Skip to main content

The Structural Bases of CDK5 Activity

  • 419 Accesses

Abstract

In the last 15 years, a wealth of structural investigations on protein kinases has been reported. These studies have revealed that the active states of protein kinases are usually structurally alike, a requirement imposed by the necessity to maintain the basic geometry of a highly conserved machinery required for good catalytic output. Conversely, the structures of the inactive states of kinase-family members can vary widely from each other, a principle that can be exploited to improve the specificity of kinase inhibitors. In this chapter, we discuss the activation mechanism of the CDK5 kinase within the general frame of reference of kinase activation mechanisms, and in comparison to other members of the CDK family. We explain how CDK5, not unlike other kinases, has made its own capricious decisions to design an original activation mechanism and distinguish itself from CDK-family relatives.

Keywords

  • Activation Loop
  • Substrate Recognition
  • Tyr15 Phosphorylation
  • Catalytic Cleft
  • Aurora Family Kinase

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-0-387-78887-6_14
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-0-387-78887-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Altomare, D. A., and Testa, J. R. (2005). Perturbations of the AKT signaling pathway in human cancer. Oncogene 24, 7455–7464.

    PubMed  CrossRef  CAS  Google Scholar 

  • Amin, N. D., Albers, W., and Pant, H. C. (2002). Cyclin-dependent kinase 5 (cdk5) activation requires interaction with three domains of p35. J Neurosci Res 67, 354–362.

    PubMed  CrossRef  CAS  Google Scholar 

  • Barford, D., Hu, S. H., and Johnson, L. N. (1991). Structural mechanism for glycogen phosphorylase control by phosphorylation and AMP. J Mol Biol 218, 233–260.

    PubMed  CrossRef  CAS  Google Scholar 

  • Barrett, C. P., and Noble, M. E. (2005). Molecular motions of human cyclin-dependent kinase 2. J Biol Chem 280, 13993–14005.

    PubMed  CrossRef  CAS  Google Scholar 

  • Baselga, J. (2006). Targeting tyrosine kinases in cancer: the second wave. Science 312, 1175–1178.

    PubMed  CrossRef  CAS  Google Scholar 

  • Bayliss, R., Sardon, T., Vernos, I., and Conti, E. (2003). Structural basis of Aurora-A activation by TPX2 at the mitotic spindle. Mol Cell 12, 851–862.

    PubMed  CrossRef  CAS  Google Scholar 

  • Bhattacharyya, R. P., Remenyi, A., Yeh, B. J., and Lim, W. A. (2006). Domains, motifs, and scaffolds: the role of modular interactions in the evolution and wiring of cell signaling circuits. Annu Rev Biochem 75, 655–680.

    Google Scholar 

  • Biondi, R. M., and Nebreda, A. R. (2003). Signalling specificity of Ser/Thr protein kinases through docking-site-mediated interactions. Biochem J 372, 1–13.

    PubMed  CrossRef  CAS  Google Scholar 

  • Brown, N. R., Noble, M. E., Endicott, J. A., Garman, E. F., Wakatsuki, S., Mitchell, E., Rasmussen, B., Hunt, T., and Johnson, L. N. (1995). The crystal structure of cyclin A. Structure 3, 1235–1247.

    PubMed  CrossRef  CAS  Google Scholar 

  • Brown, N. R., Noble, M. E., Endicott, J. A., and Johnson, L. N. (1999a). The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nat Cell Biol 1, 438–443.

    CrossRef  CAS  Google Scholar 

  • Brown, N. R., Noble, M. E., Lawrie, A. M., Morris, M. C., Tunnah, P., Divita, G., Johnson, L. N., and Endicott, J. A. (1999b). Effects of phosphorylation of threonine 160 on cyclin-dependent kinase 2 structure and activity. J Biol Chem 274, 8746–8756.

    CrossRef  CAS  Google Scholar 

  • Canagarajah, B. J., Khokhlatchev, A., Cobb, M. H., and Goldsmith, E. J. (1997). Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell 90, 859–869.

    PubMed  CrossRef  CAS  Google Scholar 

  • Cheek, S., Ginalski, K., Zhang, H., and Grishin, N. V. (2005). A comprehensive update of the sequence and structure classification of kinases. BMC Struct Biol 5, 6.

    Google Scholar 

  • Chou, K. C., Watenpaugh, K. D., and Heinrikson, R. L. (1999). A model of the complex between cyclin-dependent kinase 5 and the activation domain of neuronal Cdk5 activator. Biochem Biophys Res Commun 259, 420–428.

    PubMed  CrossRef  CAS  Google Scholar 

  • Cohen, P. (2000). The regulation of protein function by multisite phosphorylation – a 25 year update. Trends Biochem Sci 25, 596–601.

    PubMed  CrossRef  CAS  Google Scholar 

  • Collins, I., and Garrett, M. D. (2005). Targeting the cell division cycle in cancer: CDK and cell cycle checkpoint kinase inhibitors. Curr Opin Pharmacol 5, 366–373.

    PubMed  CrossRef  CAS  Google Scholar 

  • Cruz, J. C., and Tsai, L. H. (2004). A Jekyll and Hyde kinase: roles for Cdk5 in brain development and disease. Curr Opin Neurobiol 14, 390–394.

    PubMed  CrossRef  CAS  Google Scholar 

  • Dai, Y., and Grant, S. (2003). Cyclin-dependent kinase inhibitors. Curr Opin Pharmacol 3, 362–370.

    PubMed  CrossRef  CAS  Google Scholar 

  • Dajani, R., Fraser, E., Roe, S. M., Young, N., Good, V., Dale, T. C., and Pearl, L. H. (2001). Crystal structure of glycogen synthase kinase 3 beta: structural basis for phosphate-primed substrate specificity and autoinhibition. Cell 105, 721–732.

    PubMed  CrossRef  CAS  Google Scholar 

  • De Bondt, H. L., Rosenblatt, J., Jancarik, J., Jones, H. D., Morgan, D. O., and Kim, S. H. (1993). Crystal structure of cyclin-dependent kinase 2. Nature 363, 595–602.

    PubMed  CrossRef  Google Scholar 

  • Dhavan, R., and Tsai, L. H. (2001). A decade of CDK5. Nat Rev Mol Cell Biol 2, 749–759.

    PubMed  CrossRef  CAS  Google Scholar 

  • Dhomen, N., and Marais, R. (2007). New insight into BRAF mutations in cancer. Curr Opin Genet Dev 17, 31–39.

    PubMed  CrossRef  CAS  Google Scholar 

  • Dinarina, A., Perez, L. H., Davila, A., Schwab, M., Hunt, T., and Nebreda, A. R. (2005). Characterization of a new family of cyclin-dependent kinase activators. Biochem J 386, 349–355.

    PubMed  CrossRef  CAS  Google Scholar 

  • Groban, E. S., Narayanan, A., and Jacobson, M. P. (2006). Conformational changes in protein loops and helices induced by post-translational phosphorylation. PLoS Comput Biol 2, e32.

    PubMed  CrossRef  Google Scholar 

  • Hagopian, J. C., Kirtley, M. P., Stevenson, L. M., Gergis, R. M., Russo, A. A., Pavletich, N. P., Parsons, S. M., and Lew, J. (2001). Kinetic basis for activation of CDK2/cyclin A by phosphorylation. J Biol Chem 276, 275–280.

    PubMed  CrossRef  CAS  Google Scholar 

  • Hanks, S. K., and Hunter, T. (1995). Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. Faseb J 9, 576–596.

    PubMed  CAS  Google Scholar 

  • Hanks, S. K., Quinn, A. M., and Hunter, T. (1988). The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241, 42–52.

    PubMed  CrossRef  CAS  Google Scholar 

  • Holmes, J. K., and Solomon, M. J. (2001). The role of Thr160 phosphorylation of Cdk2 in substrate recognition. Eur J Biochem 268, 4647–4652.

    PubMed  CrossRef  CAS  Google Scholar 

  • Honda, R., Lowe, E. D., Dubinina, E., Skamnaki, V., Cook, A., Brown, N. R., and Johnson, L. N. (2005). The structure of cyclin E1/CDK2: implications for CDK2 activation and CDK2-independent roles. Embo J 24, 452–463.

    PubMed  CrossRef  CAS  Google Scholar 

  • Hurley, J. H., Dean, A. M., Sohl, J. L., Koshland, Jr., D. E., and Stroud, R. M. (1990). Regulation of an enzyme by phosphorylation at the active site. Science 249, 1012–1016.

    PubMed  CrossRef  CAS  Google Scholar 

  • Huse, M., and Kuriyan, J. (2002). The conformational plasticity of protein kinases. Cell 109, 275–282.

    PubMed  CrossRef  CAS  Google Scholar 

  • Jeffrey, P. D., Russo, A. A., Polyak, K., Gibbs, E., Hurwitz, J., Massague, J., and Pavletich, N. P. (1995). Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 376, 313–320.

    PubMed  CrossRef  CAS  Google Scholar 

  • Jimenez, J. L., Hegemann, B., Hutchins, J. R., Peters, J. M., and Durbin, R. (2007). A systematic comparative and structural analysis of protein phosphorylation sites based on the mtcPTM database. Genome Biol 8, R90.

    PubMed  CrossRef  Google Scholar 

  • Johnson, L. N., and Barford, D. (1993). The effects of phosphorylation on the structure and function of proteins. Annu Rev Biophys Biomol Struct 22, 199–232.

    PubMed  CrossRef  CAS  Google Scholar 

  • Johnson, L. N., Noble, M. E., and Owen, D. J. (1996). Active and inactive protein kinases: structural basis for regulation. Cell 85, 149–158.

    PubMed  CrossRef  CAS  Google Scholar 

  • Johnson, S. A., and Hunter, T. (2005). Kinomics: methods for deciphering the kinome. Nat Methods 2, 17–25.

    PubMed  CrossRef  CAS  Google Scholar 

  • Kamei, H., Saito, T., Ozawa, M., Fujita, Y., Asada, A., Bibb, J. A., Saido, T. C., Sorimachi, H., and Hisanaga, S. (2007). Suppression of calpain-dependent cleavage of the CDK5 activator p35 to p25 by site-specific phosphorylation. J Biol Chem 282, 1687–1694.

    PubMed  CrossRef  CAS  Google Scholar 

  • Kannan, N., and Neuwald, A. F. (2004). Evolutionary constraints associated with functional specificity of the CMGC protein kinases MAPK, CDK, GSK, SRPK, DYRK, and CK2alpha. Protein Sci 13, 2059–2077.

    PubMed  CrossRef  CAS  Google Scholar 

  • Kannan, N., and Neuwald, A. F. (2005). Did protein kinase regulatory mechanisms evolve through elaboration of a simple structural component? J Mol Biol 351, 956–972.

    PubMed  CrossRef  CAS  Google Scholar 

  • Kannan, N., Taylor, S. S., Zhai, Y., Venter, J. C., and Manning, G. (2007). Structural and functional diversity of the microbial kinome. PLoS Biol 5, e17.

    PubMed  CrossRef  Google Scholar 

  • Knight, Z. A., and Shokat, K. M. (2005). Features of selective kinase inhibitors. Chem Biol 12, 621–637.

    PubMed  CrossRef  CAS  Google Scholar 

  • Knighton, D. R., Zheng, J. H., Ten Eyck, L. F., Ashford, V. A., Xuong, N. H., Taylor, S. S., and Sowadski, J. M. (1991a). Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253, 407–414.

    CrossRef  CAS  Google Scholar 

  • Knighton, D. R., Zheng, J. H., Ten Eyck, L. F., Xuong, N. H., Taylor, S. S., and Sowadski, J. M. (1991b). Structure of a peptide inhibitor bound to the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253, 414–420.

    CrossRef  CAS  Google Scholar 

  • Kornev, A. P., Haste, N. M., Taylor, S. S., and Eyck, L. F. (2006). Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism. Proc Natl Acad Sci USA 103, 17783–17788.

    PubMed  CrossRef  CAS  Google Scholar 

  • Kostich, M., English, J., Madison, V., Gheyas, F., Wang, L., Qiu, P., Greene, J., and Laz, T. M. (2002). Human members of the eukaryotic protein kinase family. Genome Biol 3, Research0043.

    PubMed  CrossRef  Google Scholar 

  • Lacy, E. R., Wang, Y., Post, J., Nourse, A., Webb, W., Mapelli, M., Musacchio, A., Siuzdak, G., and Kriwacki, R. W. (2005). Molecular basis for the specificity of p27 toward cyclin-dependent kinases that regulate cell division. J Mol Biol 349, 764–773.

    PubMed  CrossRef  CAS  Google Scholar 

  • Ledee, D. R., Tripathi, B. K., and Zelenka, P. S. (2007). The CDK5 activator, p39, binds specifically to myosin essential light chain. Biochem Biophys Res Commun 354, 1034–1039.

    PubMed  CrossRef  CAS  Google Scholar 

  • Lee, M. H., Nikolic, M., Baptista, C. A., Lai, E., Tsai, L. H., and Massague, J. (1996). The brain-specific activator p35 allows Cdk5 to escape inhibition by p27Kip1 in neurons. Proc Natl Acad Sci USA 93, 3259–3263.

    PubMed  CrossRef  CAS  Google Scholar 

  • Lew, J. (2003). MAP kinases and CDKs: kinetic basis for catalytic activation. Biochemistry 42, 849–856.

    PubMed  CrossRef  CAS  Google Scholar 

  • Lim, A. C., Qu, D., and Qi, R. Z. (2003). Protein-protein interactions in Cdk5 regulation and function. Neurosignals 12, 230–238.

    PubMed  CrossRef  CAS  Google Scholar 

  • Lu, K. P., Liou, Y. C., and Vincent, I. (2003). Proline-directed phosphorylation and isomerization in mitotic regulation and in Alzheimer's disease. Bioessays 25, 174–181.

    PubMed  CrossRef  CAS  Google Scholar 

  • Manning, G., Whyte, D. B., Martinez, R., Hunter, T., and Sudarsanam, S. (2002). The protein kinase complement of the human genome. Science 298, 1912–1934.

    PubMed  CrossRef  CAS  Google Scholar 

  • Mapelli, M., Massimiliano, L., Crovace, C., Seeliger, M. A., Tsai, L. H., Meijer, L., and Musacchio, A. (2005). Mechanism of CDK5/p25 binding by CDK inhibitors. J Med Chem 48, 671–679.

    PubMed  CrossRef  CAS  Google Scholar 

  • Mapelli, M., and Musacchio, A. (2003). The structural perspective on CDK5. Neurosignals 12, 164–172.

    PubMed  CrossRef  CAS  Google Scholar 

  • Meijer, L., Skaltsounis, A. L., Magiatis, P., Polychronopoulos, P., Knockaert, M., Leost, M., Ryan, X. P., Vonica, C. A., Brivanlou, A., Dajani, R., et al. (2003). GSK-3-selective inhibitors derived from Tyrian purple indirubins. Chem Biol 10, 1255–1266.

    PubMed  CrossRef  CAS  Google Scholar 

  • Miyajima, M., Nornes, H. O., and Neuman, T. (1995). Cyclin E is expressed in neurons and forms complexes with cdk5. Neuroreport 6, 1130–1132.

    PubMed  CrossRef  CAS  Google Scholar 

  • Nebreda, A. R. (2006). CDK activation by non-cyclin proteins. Curr Opin Cell Biol 18, 192–198.

    PubMed  CrossRef  CAS  Google Scholar 

  • Nishizawa, M., Kanaya, Y., and Toh, E. A. (1999). Mouse cyclin-dependent kinase (Cdk) 5 is a functional homologue of a yeast Cdk, pho85 kinase. J Biol Chem 274, 33859–33862.

    PubMed  CrossRef  CAS  Google Scholar 

  • Noble, M. E., Endicott, J. A., Brown, N. R., and Johnson, L. N. (1997). The cyclin box fold: protein recognition in cell-cycle and transcription control. Trends Biochem Sci 22, 482–487.

    PubMed  CrossRef  CAS  Google Scholar 

  • Nolen, B., Taylor, S., and Ghosh, G. (2004). Regulation of protein kinases: controlling activity through activation segment conformation. Mol Cell 15, 661–675.

    PubMed  CrossRef  CAS  Google Scholar 

  • Otyepka, M., Bartova, I., Kriz, Z., and Koca, J. (2006). Different mechanisms of CDK5 and CDK2 activation as revealed by CDK5/p25 and CDK2/cyclin A dynamics. J Biol Chem 281, 7271–7281.

    PubMed  CrossRef  CAS  Google Scholar 

  • Pavletich, N. P. (1999). Mechanisms of cyclin-dependent kinase regulation: structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors. J Mol Biol 287, 821–828.

    PubMed  CrossRef  CAS  Google Scholar 

  • Pawson, T., and Nash, P. (2003). Assembly of cell regulatory systems through protein interaction domains. Science 300, 445–452.

    PubMed  CrossRef  CAS  Google Scholar 

  • Pellicena, P., and Kuriyan, J. (2006). Protein-protein interactions in the allosteric regulation of protein kinases. Curr Opin Struct Biol 16, 702–709.

    PubMed  CrossRef  CAS  Google Scholar 

  • Polychronopoulos, P., Magiatis, P., Skaltsounis, A. L., Myrianthopoulos, V., Mikros, E., Tarricone, A., Musacchio, A., Roe, S. M., Pearl, L., Leost, M., et al. (2004). Structural basis for the synthesis of indirubins as potent and selective inhibitors of glycogen synthase kinase-3 and cyclin-dependent kinases. J Med Chem 47, 935–946.

    PubMed  CrossRef  CAS  Google Scholar 

  • Poon, R. Y., Lew, J., and Hunter, T. (1997). Identification of functional domains in the neuronal Cdk5 activator protein. J Biol Chem 272, 5703–5708.

    PubMed  CrossRef  CAS  Google Scholar 

  • Qi, Z., Huang, Q. Q., Lee, K. Y., Lew, J., and Wang, J. H. (1995). Reconstitution of neuronal Cdc2-like kinase from bacteria-expressed Cdk5 and an active fragment of the brain-specific activator. Kinase activation in the absence of Cdk5 phosphorylation. J Biol Chem 270, 10847–10854.

    PubMed  CrossRef  CAS  Google Scholar 

  • Reindl, C., and Spiekermann, K. (2006). From kinases to cancer: leakiness, loss of autoinhibition and leukemia. Cell Cycle 5, 599–602.

    PubMed  CrossRef  CAS  Google Scholar 

  • Remenyi, A., Good, M. C., and Lim, W. A. (2006). Docking interactions in protein kinase and phosphatase networks. Curr Opin Struct Biol 16, 676–685.

    PubMed  CrossRef  CAS  Google Scholar 

  • Russo, A. A., Jeffrey, P. D., Patten, A. K., Massague, J., and Pavletich, N. P. (1996a). Crystal structure of the p27Kip1 cyclin-dependent-kinase inhibitor bound to the cyclin A-Cdk2 complex. Nature 382, 325–331.

    CrossRef  CAS  Google Scholar 

  • Russo, A. A., Jeffrey, P. D., and Pavletich, N. P. (1996b). Structural basis of cyclin-dependent kinase activation by phosphorylation. Nat Struct Biol 3, 696–700.

    CrossRef  CAS  Google Scholar 

  • Scheeff, E. D., and Bourne, P. E. (2005). Structural evolution of the protein kinase-like superfamily. PLoS Comput Biol 1, e49.

    PubMed  CrossRef  Google Scholar 

  • Schindler, T., Bornmann, W., Pellicena, P., Miller, W. T., Clarkson, B., and Kuriyan, J. (2000). Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 289, 1938–1942.

    PubMed  CrossRef  CAS  Google Scholar 

  • Schulman, B. A., Lindstrom, D. L., and Harlow, E. (1998). Substrate recruitment to cyclin-dependent kinase 2 by a multipurpose docking site on cyclin A. Proc Natl Acad Sci USA 95, 10453–10458.

    PubMed  CrossRef  CAS  Google Scholar 

  • Schulze-Gahmen, U., and Kim, S. H. (2002). Structural basis for CDK6 activation by a virus-encoded cyclin. Nat Struct Biol 9, 177–181.

    PubMed  CAS  Google Scholar 

  • Seet, B. T., Dikic, I., Zhou, M. M., and Pawson, T. (2006). Reading protein modifications with interaction domains. Nat Rev Mol Cell Biol 7, 473–483.

    PubMed  CrossRef  CAS  Google Scholar 

  • Serber, Z., and Ferrell, Jr., J. E. (2007). Tuning bulk electrostatics to regulate protein function. Cell 128, 441–444.

    PubMed  CrossRef  CAS  Google Scholar 

  • Sessa, F., Mapelli, M., Ciferri, C., Tarricone, C., Areces, L. B., Schneider, T. R., Stukenberg, P. T., and Musacchio, A. (2005). Mechanism of Aurora B activation by INCENP and inhibition by hesperadin. Mol Cell 18, 379–391.

    PubMed  CrossRef  CAS  Google Scholar 

  • Sharma, P., Sharma, M., Amin, N. D., Albers, R. W., and Pant, H. C. (1999). Regulation of cyclin-dependent kinase 5 catalytic activity by phosphorylation. Proc Natl Acad Sci USA 96, 11156–11160.

    PubMed  CrossRef  CAS  Google Scholar 

  • Sim, K. L., and Creamer, T. P. (2002). Abundance and distributions of eukaryote protein simple sequences. Mol Cell Proteomics 1, 983–995.

    PubMed  CrossRef  CAS  Google Scholar 

  • Solomon, M. J., and Kaldis, P. (1998). Regulation of CDKs by phosphorylation. Results Probl Cell Differ 22, 79–109.

    PubMed  CAS  Google Scholar 

  • Sridhar, J., Akula, N., and Pattabiraman, N. (2006). Selectivity and potency of cyclin-dependent kinase inhibitors. Aaps J 8, E204–221.

    PubMed  CrossRef  CAS  Google Scholar 

  • Takizawa, C. G., and Morgan, D. O. (2000). Control of mitosis by changes in the subcellular location of cyclin-B1-Cdk1 and Cdc25C. Curr Opin Cell Biol 12, 658–665.

    PubMed  CrossRef  CAS  Google Scholar 

  • Tan, E. K., and Skipper, L. M. (2007). Pathogenic mutations in Parkinson disease. Hum Mutat 28, 641–653.

    PubMed  CrossRef  CAS  Google Scholar 

  • Tang, D., Yeung, J., Lee, K. Y., Matsushita, M., Matsui, H., Tomizawa, K., Hatase, O., and Wang, J. H. (1995). An isoform of the neuronal cyclin-dependent kinase 5 (Cdk5) activator. J Biol Chem 270, 26897–26903.

    PubMed  CrossRef  CAS  Google Scholar 

  • Tarricone, C., Dhavan, R., Peng, J., Areces, L. B., Tsai, L., and Musacchio, A. (2001). Structure and regulation of the cdk5-p25(nck5a) complex. Mol Cell 8, 657–669.

    PubMed  CrossRef  CAS  Google Scholar 

  • ter Haar, E., Coll, J. T., Austen, D. A., Hsiao, H. M., Swenson, L., and Jain, J. (2001). Structure of GSK3beta reveals a primed phosphorylation mechanism. Nat Struct Biol 8, 593–596.

    PubMed  CrossRef  Google Scholar 

  • Ubersax, J. A., and Ferrell, Jr., J. E. (2007). Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol 8, 530–541.

    PubMed  CrossRef  CAS  Google Scholar 

  • Welburn, J. P., Tucker, J. A., Johnson, T., Lindert, L., Morgan, M., Willis, A., Noble, M. E., and Endicott, J. A. (2007). How tyrosine 15 phosphorylation inhibits the activity of cyclin-dependent kinase 2-cyclin A. J Biol Chem 282, 3173–3181.

    PubMed  CrossRef  CAS  Google Scholar 

  • Wood-Kaczmar, A., Gandhi, S., and Wood, N. W. (2006). Understanding the molecular causes of Parkinson's disease. Trends Mol Med 12, 521–528.

    PubMed  CrossRef  CAS  Google Scholar 

  • Xiong, Y., Zhang, H., and Beach, D. (1992). D type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA. Cell 71, 505–514.

    PubMed  CrossRef  CAS  Google Scholar 

  • Yaffe, M. B., and Smerdon, S. J. (2004). The use of in vitro peptide-library screens in the analysis of phosphoserine/threonine-binding domain structure and function. Annu Rev Biophys Biomol Struct 33, 225–244.

    PubMed  CrossRef  CAS  Google Scholar 

  • Zhang, B. F., Peng, F. F., Zhang, J. Z., and Wu, D. C. (2003). Staurosporine induces apoptosis in NG108-15 cells. Acta Pharmacol Sin 24, 663–669.

    PubMed  CAS  Google Scholar 

  • Zhang, F., Strand, A., Robbins, D., Cobb, M. H., and Goldsmith, E. J. (1994). Atomic structure of the MAP kinase ERK2 at 2.3 A resolution. Nature 367, 704–711.

    PubMed  CrossRef  CAS  Google Scholar 

  • Zheng, Y. L., Kesavapany, S., Gravell, M., Hamilton, R. S., Schubert, M., Amin, N., Albers, W., Grant, P., and Pant, H. C. (2005). A Cdk5 inhibitory peptide reduces tau hyperphosphorylation and apoptosis in neurons. Embo J 24, 209–220.

    PubMed  CrossRef  CAS  Google Scholar 

  • Zukerberg, L. R., Patrick, G. N., Nikolic, M., Humbert, S., Wu, C. L., Lanier, L. M., Gertler, F. B., Vidal, M., Van Etten, R. A., and Tsai, L. H. (2000). Cables links Cdk5 and c-Abl and facilitates Cdk5 tyrosine phosphorylation, kinase upregulation, and neurite outgrowth. Neuron 26, 633–646.

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Musacchio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Musacchio, A. (2008). The Structural Bases of CDK5 Activity. In: Ip, N.Y., Tsai, LH. (eds) Cyclin Dependent Kinase 5 (Cdk5). Springer, Boston, MA. https://doi.org/10.1007/978-0-387-78887-6_14

Download citation