Altomare, D. A., and Testa, J. R. (2005). Perturbations of the AKT signaling pathway in human cancer. Oncogene 24, 7455–7464.
PubMed
CrossRef
CAS
Google Scholar
Amin, N. D., Albers, W., and Pant, H. C. (2002). Cyclin-dependent kinase 5 (cdk5) activation requires interaction with three domains of p35. J Neurosci Res 67, 354–362.
PubMed
CrossRef
CAS
Google Scholar
Barford, D., Hu, S. H., and Johnson, L. N. (1991). Structural mechanism for glycogen phosphorylase control by phosphorylation and AMP. J Mol Biol 218, 233–260.
PubMed
CrossRef
CAS
Google Scholar
Barrett, C. P., and Noble, M. E. (2005). Molecular motions of human cyclin-dependent kinase 2. J Biol Chem 280, 13993–14005.
PubMed
CrossRef
CAS
Google Scholar
Baselga, J. (2006). Targeting tyrosine kinases in cancer: the second wave. Science 312, 1175–1178.
PubMed
CrossRef
CAS
Google Scholar
Bayliss, R., Sardon, T., Vernos, I., and Conti, E. (2003). Structural basis of Aurora-A activation by TPX2 at the mitotic spindle. Mol Cell 12, 851–862.
PubMed
CrossRef
CAS
Google Scholar
Bhattacharyya, R. P., Remenyi, A., Yeh, B. J., and Lim, W. A. (2006). Domains, motifs, and scaffolds: the role of modular interactions in the evolution and wiring of cell signaling circuits. Annu Rev Biochem 75, 655–680.
Google Scholar
Biondi, R. M., and Nebreda, A. R. (2003). Signalling specificity of Ser/Thr protein kinases through docking-site-mediated interactions. Biochem J 372, 1–13.
PubMed
CrossRef
CAS
Google Scholar
Brown, N. R., Noble, M. E., Endicott, J. A., Garman, E. F., Wakatsuki, S., Mitchell, E., Rasmussen, B., Hunt, T., and Johnson, L. N. (1995). The crystal structure of cyclin A. Structure 3, 1235–1247.
PubMed
CrossRef
CAS
Google Scholar
Brown, N. R., Noble, M. E., Endicott, J. A., and Johnson, L. N. (1999a). The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nat Cell Biol 1, 438–443.
CrossRef
CAS
Google Scholar
Brown, N. R., Noble, M. E., Lawrie, A. M., Morris, M. C., Tunnah, P., Divita, G., Johnson, L. N., and Endicott, J. A. (1999b). Effects of phosphorylation of threonine 160 on cyclin-dependent kinase 2 structure and activity. J Biol Chem 274, 8746–8756.
CrossRef
CAS
Google Scholar
Canagarajah, B. J., Khokhlatchev, A., Cobb, M. H., and Goldsmith, E. J. (1997). Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell 90, 859–869.
PubMed
CrossRef
CAS
Google Scholar
Cheek, S., Ginalski, K., Zhang, H., and Grishin, N. V. (2005). A comprehensive update of the sequence and structure classification of kinases. BMC Struct Biol 5, 6.
Google Scholar
Chou, K. C., Watenpaugh, K. D., and Heinrikson, R. L. (1999). A model of the complex between cyclin-dependent kinase 5 and the activation domain of neuronal Cdk5 activator. Biochem Biophys Res Commun 259, 420–428.
PubMed
CrossRef
CAS
Google Scholar
Cohen, P. (2000). The regulation of protein function by multisite phosphorylation – a 25 year update. Trends Biochem Sci 25, 596–601.
PubMed
CrossRef
CAS
Google Scholar
Collins, I., and Garrett, M. D. (2005). Targeting the cell division cycle in cancer: CDK and cell cycle checkpoint kinase inhibitors. Curr Opin Pharmacol 5, 366–373.
PubMed
CrossRef
CAS
Google Scholar
Cruz, J. C., and Tsai, L. H. (2004). A Jekyll and Hyde kinase: roles for Cdk5 in brain development and disease. Curr Opin Neurobiol 14, 390–394.
PubMed
CrossRef
CAS
Google Scholar
Dai, Y., and Grant, S. (2003). Cyclin-dependent kinase inhibitors. Curr Opin Pharmacol 3, 362–370.
PubMed
CrossRef
CAS
Google Scholar
Dajani, R., Fraser, E., Roe, S. M., Young, N., Good, V., Dale, T. C., and Pearl, L. H. (2001). Crystal structure of glycogen synthase kinase 3 beta: structural basis for phosphate-primed substrate specificity and autoinhibition. Cell 105, 721–732.
PubMed
CrossRef
CAS
Google Scholar
De Bondt, H. L., Rosenblatt, J., Jancarik, J., Jones, H. D., Morgan, D. O., and Kim, S. H. (1993). Crystal structure of cyclin-dependent kinase 2. Nature 363, 595–602.
PubMed
CrossRef
Google Scholar
Dhavan, R., and Tsai, L. H. (2001). A decade of CDK5. Nat Rev Mol Cell Biol 2, 749–759.
PubMed
CrossRef
CAS
Google Scholar
Dhomen, N., and Marais, R. (2007). New insight into BRAF mutations in cancer. Curr Opin Genet Dev 17, 31–39.
PubMed
CrossRef
CAS
Google Scholar
Dinarina, A., Perez, L. H., Davila, A., Schwab, M., Hunt, T., and Nebreda, A. R. (2005). Characterization of a new family of cyclin-dependent kinase activators. Biochem J 386, 349–355.
PubMed
CrossRef
CAS
Google Scholar
Groban, E. S., Narayanan, A., and Jacobson, M. P. (2006). Conformational changes in protein loops and helices induced by post-translational phosphorylation. PLoS Comput Biol 2, e32.
PubMed
CrossRef
Google Scholar
Hagopian, J. C., Kirtley, M. P., Stevenson, L. M., Gergis, R. M., Russo, A. A., Pavletich, N. P., Parsons, S. M., and Lew, J. (2001). Kinetic basis for activation of CDK2/cyclin A by phosphorylation. J Biol Chem 276, 275–280.
PubMed
CrossRef
CAS
Google Scholar
Hanks, S. K., and Hunter, T. (1995). Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. Faseb J 9, 576–596.
PubMed
CAS
Google Scholar
Hanks, S. K., Quinn, A. M., and Hunter, T. (1988). The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241, 42–52.
PubMed
CrossRef
CAS
Google Scholar
Holmes, J. K., and Solomon, M. J. (2001). The role of Thr160 phosphorylation of Cdk2 in substrate recognition. Eur J Biochem 268, 4647–4652.
PubMed
CrossRef
CAS
Google Scholar
Honda, R., Lowe, E. D., Dubinina, E., Skamnaki, V., Cook, A., Brown, N. R., and Johnson, L. N. (2005). The structure of cyclin E1/CDK2: implications for CDK2 activation and CDK2-independent roles. Embo J 24, 452–463.
PubMed
CrossRef
CAS
Google Scholar
Hurley, J. H., Dean, A. M., Sohl, J. L., Koshland, Jr., D. E., and Stroud, R. M. (1990). Regulation of an enzyme by phosphorylation at the active site. Science 249, 1012–1016.
PubMed
CrossRef
CAS
Google Scholar
Huse, M., and Kuriyan, J. (2002). The conformational plasticity of protein kinases. Cell 109, 275–282.
PubMed
CrossRef
CAS
Google Scholar
Jeffrey, P. D., Russo, A. A., Polyak, K., Gibbs, E., Hurwitz, J., Massague, J., and Pavletich, N. P. (1995). Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 376, 313–320.
PubMed
CrossRef
CAS
Google Scholar
Jimenez, J. L., Hegemann, B., Hutchins, J. R., Peters, J. M., and Durbin, R. (2007). A systematic comparative and structural analysis of protein phosphorylation sites based on the mtcPTM database. Genome Biol 8, R90.
PubMed
CrossRef
Google Scholar
Johnson, L. N., and Barford, D. (1993). The effects of phosphorylation on the structure and function of proteins. Annu Rev Biophys Biomol Struct 22, 199–232.
PubMed
CrossRef
CAS
Google Scholar
Johnson, L. N., Noble, M. E., and Owen, D. J. (1996). Active and inactive protein kinases: structural basis for regulation. Cell 85, 149–158.
PubMed
CrossRef
CAS
Google Scholar
Johnson, S. A., and Hunter, T. (2005). Kinomics: methods for deciphering the kinome. Nat Methods 2, 17–25.
PubMed
CrossRef
CAS
Google Scholar
Kamei, H., Saito, T., Ozawa, M., Fujita, Y., Asada, A., Bibb, J. A., Saido, T. C., Sorimachi, H., and Hisanaga, S. (2007). Suppression of calpain-dependent cleavage of the CDK5 activator p35 to p25 by site-specific phosphorylation. J Biol Chem 282, 1687–1694.
PubMed
CrossRef
CAS
Google Scholar
Kannan, N., and Neuwald, A. F. (2004). Evolutionary constraints associated with functional specificity of the CMGC protein kinases MAPK, CDK, GSK, SRPK, DYRK, and CK2alpha. Protein Sci 13, 2059–2077.
PubMed
CrossRef
CAS
Google Scholar
Kannan, N., and Neuwald, A. F. (2005). Did protein kinase regulatory mechanisms evolve through elaboration of a simple structural component? J Mol Biol 351, 956–972.
PubMed
CrossRef
CAS
Google Scholar
Kannan, N., Taylor, S. S., Zhai, Y., Venter, J. C., and Manning, G. (2007). Structural and functional diversity of the microbial kinome. PLoS Biol 5, e17.
PubMed
CrossRef
Google Scholar
Knight, Z. A., and Shokat, K. M. (2005). Features of selective kinase inhibitors. Chem Biol 12, 621–637.
PubMed
CrossRef
CAS
Google Scholar
Knighton, D. R., Zheng, J. H., Ten Eyck, L. F., Ashford, V. A., Xuong, N. H., Taylor, S. S., and Sowadski, J. M. (1991a). Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253, 407–414.
CrossRef
CAS
Google Scholar
Knighton, D. R., Zheng, J. H., Ten Eyck, L. F., Xuong, N. H., Taylor, S. S., and Sowadski, J. M. (1991b). Structure of a peptide inhibitor bound to the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253, 414–420.
CrossRef
CAS
Google Scholar
Kornev, A. P., Haste, N. M., Taylor, S. S., and Eyck, L. F. (2006). Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism. Proc Natl Acad Sci USA 103, 17783–17788.
PubMed
CrossRef
CAS
Google Scholar
Kostich, M., English, J., Madison, V., Gheyas, F., Wang, L., Qiu, P., Greene, J., and Laz, T. M. (2002). Human members of the eukaryotic protein kinase family. Genome Biol 3, Research0043.
PubMed
CrossRef
Google Scholar
Lacy, E. R., Wang, Y., Post, J., Nourse, A., Webb, W., Mapelli, M., Musacchio, A., Siuzdak, G., and Kriwacki, R. W. (2005). Molecular basis for the specificity of p27 toward cyclin-dependent kinases that regulate cell division. J Mol Biol 349, 764–773.
PubMed
CrossRef
CAS
Google Scholar
Ledee, D. R., Tripathi, B. K., and Zelenka, P. S. (2007). The CDK5 activator, p39, binds specifically to myosin essential light chain. Biochem Biophys Res Commun 354, 1034–1039.
PubMed
CrossRef
CAS
Google Scholar
Lee, M. H., Nikolic, M., Baptista, C. A., Lai, E., Tsai, L. H., and Massague, J. (1996). The brain-specific activator p35 allows Cdk5 to escape inhibition by p27Kip1 in neurons. Proc Natl Acad Sci USA 93, 3259–3263.
PubMed
CrossRef
CAS
Google Scholar
Lew, J. (2003). MAP kinases and CDKs: kinetic basis for catalytic activation. Biochemistry 42, 849–856.
PubMed
CrossRef
CAS
Google Scholar
Lim, A. C., Qu, D., and Qi, R. Z. (2003). Protein-protein interactions in Cdk5 regulation and function. Neurosignals 12, 230–238.
PubMed
CrossRef
CAS
Google Scholar
Lu, K. P., Liou, Y. C., and Vincent, I. (2003). Proline-directed phosphorylation and isomerization in mitotic regulation and in Alzheimer's disease. Bioessays 25, 174–181.
PubMed
CrossRef
CAS
Google Scholar
Manning, G., Whyte, D. B., Martinez, R., Hunter, T., and Sudarsanam, S. (2002). The protein kinase complement of the human genome. Science 298, 1912–1934.
PubMed
CrossRef
CAS
Google Scholar
Mapelli, M., Massimiliano, L., Crovace, C., Seeliger, M. A., Tsai, L. H., Meijer, L., and Musacchio, A. (2005). Mechanism of CDK5/p25 binding by CDK inhibitors. J Med Chem 48, 671–679.
PubMed
CrossRef
CAS
Google Scholar
Mapelli, M., and Musacchio, A. (2003). The structural perspective on CDK5. Neurosignals 12, 164–172.
PubMed
CrossRef
CAS
Google Scholar
Meijer, L., Skaltsounis, A. L., Magiatis, P., Polychronopoulos, P., Knockaert, M., Leost, M., Ryan, X. P., Vonica, C. A., Brivanlou, A., Dajani, R., et al. (2003). GSK-3-selective inhibitors derived from Tyrian purple indirubins. Chem Biol 10, 1255–1266.
PubMed
CrossRef
CAS
Google Scholar
Miyajima, M., Nornes, H. O., and Neuman, T. (1995). Cyclin E is expressed in neurons and forms complexes with cdk5. Neuroreport 6, 1130–1132.
PubMed
CrossRef
CAS
Google Scholar
Nebreda, A. R. (2006). CDK activation by non-cyclin proteins. Curr Opin Cell Biol 18, 192–198.
PubMed
CrossRef
CAS
Google Scholar
Nishizawa, M., Kanaya, Y., and Toh, E. A. (1999). Mouse cyclin-dependent kinase (Cdk) 5 is a functional homologue of a yeast Cdk, pho85 kinase. J Biol Chem 274, 33859–33862.
PubMed
CrossRef
CAS
Google Scholar
Noble, M. E., Endicott, J. A., Brown, N. R., and Johnson, L. N. (1997). The cyclin box fold: protein recognition in cell-cycle and transcription control. Trends Biochem Sci 22, 482–487.
PubMed
CrossRef
CAS
Google Scholar
Nolen, B., Taylor, S., and Ghosh, G. (2004). Regulation of protein kinases: controlling activity through activation segment conformation. Mol Cell 15, 661–675.
PubMed
CrossRef
CAS
Google Scholar
Otyepka, M., Bartova, I., Kriz, Z., and Koca, J. (2006). Different mechanisms of CDK5 and CDK2 activation as revealed by CDK5/p25 and CDK2/cyclin A dynamics. J Biol Chem 281, 7271–7281.
PubMed
CrossRef
CAS
Google Scholar
Pavletich, N. P. (1999). Mechanisms of cyclin-dependent kinase regulation: structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors. J Mol Biol 287, 821–828.
PubMed
CrossRef
CAS
Google Scholar
Pawson, T., and Nash, P. (2003). Assembly of cell regulatory systems through protein interaction domains. Science 300, 445–452.
PubMed
CrossRef
CAS
Google Scholar
Pellicena, P., and Kuriyan, J. (2006). Protein-protein interactions in the allosteric regulation of protein kinases. Curr Opin Struct Biol 16, 702–709.
PubMed
CrossRef
CAS
Google Scholar
Polychronopoulos, P., Magiatis, P., Skaltsounis, A. L., Myrianthopoulos, V., Mikros, E., Tarricone, A., Musacchio, A., Roe, S. M., Pearl, L., Leost, M., et al. (2004). Structural basis for the synthesis of indirubins as potent and selective inhibitors of glycogen synthase kinase-3 and cyclin-dependent kinases. J Med Chem 47, 935–946.
PubMed
CrossRef
CAS
Google Scholar
Poon, R. Y., Lew, J., and Hunter, T. (1997). Identification of functional domains in the neuronal Cdk5 activator protein. J Biol Chem 272, 5703–5708.
PubMed
CrossRef
CAS
Google Scholar
Qi, Z., Huang, Q. Q., Lee, K. Y., Lew, J., and Wang, J. H. (1995). Reconstitution of neuronal Cdc2-like kinase from bacteria-expressed Cdk5 and an active fragment of the brain-specific activator. Kinase activation in the absence of Cdk5 phosphorylation. J Biol Chem 270, 10847–10854.
PubMed
CrossRef
CAS
Google Scholar
Reindl, C., and Spiekermann, K. (2006). From kinases to cancer: leakiness, loss of autoinhibition and leukemia. Cell Cycle 5, 599–602.
PubMed
CrossRef
CAS
Google Scholar
Remenyi, A., Good, M. C., and Lim, W. A. (2006). Docking interactions in protein kinase and phosphatase networks. Curr Opin Struct Biol 16, 676–685.
PubMed
CrossRef
CAS
Google Scholar
Russo, A. A., Jeffrey, P. D., Patten, A. K., Massague, J., and Pavletich, N. P. (1996a). Crystal structure of the p27Kip1 cyclin-dependent-kinase inhibitor bound to the cyclin A-Cdk2 complex. Nature 382, 325–331.
CrossRef
CAS
Google Scholar
Russo, A. A., Jeffrey, P. D., and Pavletich, N. P. (1996b). Structural basis of cyclin-dependent kinase activation by phosphorylation. Nat Struct Biol 3, 696–700.
CrossRef
CAS
Google Scholar
Scheeff, E. D., and Bourne, P. E. (2005). Structural evolution of the protein kinase-like superfamily. PLoS Comput Biol 1, e49.
PubMed
CrossRef
Google Scholar
Schindler, T., Bornmann, W., Pellicena, P., Miller, W. T., Clarkson, B., and Kuriyan, J. (2000). Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 289, 1938–1942.
PubMed
CrossRef
CAS
Google Scholar
Schulman, B. A., Lindstrom, D. L., and Harlow, E. (1998). Substrate recruitment to cyclin-dependent kinase 2 by a multipurpose docking site on cyclin A. Proc Natl Acad Sci USA 95, 10453–10458.
PubMed
CrossRef
CAS
Google Scholar
Schulze-Gahmen, U., and Kim, S. H. (2002). Structural basis for CDK6 activation by a virus-encoded cyclin. Nat Struct Biol 9, 177–181.
PubMed
CAS
Google Scholar
Seet, B. T., Dikic, I., Zhou, M. M., and Pawson, T. (2006). Reading protein modifications with interaction domains. Nat Rev Mol Cell Biol 7, 473–483.
PubMed
CrossRef
CAS
Google Scholar
Serber, Z., and Ferrell, Jr., J. E. (2007). Tuning bulk electrostatics to regulate protein function. Cell 128, 441–444.
PubMed
CrossRef
CAS
Google Scholar
Sessa, F., Mapelli, M., Ciferri, C., Tarricone, C., Areces, L. B., Schneider, T. R., Stukenberg, P. T., and Musacchio, A. (2005). Mechanism of Aurora B activation by INCENP and inhibition by hesperadin. Mol Cell 18, 379–391.
PubMed
CrossRef
CAS
Google Scholar
Sharma, P., Sharma, M., Amin, N. D., Albers, R. W., and Pant, H. C. (1999). Regulation of cyclin-dependent kinase 5 catalytic activity by phosphorylation. Proc Natl Acad Sci USA 96, 11156–11160.
PubMed
CrossRef
CAS
Google Scholar
Sim, K. L., and Creamer, T. P. (2002). Abundance and distributions of eukaryote protein simple sequences. Mol Cell Proteomics 1, 983–995.
PubMed
CrossRef
CAS
Google Scholar
Solomon, M. J., and Kaldis, P. (1998). Regulation of CDKs by phosphorylation. Results Probl Cell Differ 22, 79–109.
PubMed
CAS
Google Scholar
Sridhar, J., Akula, N., and Pattabiraman, N. (2006). Selectivity and potency of cyclin-dependent kinase inhibitors. Aaps J 8, E204–221.
PubMed
CrossRef
CAS
Google Scholar
Takizawa, C. G., and Morgan, D. O. (2000). Control of mitosis by changes in the subcellular location of cyclin-B1-Cdk1 and Cdc25C. Curr Opin Cell Biol 12, 658–665.
PubMed
CrossRef
CAS
Google Scholar
Tan, E. K., and Skipper, L. M. (2007). Pathogenic mutations in Parkinson disease. Hum Mutat 28, 641–653.
PubMed
CrossRef
CAS
Google Scholar
Tang, D., Yeung, J., Lee, K. Y., Matsushita, M., Matsui, H., Tomizawa, K., Hatase, O., and Wang, J. H. (1995). An isoform of the neuronal cyclin-dependent kinase 5 (Cdk5) activator. J Biol Chem 270, 26897–26903.
PubMed
CrossRef
CAS
Google Scholar
Tarricone, C., Dhavan, R., Peng, J., Areces, L. B., Tsai, L., and Musacchio, A. (2001). Structure and regulation of the cdk5-p25(nck5a) complex. Mol Cell 8, 657–669.
PubMed
CrossRef
CAS
Google Scholar
ter Haar, E., Coll, J. T., Austen, D. A., Hsiao, H. M., Swenson, L., and Jain, J. (2001). Structure of GSK3beta reveals a primed phosphorylation mechanism. Nat Struct Biol 8, 593–596.
PubMed
CrossRef
Google Scholar
Ubersax, J. A., and Ferrell, Jr., J. E. (2007). Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol 8, 530–541.
PubMed
CrossRef
CAS
Google Scholar
Welburn, J. P., Tucker, J. A., Johnson, T., Lindert, L., Morgan, M., Willis, A., Noble, M. E., and Endicott, J. A. (2007). How tyrosine 15 phosphorylation inhibits the activity of cyclin-dependent kinase 2-cyclin A. J Biol Chem 282, 3173–3181.
PubMed
CrossRef
CAS
Google Scholar
Wood-Kaczmar, A., Gandhi, S., and Wood, N. W. (2006). Understanding the molecular causes of Parkinson's disease. Trends Mol Med 12, 521–528.
PubMed
CrossRef
CAS
Google Scholar
Xiong, Y., Zhang, H., and Beach, D. (1992). D type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA. Cell 71, 505–514.
PubMed
CrossRef
CAS
Google Scholar
Yaffe, M. B., and Smerdon, S. J. (2004). The use of in vitro peptide-library screens in the analysis of phosphoserine/threonine-binding domain structure and function. Annu Rev Biophys Biomol Struct 33, 225–244.
PubMed
CrossRef
CAS
Google Scholar
Zhang, B. F., Peng, F. F., Zhang, J. Z., and Wu, D. C. (2003). Staurosporine induces apoptosis in NG108-15 cells. Acta Pharmacol Sin 24, 663–669.
PubMed
CAS
Google Scholar
Zhang, F., Strand, A., Robbins, D., Cobb, M. H., and Goldsmith, E. J. (1994). Atomic structure of the MAP kinase ERK2 at 2.3 A resolution. Nature 367, 704–711.
PubMed
CrossRef
CAS
Google Scholar
Zheng, Y. L., Kesavapany, S., Gravell, M., Hamilton, R. S., Schubert, M., Amin, N., Albers, W., Grant, P., and Pant, H. C. (2005). A Cdk5 inhibitory peptide reduces tau hyperphosphorylation and apoptosis in neurons. Embo J 24, 209–220.
PubMed
CrossRef
CAS
Google Scholar
Zukerberg, L. R., Patrick, G. N., Nikolic, M., Humbert, S., Wu, C. L., Lanier, L. M., Gertler, F. B., Vidal, M., Van Etten, R. A., and Tsai, L. H. (2000). Cables links Cdk5 and c-Abl and facilitates Cdk5 tyrosine phosphorylation, kinase upregulation, and neurite outgrowth. Neuron 26, 633–646.
PubMed
CrossRef
CAS
Google Scholar