAS  Google Scholar 

  • Nguyen, C., and Bibb, J. A. (2003). Cdk5 and the mystery of synaptic vesicle endocytosis. J Cell Biol 163, 697–699.

    PubMed  CAS  Google Scholar 

  • Nguyen, C., Hosokawa, T., Kuroiwa, M., Ip, N. Y., Nishi, A., Hisanaga, S., and Bibb, J. A. (2007). Differential regulation of the Cdk5-dependent phosphorylation sites of inhibitor-1 and DARPP-32 by depolarization. J Neurochem 103, 1582–1593.

    PubMed  CAS  Google Scholar 

  • Nguyen, M. D., Lariviere, R. C., and Julien, J. P. (2001). Deregulation of Cdk5 in a mouse model of ALS: toxicity alleviated by perikaryal neurofilament inclusions. Neuron 30, 135–147.

    PubMed  CAS  Google Scholar 

  • Nikolic, M., Chou, M. M., Lu, W., Mayer, B. J., and Tsai, L. H. (1998). The p35/Cdk5 kinase is a neuron-specific Rac effector that inhibits Pak1 activity. Nature 395, 194–198.

    PubMed  CAS  Google Scholar 

  • Noble, W., Olm, V., Takata, K., Casey, E., Mary, O., Meyerson, J., Gaynor, K., LaFrancois, J., Wang, L., Kondo, T., et al. (2003). Cdk5 is a key factor in tau aggregation and tangle formation in vivo. Neuron 38, 555–565.

    PubMed  CAS  Google Scholar 

  • Norrholm, S. D., Bibb, J. A., Nestler, E. J., Ouimet, C. C., Taylor, J. R., and Greengard, P. (2003). Cocaine-induced proliferation of dendritic spines in nucleus accumbens is dependent on the activity of cyclin-dependent kinase-5. Neuroscience 116, 19–22.

    PubMed  CAS  Google Scholar 

  • Oakley, H., Cole, S. L., Logan, S., Maus, E., Shao, P., Craft, J., Guillozet-Bongaarts, A., Ohno, M., Disterhoft, J., Van Eldik, L., et al. (2006). ntraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer's disease mutations: potential factors in amyloid plaque formation. J Neurosci 26, 10129–10140.

    PubMed  CAS  Google Scholar 

  • Ohshima, T., Ogura, H., Tomizawa, K., Hayashi, K., Suzuki, H., Saito, T., kamei, H., Nishi, A., Bibb, J. A., Hisanaga, S., et al. (2005). Impairment of hippocampal long-term depression and defective spatial learning and memory in p35–/– mice. Journal of Neurochemistry 10, 4159–4168.

    Google Scholar 

  • Ohshima, T., Ward, J. M., Huh, C. G., Longenecker, G., Veeranna, Pant, H. C., Brady, R. O., Martin, L. J., and Kulkarni, A. B. (1996). Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc Natl Acad Sci U S A 93, 11173–11178.

    Google Scholar 

  • Otth, C., Concha, II, Arendt, T., Stieler, J., Schliebs, R., Gonzalez-Billault, C., and Maccioni, R. B. (2002). AbetaPP induces cdk5-dependent tau hyperphosphorylation in transgenic mice Tg2576. J Alzheimers Dis 4, 417–430.

    PubMed  CAS  Google Scholar 

  • Patel, L. S., Wenzel, H. J., and Schwartzkroin, P. A. (2004). Physiological and morphological characterization of dentate granule cells in the p35 knock-out mouse hippocampus: evidence for an epileptic circuit. J Neurosci 24, 9005–9014.

    PubMed  CAS  Google Scholar 

  • Patrick, G. N., Zhou, P., Kwon, Y. T., Howley, P. M., and Tsai, L. H. (1998). p35, the neuronal-specific activator of cyclin-dependent kinase 5 (Cdk5) is degraded by the ubiquitin-proteasome pathway. J Biol Chem 273, 24057–24064.

    PubMed  CAS  Google Scholar 

  • Patrick, G. N., Zukerberg, L., Nikolic, M., de la Monte, S., Dikkes, P., and Tsai, L. H. (1999). Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402, 615–622.

    PubMed  CAS  Google Scholar 

  • Patzke, H., Maddineni, U., Ayala, R., Morabito, M., Volker, J., Dikkes, P., Ahlijanian, M. K., and Tsai, L. H. (2003). Partial rescue of the p35-/- brain phenotype by low expression of a neuronal-specific enolase p25 transgene. J Neurosci 23, 2769–2778.

    PubMed  CAS  Google Scholar 

  • Perez-Moreno, M., Jamora, C., and Fuchs, E. (2003). Sticky business: orchestrating cellular signals at adherens junctions. Cell 112, 535–548.

    PubMed  CAS  Google Scholar 

  • Qu, D., Rashidian, J., Mount, M. P., Aleyasin, H., Parsanejad, M., Lira, A., Haque, E., Zhang, Y., Callaghan, S., Daigle, M., et al. (2007). Role of Cdk5-mediated phosphorylation of Prx2 in MPTP toxicity and Parkinson's disease. Neuron 55, 37–52.

    PubMed  CAS  Google Scholar 

  • Rademakers, R., Sleegers, K., Theuns, J., Van den Broeck, M., Bel Kacem, S., Nilsson, L. G., Adolfsson, R., van Duijn, C. M., Van Broeckhoven, C., and Cruts, M. (2005). Association of cyclin-dependent kinase 5 and neuronal activators p35 and p39 complex in early-onset Alzheimer's disease. Neurobiol Aging 8, 1145–1151.

    Google Scholar 

  • Radulovic, J., Kammermeier, J., and Spiess, J. (1998). Relationship between fos production and classical fear conditioning: effects of novelty, latent inhibition, and unconditioned stimulus preexposure. J Neurosci 18, 7452–7461.

    PubMed  CAS  Google Scholar 

  • Rashid, T., Banerjee, M., and Nikolic, M. (2001). Phosphorylation of Pak1 by the p35/Cdk5 kinase affects neuronal morphology. J Biol Chem 276, 49043–49052.

    PubMed  CAS  Google Scholar 

  • Ris, L., Angelo, M., Plattner, F., Capron, B., Errington, M. L., Bliss, T. V., Godaux, E., and Giese, K. P. (2005). Sexual dimorphisms in the effect of low-level p25 expression on synaptic plasticity and memory. Eur J Neurosci 21, 3023–3033.

    PubMed  CAS  Google Scholar 

  • Roberson, E. D., and Sweatt, J. D. (1999). A biochemical blueprint for long-term memory. Learn Mem 6, 399–416.

    Google Scholar 

  • Sananbenesi, F., Fischer, A., Wang, X., Schrick, C., Neve, R., Radulovic, J., and Tsai, L. H. (2007). A hippocampal Cdk5 pathway regulates extinction of contextual fear. Nat Neurosci 10, 1012–1019.

    PubMed  CAS  Google Scholar 

  • Saura, C. A., Choi, S. Y., Beglopoulos, V., Malkani, S., Zhang, D., Shankaranarayana Rao, B. S., Chattarji, S., Kelleher, R. J., 3rd, Kandel, E. R., Duff, K., et al. (2004). Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Neuron 42, 23–36.

    PubMed  CAS  Google Scholar 

  • Scheff, S. (2003). Reactive synaptogenesis in aging and Alzheimer's disease: lessons learned in the Cotman laboratory. Neurochem Res 11, 1625–1630.

    Google Scholar 

  • Scheff, S. W., and Price, D. A. (2006). Alzheimer's disease-related alterations in synaptic density: neocortex and hippocampus. J Alzheimers Dis 9, 101–115.

    PubMed  Google Scholar 

  • Schuman, E. M., and Murase, S. (2003). Adherins and synaptic plasticity: activity-dependent cyclin-dependent kinase 5 regulation of synaptic beta-catenin-cadherin interactions. Philos Trans R Soc Lond B Biol Sci 358, 749–756.

    PubMed  CAS  Google Scholar 

  • Scoville, W. B., and Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Neuropsychiatry Clin Neurosci 2000 (classical article) 1, 103–113.

    Google Scholar 

  • Selcher, J. C., Weeber, E. J., Varga, A. W., Sweatt, J. D., and Swank, M. (2002). Protein kinase signal transduction cascades in mammalian associative conditioning. Neuroscientist 8, 122–131.

    PubMed  CAS  Google Scholar 

  • Sen, A., Thom, M., Martinian, L., Jacobs, T., Nikolic, M., and Sisodiya, S. M. (2006). Deregulation of cdk5 in Hippocampal sclerosis. J Neuropathol Exp Neurol 65, 55–66.

    PubMed  CAS  Google Scholar 

  • Sen, A., Thom, M., Martinian, L., Yogarajah, M., Nikolic, M., and Sisodiya, S. M. (2007). Increased immunoreactivity of cdk5 activators in hippocampal sclerosis. Neuroreport 18, 511–516.

    PubMed  CAS  Google Scholar 

  • Shalizi, A., Gaudilliere, B., Yuan, Z., Stegmuller, J., Shirogane, T., Ge, Q., Tan, Y., Schulman, B., Harper, J. W., and Bonni, A. (2006). A calcium-regulated MEF2 sumoylation switch controls postsynaptic differentiation. Science 311, 1012–1017.

    PubMed  CAS  Google Scholar 

  • Shimizu, K., Phan, T., Mansuy, I. M., and Storm, D. R. (2007). Proteolytic degradation of SCOP in the hippocampus contributes to activation of MAP kinase and memory. Cell 128, 1219–1229.

    PubMed  CAS  Google Scholar 

  • Shuang, R., Zhang, L., Fletcher, A., Groblewski, G. E., Pevsner, J., and Stuenkel, E. L. (1998). Regulation of Munc-18/syntaxin 1A interaction by cyclin-dependent kinase 5 in nerve endings. J Biol Chem 273, 4957–4966.

    PubMed  CAS  Google Scholar 

  • Silva, A. J., Paylor, R., Wehner, J. M., and Tonegawa, S. (1992). Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice. Science 257, 206–211.

    PubMed  CAS  Google Scholar 

  • Smith, P. D., Crocker, S. J., Jackson-Lewis, V., Jordan-Sciutto, K. L., Hayley, S., Mount, M. P., O'Hare, M. J., Callaghan, S., Slack, R. S., Przedborski, S., et al. (2004). Cyclin-dependent kinase 5 is a mediator of dopaminergic neuron loss in a mouse model of Parkinson's disease. Proc Natl Acad Sci U S A 100, 13650–13655.

    Google Scholar 

  • Smith, P. D., Mount, M. P., Shree, R., Callaghan, S., Slack, R. S., Anisman, H., Vincent, I., Wang, X., Mao, Z., and Park, D. S. (2006). Calpain-regulated p35/cdk5 plays a central role in dopaminergic neuron death through modulation of the transcription factor myocyte enhancer factor 2. J Neurosci 26, 440–447.

    PubMed  CAS  Google Scholar 

  • Soriano, S., Kang, D. E., Fu, M., Pestell, R., Chevallier, N., Zheng, H., and Koo, E. H. (2001). Presenilin 1 negatively regulates beta-catenin/T cell factor/lymphoid enhancer factor-1 signaling independently of beta-amyloid precursor protein and notch processing. J Cell Biol 152, 785–794.

    PubMed  CAS  Google Scholar 

  • Spires, T. L., and Hannan, A. J. (2007). Molecular mechanisms mediating pathological plasticity in Huntington's disease and Alzheimer's disease. J Neurochem 100, 874–882.

    PubMed  CAS  Google Scholar 

  • Swatton, J. E., Sellers, L. A., Faull, R. L., Holland, A., Iritani, S., and Bahn, S. (2004). Increased MAP kinase activity in Alzheimer's and Down syndrome but not in schizophrenia human brain. Eur J Neurosci 19, 2711–2719.

    PubMed  Google Scholar 

  • Tan, T. C., Valova, V. A., Malladi, C. S., Graham, M. E., Berven, L. A., Jupp, O. J., Hansra, G., McClure, S. J., Sarcevic, B., Boadle, R. A., et al. (2003). Cdk5 is essential for synaptic vesicle endocytosis. Nat Cell Biol 5, 701–710.

    PubMed  CAS  Google Scholar 

  • Tandon, A., Yu, H., Wang, L., Rogaeva, E., Sato, C., Chishti, M. A., Kawarai, T., Hasegawa, H., Chen, F., Davies, P., et al. (2003). Brain levels of CDK5 activator p25 are not increased in Alzheimer's or other neurodegenerative diseases with neurofibrillary tangles. J Neurochem 86, 572–583.

    PubMed  CAS  Google Scholar 

  • Taniguchi, S., Fujita, Y., Hayashi, S., Kakita, A., Takahashi, H., Murayama, S., Saido, T. C., Hisanaga, S., Iwatsubo, T., and Hasegawa, M. (2001). Calpain-mediated degradation of p35 to p25 in postmortem human and rat brains. FEBS Lett 489, 46–50.

    PubMed  CAS  Google Scholar 

  • Togashi, H., Abe, K., Mizoguchi, A., Takaoka, K., Chisaka, O., and Takeichi, M. (2002). Cadherin regulates dendritic spine morphogenesis. Neuron 35, 77–89.

    PubMed  CAS  Google Scholar 

  • Tomizawa, K., Ohta, J., Matsushita, M., Moriwaki, A., Li, S. T., Takei, K., and Matsui, H. (2002). Cdk5/p35 regulates neurotransmitter release through phosphorylation and downregulation of P/Q-type voltage-dependent calcium channel activiy. J Neurosci 22, 2590–2597.

    PubMed  CAS  Google Scholar 

  • Tomizawa, K., Sunada, S., Lu, Y. F., Oda, Y., Kinuta, M., Ohshima, T., Saito, T., Wei, F. Y., Matsushita, M., Li, S. T., et al. (2003). Cophosphorylation of amphiphysin I and dynamin I by Cdk5 regulates clathrin-mediated endocytosis of synaptic vesicles. J Cell Biol 163, 813–824.

    PubMed  CAS  Google Scholar 

  • Toth, E., Bruin, J. P., Heinsbroek, R. P., and Joosten, R. N. (1996). Spatial learning and memory in calpastatin-deficient rats. Neurobiol Learn Mem 66, 230–235.

    PubMed  CAS  Google Scholar 

  • Tsai, L. H., Lee, M. S., and Cruz, J. (2004). Cdk5, a therapeutic target for Alzheimer's disease? Biochim Biophys Acta 1697, 137–142.

    PubMed  CAS  Google Scholar 

  • Tseng, H. C., Zhou, Y., Shen, Y., and Tsai, L. H. (2002). A survey of Cdk5 activator p35 and p25 levels in Alzheimer's disease brains. FEBS Lett 523, 58–62.

    PubMed  CAS  Google Scholar 

  • Van den Haute, C., Spittaels, K., Van Dorpe, J., Lasrado, R., Vandezande, K., Laenen, I., Geerts, H., and Van Leuven, F. (2001). Coexpression of human cdk5 and its activator p35 with human protein tau in neurons in brain of triple transgenic mice. Neurobiol Dis 8, 32–44.

    PubMed  Google Scholar 

  • Wang, J., Liu, S., Fu, Y., Wang, J. H., and Lu, Y. (2003). Cdk5 activation induces hippocampal CA1 cell death by directly phosphorylating NMDA receptors. Nat Neurosci 6, 1039–1047.

    PubMed  CAS  Google Scholar 

  • Watase., K., and Zoghbi, H. Y. (2003). Modelling brain diseases in mice: the challenges of design and analysis. Nat Rev Genet 4, 296–307.

    PubMed  CAS  Google Scholar 

  • Weishaupt, J. H., Kussmaul, L., Grotsch, P., Heckel, A., Rohde, G., Romig, H., Bahr, M., and Gillardon, F. (2003). Inhibition of CDK5 is protective in necrotic and apoptotic paradigms of neuronal cell death and prevents mitochondrial dysfunction. Mol Cell Neurosci 2, 489–502.

    Google Scholar 

  • Wu, P., Shen, Q., Dong, S., Xu, Z., Tsien, J. Z., and Hu, Y. (2007). Calorie restriction ameliorates neurodegenerative phenotypes in forebrain-specific presenilin-1 and presenilin-2 double knockout mice. Neurobiol Aging Epub ahead of print.

    Google Scholar 

  • Xie, Z., Samuels, B. A., and Tsai, L. H. (2006). Cyclin-dependent kinase 5 permits efficient cytoskeletal remodeling--a hypothesis on neuronal migration. Cereb Cortex 16, 64–68.

    Google Scholar 

  • Yan, Z., Chi, P., Bibb, J. A., Ryan, T. A., and Greengard, P. (2002). Roscovitine: a novel regulator of P/Q-type calcium channels and transmitter release in central neurons. J Physiol 540, 761–770.

    PubMed  CAS  Google Scholar 

  • Yoo, B. C., and Lubec, G. (2001). p25 protein in neurodegeneration. Nature 411, 763–764; discussion 764–765.

    PubMed  Google Scholar 

  • Zhang, M., Li, J., Chakrabarty, P., Bu, B., and Vincent, I. (2004). Cyclin-dependent kinase inhibitors attenuate protein hyperphosphorylation, cytoskeletal lesion formation, and motor defects in Niemann-Pick Type C mice. Am J Pathol 165, 843–853.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Benjamin Samuals, Dr.Farahnaz Sananbenesi, Matthew Dobbin, and Jessica Wittnam for reading the manuscript and critical discussion. This work was supported by a EURYI award to AF. The ENI-Goettingen is jointly funded by the Max Planck Society and the Medical School, Georg-August University, Göttingen, Germany. L-HT is an investigator of the Howard Hughes Medical Institute, RIKEN-MIT Neuroscience Research Center, director of Neurobiology Program at Stanley Center for Psychiatric Research, Cambridge, MA, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre Fischer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fischer, A., Tsai, LH. (2008). Cyclin-Dependent Kinase 5 (Cdk5): Linking Synaptic Plasticity and Neurodegeneration. In: Ip, N.Y., Tsai, LH. (eds) Cyclin Dependent Kinase 5 (Cdk5). Springer, Boston, MA. https://doi.org/10.1007/978-0-387-78887-6_17

Download citation

Publish with us

Policies and ethics