Advertisement

The Structural Bases of CDK5 Activity

  • Andrea Musacchio
Chapter

Abstract

In the last 15 years, a wealth of structural investigations on protein kinases has been reported. These studies have revealed that the active states of protein kinases are usually structurally alike, a requirement imposed by the necessity to maintain the basic geometry of a highly conserved machinery required for good catalytic output. Conversely, the structures of the inactive states of kinase-family members can vary widely from each other, a principle that can be exploited to improve the specificity of kinase inhibitors. In this chapter, we discuss the activation mechanism of the CDK5 kinase within the general frame of reference of kinase activation mechanisms, and in comparison to other members of the CDK family. We explain how CDK5, not unlike other kinases, has made its own capricious decisions to design an original activation mechanism and distinguish itself from CDK-family relatives.

Keywords

Activation Loop Substrate Recognition Tyr15 Phosphorylation Catalytic Cleft Aurora Family Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Altomare, D. A., and Testa, J. R. (2005). Perturbations of the AKT signaling pathway in human cancer. Oncogene 24, 7455–7464.PubMedCrossRefGoogle Scholar
  2. Amin, N. D., Albers, W., and Pant, H. C. (2002). Cyclin-dependent kinase 5 (cdk5) activation requires interaction with three domains of p35. J Neurosci Res 67, 354–362.PubMedCrossRefGoogle Scholar
  3. Barford, D., Hu, S. H., and Johnson, L. N. (1991). Structural mechanism for glycogen phosphorylase control by phosphorylation and AMP. J Mol Biol 218, 233–260.PubMedCrossRefGoogle Scholar
  4. Barrett, C. P., and Noble, M. E. (2005). Molecular motions of human cyclin-dependent kinase 2. J Biol Chem 280, 13993–14005.PubMedCrossRefGoogle Scholar
  5. Baselga, J. (2006). Targeting tyrosine kinases in cancer: the second wave. Science 312, 1175–1178.PubMedCrossRefGoogle Scholar
  6. Bayliss, R., Sardon, T., Vernos, I., and Conti, E. (2003). Structural basis of Aurora-A activation by TPX2 at the mitotic spindle. Mol Cell 12, 851–862.PubMedCrossRefGoogle Scholar
  7. Bhattacharyya, R. P., Remenyi, A., Yeh, B. J., and Lim, W. A. (2006). Domains, motifs, and scaffolds: the role of modular interactions in the evolution and wiring of cell signaling circuits. Annu Rev Biochem 75, 655–680.Google Scholar
  8. Biondi, R. M., and Nebreda, A. R. (2003). Signalling specificity of Ser/Thr protein kinases through docking-site-mediated interactions. Biochem J 372, 1–13.PubMedCrossRefGoogle Scholar
  9. Brown, N. R., Noble, M. E., Endicott, J. A., Garman, E. F., Wakatsuki, S., Mitchell, E., Rasmussen, B., Hunt, T., and Johnson, L. N. (1995). The crystal structure of cyclin A. Structure 3, 1235–1247.PubMedCrossRefGoogle Scholar
  10. Brown, N. R., Noble, M. E., Endicott, J. A., and Johnson, L. N. (1999a). The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nat Cell Biol 1, 438–443.CrossRefGoogle Scholar
  11. Brown, N. R., Noble, M. E., Lawrie, A. M., Morris, M. C., Tunnah, P., Divita, G., Johnson, L. N., and Endicott, J. A. (1999b). Effects of phosphorylation of threonine 160 on cyclin-dependent kinase 2 structure and activity. J Biol Chem 274, 8746–8756.CrossRefGoogle Scholar
  12. Canagarajah, B. J., Khokhlatchev, A., Cobb, M. H., and Goldsmith, E. J. (1997). Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell 90, 859–869.PubMedCrossRefGoogle Scholar
  13. Cheek, S., Ginalski, K., Zhang, H., and Grishin, N. V. (2005). A comprehensive update of the sequence and structure classification of kinases. BMC Struct Biol 5, 6.Google Scholar
  14. Chou, K. C., Watenpaugh, K. D., and Heinrikson, R. L. (1999). A model of the complex between cyclin-dependent kinase 5 and the activation domain of neuronal Cdk5 activator. Biochem Biophys Res Commun 259, 420–428.PubMedCrossRefGoogle Scholar
  15. Cohen, P. (2000). The regulation of protein function by multisite phosphorylation – a 25 year update. Trends Biochem Sci 25, 596–601.PubMedCrossRefGoogle Scholar
  16. Collins, I., and Garrett, M. D. (2005). Targeting the cell division cycle in cancer: CDK and cell cycle checkpoint kinase inhibitors. Curr Opin Pharmacol 5, 366–373.PubMedCrossRefGoogle Scholar
  17. Cruz, J. C., and Tsai, L. H. (2004). A Jekyll and Hyde kinase: roles for Cdk5 in brain development and disease. Curr Opin Neurobiol 14, 390–394.PubMedCrossRefGoogle Scholar
  18. Dai, Y., and Grant, S. (2003). Cyclin-dependent kinase inhibitors. Curr Opin Pharmacol 3, 362–370.PubMedCrossRefGoogle Scholar
  19. Dajani, R., Fraser, E., Roe, S. M., Young, N., Good, V., Dale, T. C., and Pearl, L. H. (2001). Crystal structure of glycogen synthase kinase 3 beta: structural basis for phosphate-primed substrate specificity and autoinhibition. Cell 105, 721–732.PubMedCrossRefGoogle Scholar
  20. De Bondt, H. L., Rosenblatt, J., Jancarik, J., Jones, H. D., Morgan, D. O., and Kim, S. H. (1993). Crystal structure of cyclin-dependent kinase 2. Nature 363, 595–602.PubMedCrossRefGoogle Scholar
  21. Dhavan, R., and Tsai, L. H. (2001). A decade of CDK5. Nat Rev Mol Cell Biol 2, 749–759.PubMedCrossRefGoogle Scholar
  22. Dhomen, N., and Marais, R. (2007). New insight into BRAF mutations in cancer. Curr Opin Genet Dev 17, 31–39.PubMedCrossRefGoogle Scholar
  23. Dinarina, A., Perez, L. H., Davila, A., Schwab, M., Hunt, T., and Nebreda, A. R. (2005). Characterization of a new family of cyclin-dependent kinase activators. Biochem J 386, 349–355.PubMedCrossRefGoogle Scholar
  24. Groban, E. S., Narayanan, A., and Jacobson, M. P. (2006). Conformational changes in protein loops and helices induced by post-translational phosphorylation. PLoS Comput Biol 2, e32.PubMedCrossRefGoogle Scholar
  25. Hagopian, J. C., Kirtley, M. P., Stevenson, L. M., Gergis, R. M., Russo, A. A., Pavletich, N. P., Parsons, S. M., and Lew, J. (2001). Kinetic basis for activation of CDK2/cyclin A by phosphorylation. J Biol Chem 276, 275–280.PubMedCrossRefGoogle Scholar
  26. Hanks, S. K., and Hunter, T. (1995). Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. Faseb J 9, 576–596.PubMedGoogle Scholar
  27. Hanks, S. K., Quinn, A. M., and Hunter, T. (1988). The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241, 42–52.PubMedCrossRefGoogle Scholar
  28. Holmes, J. K., and Solomon, M. J. (2001). The role of Thr160 phosphorylation of Cdk2 in substrate recognition. Eur J Biochem 268, 4647–4652.PubMedCrossRefGoogle Scholar
  29. Honda, R., Lowe, E. D., Dubinina, E., Skamnaki, V., Cook, A., Brown, N. R., and Johnson, L. N. (2005). The structure of cyclin E1/CDK2: implications for CDK2 activation and CDK2-independent roles. Embo J 24, 452–463.PubMedCrossRefGoogle Scholar
  30. Hurley, J. H., Dean, A. M., Sohl, J. L., Koshland, Jr., D. E., and Stroud, R. M. (1990). Regulation of an enzyme by phosphorylation at the active site. Science 249, 1012–1016.PubMedCrossRefGoogle Scholar
  31. Huse, M., and Kuriyan, J. (2002). The conformational plasticity of protein kinases. Cell 109, 275–282.PubMedCrossRefGoogle Scholar
  32. Jeffrey, P. D., Russo, A. A., Polyak, K., Gibbs, E., Hurwitz, J., Massague, J., and Pavletich, N. P. (1995). Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 376, 313–320.PubMedCrossRefGoogle Scholar
  33. Jimenez, J. L., Hegemann, B., Hutchins, J. R., Peters, J. M., and Durbin, R. (2007). A systematic comparative and structural analysis of protein phosphorylation sites based on the mtcPTM database. Genome Biol 8, R90.PubMedCrossRefGoogle Scholar
  34. Johnson, L. N., and Barford, D. (1993). The effects of phosphorylation on the structure and function of proteins. Annu Rev Biophys Biomol Struct 22, 199–232.PubMedCrossRefGoogle Scholar
  35. Johnson, L. N., Noble, M. E., and Owen, D. J. (1996). Active and inactive protein kinases: structural basis for regulation. Cell 85, 149–158.PubMedCrossRefGoogle Scholar
  36. Johnson, S. A., and Hunter, T. (2005). Kinomics: methods for deciphering the kinome. Nat Methods 2, 17–25.PubMedCrossRefGoogle Scholar
  37. Kamei, H., Saito, T., Ozawa, M., Fujita, Y., Asada, A., Bibb, J. A., Saido, T. C., Sorimachi, H., and Hisanaga, S. (2007). Suppression of calpain-dependent cleavage of the CDK5 activator p35 to p25 by site-specific phosphorylation. J Biol Chem 282, 1687–1694.PubMedCrossRefGoogle Scholar
  38. Kannan, N., and Neuwald, A. F. (2004). Evolutionary constraints associated with functional specificity of the CMGC protein kinases MAPK, CDK, GSK, SRPK, DYRK, and CK2alpha. Protein Sci 13, 2059–2077.PubMedCrossRefGoogle Scholar
  39. Kannan, N., and Neuwald, A. F. (2005). Did protein kinase regulatory mechanisms evolve through elaboration of a simple structural component? J Mol Biol 351, 956–972.PubMedCrossRefGoogle Scholar
  40. Kannan, N., Taylor, S. S., Zhai, Y., Venter, J. C., and Manning, G. (2007). Structural and functional diversity of the microbial kinome. PLoS Biol 5, e17.PubMedCrossRefGoogle Scholar
  41. Knight, Z. A., and Shokat, K. M. (2005). Features of selective kinase inhibitors. Chem Biol 12, 621–637.PubMedCrossRefGoogle Scholar
  42. Knighton, D. R., Zheng, J. H., Ten Eyck, L. F., Ashford, V. A., Xuong, N. H., Taylor, S. S., and Sowadski, J. M. (1991a). Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253, 407–414.CrossRefGoogle Scholar
  43. Knighton, D. R., Zheng, J. H., Ten Eyck, L. F., Xuong, N. H., Taylor, S. S., and Sowadski, J. M. (1991b). Structure of a peptide inhibitor bound to the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253, 414–420.CrossRefGoogle Scholar
  44. Kornev, A. P., Haste, N. M., Taylor, S. S., and Eyck, L. F. (2006). Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism. Proc Natl Acad Sci USA 103, 17783–17788.PubMedCrossRefGoogle Scholar
  45. Kostich, M., English, J., Madison, V., Gheyas, F., Wang, L., Qiu, P., Greene, J., and Laz, T. M. (2002). Human members of the eukaryotic protein kinase family. Genome Biol 3, Research0043.PubMedCrossRefGoogle Scholar
  46. Lacy, E. R., Wang, Y., Post, J., Nourse, A., Webb, W., Mapelli, M., Musacchio, A., Siuzdak, G., and Kriwacki, R. W. (2005). Molecular basis for the specificity of p27 toward cyclin-dependent kinases that regulate cell division. J Mol Biol 349, 764–773.PubMedCrossRefGoogle Scholar
  47. Ledee, D. R., Tripathi, B. K., and Zelenka, P. S. (2007). The CDK5 activator, p39, binds specifically to myosin essential light chain. Biochem Biophys Res Commun 354, 1034–1039.PubMedCrossRefGoogle Scholar
  48. Lee, M. H., Nikolic, M., Baptista, C. A., Lai, E., Tsai, L. H., and Massague, J. (1996). The brain-specific activator p35 allows Cdk5 to escape inhibition by p27Kip1 in neurons. Proc Natl Acad Sci USA 93, 3259–3263.PubMedCrossRefGoogle Scholar
  49. Lew, J. (2003). MAP kinases and CDKs: kinetic basis for catalytic activation. Biochemistry 42, 849–856.PubMedCrossRefGoogle Scholar
  50. Lim, A. C., Qu, D., and Qi, R. Z. (2003). Protein-protein interactions in Cdk5 regulation and function. Neurosignals 12, 230–238.PubMedCrossRefGoogle Scholar
  51. Lu, K. P., Liou, Y. C., and Vincent, I. (2003). Proline-directed phosphorylation and isomerization in mitotic regulation and in Alzheimer's disease. Bioessays 25, 174–181.PubMedCrossRefGoogle Scholar
  52. Manning, G., Whyte, D. B., Martinez, R., Hunter, T., and Sudarsanam, S. (2002). The protein kinase complement of the human genome. Science 298, 1912–1934.PubMedCrossRefGoogle Scholar
  53. Mapelli, M., Massimiliano, L., Crovace, C., Seeliger, M. A., Tsai, L. H., Meijer, L., and Musacchio, A. (2005). Mechanism of CDK5/p25 binding by CDK inhibitors. J Med Chem 48, 671–679.PubMedCrossRefGoogle Scholar
  54. Mapelli, M., and Musacchio, A. (2003). The structural perspective on CDK5. Neurosignals 12, 164–172.PubMedCrossRefGoogle Scholar
  55. Meijer, L., Skaltsounis, A. L., Magiatis, P., Polychronopoulos, P., Knockaert, M., Leost, M., Ryan, X. P., Vonica, C. A., Brivanlou, A., Dajani, R., et al. (2003). GSK-3-selective inhibitors derived from Tyrian purple indirubins. Chem Biol 10, 1255–1266.PubMedCrossRefGoogle Scholar
  56. Miyajima, M., Nornes, H. O., and Neuman, T. (1995). Cyclin E is expressed in neurons and forms complexes with cdk5. Neuroreport 6, 1130–1132.PubMedCrossRefGoogle Scholar
  57. Nebreda, A. R. (2006). CDK activation by non-cyclin proteins. Curr Opin Cell Biol 18, 192–198.PubMedCrossRefGoogle Scholar
  58. Nishizawa, M., Kanaya, Y., and Toh, E. A. (1999). Mouse cyclin-dependent kinase (Cdk) 5 is a functional homologue of a yeast Cdk, pho85 kinase. J Biol Chem 274, 33859–33862.PubMedCrossRefGoogle Scholar
  59. Noble, M. E., Endicott, J. A., Brown, N. R., and Johnson, L. N. (1997). The cyclin box fold: protein recognition in cell-cycle and transcription control. Trends Biochem Sci 22, 482–487.PubMedCrossRefGoogle Scholar
  60. Nolen, B., Taylor, S., and Ghosh, G. (2004). Regulation of protein kinases: controlling activity through activation segment conformation. Mol Cell 15, 661–675.PubMedCrossRefGoogle Scholar
  61. Otyepka, M., Bartova, I., Kriz, Z., and Koca, J. (2006). Different mechanisms of CDK5 and CDK2 activation as revealed by CDK5/p25 and CDK2/cyclin A dynamics. J Biol Chem 281, 7271–7281.PubMedCrossRefGoogle Scholar
  62. Pavletich, N. P. (1999). Mechanisms of cyclin-dependent kinase regulation: structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors. J Mol Biol 287, 821–828.PubMedCrossRefGoogle Scholar
  63. Pawson, T., and Nash, P. (2003). Assembly of cell regulatory systems through protein interaction domains. Science 300, 445–452.PubMedCrossRefGoogle Scholar
  64. Pellicena, P., and Kuriyan, J. (2006). Protein-protein interactions in the allosteric regulation of protein kinases. Curr Opin Struct Biol 16, 702–709.PubMedCrossRefGoogle Scholar
  65. Polychronopoulos, P., Magiatis, P., Skaltsounis, A. L., Myrianthopoulos, V., Mikros, E., Tarricone, A., Musacchio, A., Roe, S. M., Pearl, L., Leost, M., et al. (2004). Structural basis for the synthesis of indirubins as potent and selective inhibitors of glycogen synthase kinase-3 and cyclin-dependent kinases. J Med Chem 47, 935–946.PubMedCrossRefGoogle Scholar
  66. Poon, R. Y., Lew, J., and Hunter, T. (1997). Identification of functional domains in the neuronal Cdk5 activator protein. J Biol Chem 272, 5703–5708.PubMedCrossRefGoogle Scholar
  67. Qi, Z., Huang, Q. Q., Lee, K. Y., Lew, J., and Wang, J. H. (1995). Reconstitution of neuronal Cdc2-like kinase from bacteria-expressed Cdk5 and an active fragment of the brain-specific activator. Kinase activation in the absence of Cdk5 phosphorylation. J Biol Chem 270, 10847–10854.PubMedCrossRefGoogle Scholar
  68. Reindl, C., and Spiekermann, K. (2006). From kinases to cancer: leakiness, loss of autoinhibition and leukemia. Cell Cycle 5, 599–602.PubMedCrossRefGoogle Scholar
  69. Remenyi, A., Good, M. C., and Lim, W. A. (2006). Docking interactions in protein kinase and phosphatase networks. Curr Opin Struct Biol 16, 676–685.PubMedCrossRefGoogle Scholar
  70. Russo, A. A., Jeffrey, P. D., Patten, A. K., Massague, J., and Pavletich, N. P. (1996a). Crystal structure of the p27Kip1 cyclin-dependent-kinase inhibitor bound to the cyclin A-Cdk2 complex. Nature 382, 325–331.CrossRefGoogle Scholar
  71. Russo, A. A., Jeffrey, P. D., and Pavletich, N. P. (1996b). Structural basis of cyclin-dependent kinase activation by phosphorylation. Nat Struct Biol 3, 696–700.CrossRefGoogle Scholar
  72. Scheeff, E. D., and Bourne, P. E. (2005). Structural evolution of the protein kinase-like superfamily. PLoS Comput Biol 1, e49.PubMedCrossRefGoogle Scholar
  73. Schindler, T., Bornmann, W., Pellicena, P., Miller, W. T., Clarkson, B., and Kuriyan, J. (2000). Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 289, 1938–1942.PubMedCrossRefGoogle Scholar
  74. Schulman, B. A., Lindstrom, D. L., and Harlow, E. (1998). Substrate recruitment to cyclin-dependent kinase 2 by a multipurpose docking site on cyclin A. Proc Natl Acad Sci USA 95, 10453–10458.PubMedCrossRefGoogle Scholar
  75. Schulze-Gahmen, U., and Kim, S. H. (2002). Structural basis for CDK6 activation by a virus-encoded cyclin. Nat Struct Biol 9, 177–181.PubMedGoogle Scholar
  76. Seet, B. T., Dikic, I., Zhou, M. M., and Pawson, T. (2006). Reading protein modifications with interaction domains. Nat Rev Mol Cell Biol 7, 473–483.PubMedCrossRefGoogle Scholar
  77. Serber, Z., and Ferrell, Jr., J. E. (2007). Tuning bulk electrostatics to regulate protein function. Cell 128, 441–444.PubMedCrossRefGoogle Scholar
  78. Sessa, F., Mapelli, M., Ciferri, C., Tarricone, C., Areces, L. B., Schneider, T. R., Stukenberg, P. T., and Musacchio, A. (2005). Mechanism of Aurora B activation by INCENP and inhibition by hesperadin. Mol Cell 18, 379–391.PubMedCrossRefGoogle Scholar
  79. Sharma, P., Sharma, M., Amin, N. D., Albers, R. W., and Pant, H. C. (1999). Regulation of cyclin-dependent kinase 5 catalytic activity by phosphorylation. Proc Natl Acad Sci USA 96, 11156–11160.PubMedCrossRefGoogle Scholar
  80. Sim, K. L., and Creamer, T. P. (2002). Abundance and distributions of eukaryote protein simple sequences. Mol Cell Proteomics 1, 983–995.PubMedCrossRefGoogle Scholar
  81. Solomon, M. J., and Kaldis, P. (1998). Regulation of CDKs by phosphorylation. Results Probl Cell Differ 22, 79–109.PubMedGoogle Scholar
  82. Sridhar, J., Akula, N., and Pattabiraman, N. (2006). Selectivity and potency of cyclin-dependent kinase inhibitors. Aaps J 8, E204–221.PubMedCrossRefGoogle Scholar
  83. Takizawa, C. G., and Morgan, D. O. (2000). Control of mitosis by changes in the subcellular location of cyclin-B1-Cdk1 and Cdc25C. Curr Opin Cell Biol 12, 658–665.PubMedCrossRefGoogle Scholar
  84. Tan, E. K., and Skipper, L. M. (2007). Pathogenic mutations in Parkinson disease. Hum Mutat 28, 641–653.PubMedCrossRefGoogle Scholar
  85. Tang, D., Yeung, J., Lee, K. Y., Matsushita, M., Matsui, H., Tomizawa, K., Hatase, O., and Wang, J. H. (1995). An isoform of the neuronal cyclin-dependent kinase 5 (Cdk5) activator. J Biol Chem 270, 26897–26903.PubMedCrossRefGoogle Scholar
  86. Tarricone, C., Dhavan, R., Peng, J., Areces, L. B., Tsai, L., and Musacchio, A. (2001). Structure and regulation of the cdk5-p25(nck5a) complex. Mol Cell 8, 657–669.PubMedCrossRefGoogle Scholar
  87. ter Haar, E., Coll, J. T., Austen, D. A., Hsiao, H. M., Swenson, L., and Jain, J. (2001). Structure of GSK3beta reveals a primed phosphorylation mechanism. Nat Struct Biol 8, 593–596.PubMedCrossRefGoogle Scholar
  88. Ubersax, J. A., and Ferrell, Jr., J. E. (2007). Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol 8, 530–541.PubMedCrossRefGoogle Scholar
  89. Welburn, J. P., Tucker, J. A., Johnson, T., Lindert, L., Morgan, M., Willis, A., Noble, M. E., and Endicott, J. A. (2007). How tyrosine 15 phosphorylation inhibits the activity of cyclin-dependent kinase 2-cyclin A. J Biol Chem 282, 3173–3181.PubMedCrossRefGoogle Scholar
  90. Wood-Kaczmar, A., Gandhi, S., and Wood, N. W. (2006). Understanding the molecular causes of Parkinson's disease. Trends Mol Med 12, 521–528.PubMedCrossRefGoogle Scholar
  91. Xiong, Y., Zhang, H., and Beach, D. (1992). D type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA. Cell 71, 505–514.PubMedCrossRefGoogle Scholar
  92. Yaffe, M. B., and Smerdon, S. J. (2004). The use of in vitro peptide-library screens in the analysis of phosphoserine/threonine-binding domain structure and function. Annu Rev Biophys Biomol Struct 33, 225–244.PubMedCrossRefGoogle Scholar
  93. Zhang, B. F., Peng, F. F., Zhang, J. Z., and Wu, D. C. (2003). Staurosporine induces apoptosis in NG108-15 cells. Acta Pharmacol Sin 24, 663–669.PubMedGoogle Scholar
  94. Zhang, F., Strand, A., Robbins, D., Cobb, M. H., and Goldsmith, E. J. (1994). Atomic structure of the MAP kinase ERK2 at 2.3 A resolution. Nature 367, 704–711.PubMedCrossRefGoogle Scholar
  95. Zheng, Y. L., Kesavapany, S., Gravell, M., Hamilton, R. S., Schubert, M., Amin, N., Albers, W., Grant, P., and Pant, H. C. (2005). A Cdk5 inhibitory peptide reduces tau hyperphosphorylation and apoptosis in neurons. Embo J 24, 209–220.PubMedCrossRefGoogle Scholar
  96. Zukerberg, L. R., Patrick, G. N., Nikolic, M., Humbert, S., Wu, C. L., Lanier, L. M., Gertler, F. B., Vidal, M., Van Etten, R. A., and Tsai, L. H. (2000). Cables links Cdk5 and c-Abl and facilitates Cdk5 tyrosine phosphorylation, kinase upregulation, and neurite outgrowth. Neuron 26, 633–646.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Experimental OncologyEuropean Institute of OncologyItaly

Personalised recommendations