Advertisement

The Kinase Activity of Cdk5 and Its Regulation

  • Shin-ichi Hisanaga
  • Koichi Ishiguro
Chapter

Abstract

Cdk5 is a member of cyclin-dependent kinase (Cdk) family and is uniquely activated by binding to its neuron-specific non-cyclin activator p35 or p39. In this chapter we describe the enzymatic properties and the regulation mechanisms of Cdk5 activity in post-mitotic neurons in comparison to cell cycle Cdks. The regulation mechanisms are synthesis and degradation of p35, the interaction with p35- or Cdk5-binding proteins, phosphorylation of Cdk5 or p35, and the association with membranes. In addition to these physiological regulations, deregulation of the activity is induced by the cleavage of p35 to p25 by calpain, leading to hyperactivation and eventually neuronal cell death. The kinase activity and stability of Cdk5–p39, which still remains to be characterized, are also described here. The biochemical information will be useful in studying Cdk5 and elucidating its functions.

Keywords

Kinase Activity Brain Extract Cdk5 Activity Void Volume Fraction Cdk5 Kinase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Amin ND, Albers W, Pant HC (2002) Cyclin-dependent kinase 5 (cdk5) activation requires interaction with three domains of p35. J Neurosci Res 67:354–362PubMedCrossRefGoogle Scholar
  2. Beaudette KN, Lew J, Wang JH (1993) Substrate specificity characterization of a cdc2-like protein kinase purified from bovine brain. J Biol Chem 268:20825–20830PubMedGoogle Scholar
  3. Bogush A, Pedrini S, Pelta-Heller J, Chan T, Yang Q, Mao Z, Sluzas E, Gieringer T, Ehrlich ME (2007) AKT and CDK5/p35 mediate brain-derived neurotrophic factor induction of DARPP-32 in medium size spiny neurons in vitro. J Biol Chem 282:7352–7359PubMedCrossRefGoogle Scholar
  4. Chae T, Kwon YT, Bronson R, Dikkes P, Li E, Tsai LH (1997) Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures, and adult lethality. Neuron 18:29–42PubMedCrossRefGoogle Scholar
  5. Chang Y, Ostling P, Akerfelt M, Trouillet D, Rallu M, Gitton Y, El Fatimy R, Fardeau V, Le Crom S, Morange M, Sistonen L, Mezger V (2006) Role of heat-shock factor 2 in cerebral cortex formation and as a regulator of p35 expression. Genes Dev 20:836–847PubMedCrossRefGoogle Scholar
  6. Cheng Q, Sasaki Y, Shoji M, Sugiyama Y, Tanaka H, Nakayama T, Mizuki N, Nakamura F, Takei K, Goshima Y (2003) Cdk5/p35 and Rho-kinase mediate ephrin-A5-induced signaling in retinal ganglion cells. Mol Cell Neurosci 24:632–645PubMedCrossRefGoogle Scholar
  7. Cheung ZH, Chin WH, Chen Y, Ng YP, Ip NY (2007) Cdk5 Is Involved in BDNF-Stimulated Dendritic Growth in Hippocampal Neurons. PLoS Biol 5:e63PubMedCrossRefGoogle Scholar
  8. Ching YP, Pang AS, Lam WH, Qi RZ, Wang JH (2002) Identification of a neuronal Cdk5 activator-binding protein as Cdk5 inhibitor. J Biol Chem 277:15237–15240PubMedCrossRefGoogle Scholar
  9. Cruz JC, Tsai LH (2004) Cdk5 deregulation in the pathogenesis of Alzheimer's disease. Trends Mol Med 10:452–458.PubMedCrossRefGoogle Scholar
  10. Cruz JC, Tseng HC, Goldman JA, Shih H, Tsai LH (2003) Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron 40:471–483PubMedCrossRefGoogle Scholar
  11. Desbarats J, Birge RB, Mimouni-Rongy M, Weinstein DE, Palerme JS, Newell MK (2003) Fas engagement induces neurite growth through ERK activation and p35 upregulation. Nat Cell Biol 5:118–125PubMedCrossRefGoogle Scholar
  12. Dhavan R, Tsai LH (2001) A decade of CDK5. Nat Rev Mol Cell Biol 2:749–759PubMedCrossRefGoogle Scholar
  13. Fattaey A, Booher RN (1997) Myt1: a Wee1-type kinase that phosphorylates Cdc2 on residue Thr14. Prog Cell Cycle Res 3:233–240PubMedCrossRefGoogle Scholar
  14. Fu WY, Chen Y, Sahin M, Zhao XS, Shi L, Bikoff JB, Lai KO, Yung WH, Fu AK, Greenberg ME, Ip NY (2007) Cdk5 regulates EphA4-mediated dendritic spine retraction through an ephexin1-dependent mechanism. Nat Neurosci 10:67–76PubMedCrossRefGoogle Scholar
  15. Gray N, Dtivaud L, Doerig C, Meijer L (1999) ATP-site directed inhibitos of cyclin-dependent kinases. Curr Med Chem 6:859–875PubMedGoogle Scholar
  16. Gong X, Tang X, Wiedmann M, Wang X, Peng J, Zheng D, Blair LAC, Marshall J, Mao Z (2003) Cdk5-mediated inhibition of the protective effects of transcription factor MEF2 in neurotoxicity-induced apoptosis. Neuron 38:33–46PubMedCrossRefGoogle Scholar
  17. Harada T, Morooka T, Ogawa S, Nishida E (2001) ERK induces p35, a neuron-specific activator of Cdk5, through induction of Egr1. Nat Cell Biol 3:453–459PubMedCrossRefGoogle Scholar
  18. Harper JW, Elledge SJ, Keyomarsi K, Dynlacht B, Tsai LH, Zhang P, Dobrowolski S, Bai C, Connell-Crowley L, Swindell E,, Fox MP, Wei N (1995) Inhibition of cyclin-dependent kinases by p21. Mol Biol Cell 6:387–400PubMedGoogle Scholar
  19. Hashiguchi M, Saito T, Hisanaga S, Hashiguchi T (2002) Truncation of CDK5 activator p35 induces intensive phosphorylation of Ser202/Thr205 of human tau. J Biol Chem 277:44525–44530PubMedCrossRefGoogle Scholar
  20. Hisanaga S, Ishiguro K, Uchida T, Okumura E, Okano T, Kishimoto T (1993) Tau protein kinase II has a similar characteristic to cdc2 kinase for phosphorylating neurofilament proteins. J Biol Chem 268:15056–15060PubMedGoogle Scholar
  21. Hisanaga S, Saito T (2003) The regulation of cyclin-dependent kinase 5 activity through the metabolism of p35 or p39 Cdk5 activator. Neurosignals 12:221–229PubMedCrossRefGoogle Scholar
  22. Hisanaga S, Uchiyama M, Hosoi T, Yamada K, Honma N, Ishiguro K, Uchida T, Dahl D, Ohsumi K, Kishimoto T (1995) Porcine brain neurofilament- H tail domain kinase: its identification as cdk5/p26 complex and comparison with cdc2/cyclin B kinase. Cell Motil Cytoskeleton 31:283–297PubMedCrossRefGoogle Scholar
  23. Humbert S, Dhavan R, Tsai L (2000) p39 activates cdk5 in neurons, and is associated with the actin cytoskeleton. J Cell Sci 113:975–983PubMedGoogle Scholar
  24. Ishiguro K, Omori A, Sato K, Tomizawa K, Imahori K, Uchida T (1991) A serine/threonine proline kinase activity is included in the tau protein kinase fraction forming a paired helical filament epitope. Neurosci Lett 128:195–198PubMedCrossRefGoogle Scholar
  25. Ishiguro K, Takamatsu M, Tomizawa K, Omori A, Takahashi M, Arioka M, Uchida T, Imahori K (1992) Tau protein kinase I converts normal tau protein into A68-like component of paired helical filaments. J Biol Chem 267:10897–10901PubMedGoogle Scholar
  26. Jeong YG, Rosales JL, Marzban H, Sillitoe RV, Park DG, Hawkes R, Lee KY (2003) The cyclin-dependent kinase 5 activator, p39, is expressed in stripes in the mouse cerebellum. Neuroscience 118:323–334PubMedCrossRefGoogle Scholar
  27. Kawauchi T, Chihama K, Nishimura YV, Nabeshima Y, Hoshino (2005) MAP1B phosphorylation is differentially regulated by Cdk5/p35, Cdk5/p25, and JNK. Biochem Biophys Res Commun 331:50–55PubMedCrossRefGoogle Scholar
  28. Kerokoski P, Suuronen T, Salminen A, Soininen H, Pirttila T (2002) Influence of phosphorylation of p35, an activator of cyclin-dependent kinase 5 (cdk5), on the proteolysis of p35. Brain Res Mol Brain Res 106:50–56PubMedCrossRefGoogle Scholar
  29. Ko J, Humbert S, Bronson RT, Takahashi S, Kulkarni AB, Li E, Tsai LH (2001) p35 and p39 are essential for cyclin-dependent kinase 5 function during neurodevelopment. J Neurosci 21:6758–6871PubMedGoogle Scholar
  30. Kusakawa G, Saito T, Onuki R, Ishiguro K, Kishimoto T, Hisanaga S (2000) Calpain-dependent proteolytic cleavage of the p35 cyclin-dependent kinase 5 activator to p25. J Biol Chem 275:17166–17172PubMedCrossRefGoogle Scholar
  31. Lee KY, Helbing CC, Choi, KS, Johnston RN, Wang JH (1997) Neuronal Cdc2-like kinase (Nclk) binds and phosphorylates the retinoblastoma protein. J Biol Chem 272:5622–5626PubMedCrossRefGoogle Scholar
  32. Lee JH, Kim KT (2004) Induction of cyclin-dependent kinase 5 and its activator p35 through the extracellular-signal-regulated kinase and protein kinase A pathways during retinoic-acid mediated neuronal differentiation in human neuroblastoma SK-N-BE(2)C cells. J Neurochem 91:634–647PubMedCrossRefGoogle Scholar
  33. Lee MS, Kwon YT, Li M, Peng J, Friedlander RM, Tsai LH (2000) Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405:360–364PubMedCrossRefGoogle Scholar
  34. Lee MH, Nikolic M, Baptista CA, Lai E, Tsai LH, Massague J (1996b) The brain-specific activator p35 allows Cdk5 to escape inhibition by p27Kip1 in neurons. Proc Natl Acad Sci USA 93:3259–3263CrossRefGoogle Scholar
  35. Lee KY, Rosales JL, Tang D, Wang JH (1996a) Interaction of cyclin-dependent kinase 5 (Cdk5) and neuronal Cdk5 activator in bovine brain. J Biol Chem 271:1538–1543CrossRefGoogle Scholar
  36. Ledee DR, Gao CY, Seth R, Fariss RN, Tripathi BK, Zelenka PS (2005) A specific interaction between muskelin and the cyclin-dependent kinase 5 activator p39 promotes peripheral localization of muskelin. J Biol Chem 280:21376–21383PubMedCrossRefGoogle Scholar
  37. Lew J, Huang QQ, Qi Z, Winkfein RJ, Aebersold R, Hunt T, Wang JH (1994) A brain-specific activator of cyclin-dependent kinase 5. Nature 37:423–426CrossRefGoogle Scholar
  38. Lew J, Winkfein RJ, Paudel HK, Wang JH (1992) Brain proline-directed protein kinase is a neurofilament kinase which displays high sequence homology to p34cdc2. J Biol Chem 267:25922–25926PubMedGoogle Scholar
  39. Li BS, Zhang L, Gu J, Amin ND, Pant HC (2000) Integrin α1β1-mediated activation of cyclin-dependent kinase 5 activity is involved in neurite outgrowth and human neurofilament protein H Lys-Ser-Pro tail domain phosphorylation. J Neurosci 20:6055–6062PubMedGoogle Scholar
  40. Lilja L, Johansson JU, Gromada J, Mandic SA, Fried G, Berggren PO, Bark C (2004) Cyclin-dependent kinase 5 associated with p39 promotes Munc18-1 phosphorylation and Ca2+-dependent exocytosis. J Biol Chem 279:29534–29541PubMedCrossRefGoogle Scholar
  41. Lim AC, Hou Z, Goh CP, Qi RZ (2004) Protein kinase CK2 is an inhibitor of the neuronal Cdk5 kinase. J Biol Chem 279:46668–46673PubMedCrossRefGoogle Scholar
  42. Liu F, Su Y, Li B, Zhou Y, Ryder J, Gonzalez-DeWhitt P, May PC, Ni B (2003) Regulation of amyloid precursor protein (APP) phosphorylation and processing by p35/Cdk5 and p25/Cdk5. FEBS Lett 547:193–196PubMedCrossRefGoogle Scholar
  43. Matsuura I, Wang JH (1996) Demonstration of cyclin-dependent kinase inhibitory serine/threonine kinase in bovine thymus. J Biol Chem 271:5443–5450PubMedCrossRefGoogle Scholar
  44. Meijer L, Borgne A, Mulner O, Chong JP, Blow JJ, Inagaki N, Inagaki M, Delcros JG, Moulinoux JP (1997) Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur J Biochem 243:527–536PubMedCrossRefGoogle Scholar
  45. Meyerson M, Enders GH, Wu C-L, Su L-K, Gorka C, Nelson C, Harlow E, Tsai L-H (1992) A family of human cdc2-related protein kinases. EMBO J 11:2909–2917PubMedGoogle Scholar
  46. Morgan DO (1995) Principles of CDK regulation. Nature 374:131–134PubMedCrossRefGoogle Scholar
  47. Nakayama KI, Nakayama K (2006) Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer 6:369–381PubMedCrossRefGoogle Scholar
  48. Ohshima T, Ogura H, Tomizawa K, Hayashi K, Suzuki H, Saito T, Kamei H, Nishi A, Bibb JA, Hisanaga S, Matsui H, Mikoshiba K (2005) Impairment of hippocampal long-term depression and defective spatial learning and memory in p35 mice. J Neurochem 94:917–925PubMedCrossRefGoogle Scholar
  49. Ohshima T, Ward JM, Huh CG, Longenecker G, Veeranna, Pant HC, Brady RO, Martin LJ, Kulkarni AB (1996) Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc Natl Acad Sci USA 93:11173–11178PubMedCrossRefGoogle Scholar
  50. Orlicky S, Tang X, Willems A, Tyers M, Sicheri F (2003) Structural basis for phosphodependent substrate selection and orientation by the SCFCdc4 ubiquitin ligase. Cell 112:243–256PubMedCrossRefGoogle Scholar
  51. Paglini G, Pigino G, Kunda P, Morfini G, Maccioni R, Quiroga S, Ferreira A, Caceres A (1998) Evidence for the participation of the neuron-specific CDK5 activator p35 during laminin-enhanced axonal growth. J Neurosci 18:9858–9869PubMedGoogle Scholar
  52. Patrick GN, Zhou P, Kwon YT, Howley PM, Tsai LH (1998) p35, the neuronal-specific activator of cyclin-dependent kinase 5 (Cdk5) is degraded by the ubiquitin-proteasome pathway. J Biol Chem 273:24057–24064PubMedCrossRefGoogle Scholar
  53. Patrick GN, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, Tsai LH (1999) Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402:615–622PubMedCrossRefGoogle Scholar
  54. Patzke H, Tsai LH (2002) Calpain-mediated cleavage of the cyclin-dependent kinase-5 activator p39 to p29. J Biol Chem 277:8054–8060PubMedCrossRefGoogle Scholar
  55. Poon RY, Lew J, Hunter T (1997) Identification of functional domains in the neuronal Cdk5 activator protein. J Biol Chem 272:5703–5708PubMedCrossRefGoogle Scholar
  56. Qi Z, Huang QQ, Lee KY, Lew J, Wang JH (1995) Reconstitution of neuronal Cdc2-like kinase from bacteria-expressed Cdk5 and an active fragment of the brain-specific activator. J Biol Chem 270:10847–10854PubMedCrossRefGoogle Scholar
  57. Qu D, Li Q, Lim HY, Cheung NS, Li R, Wang JH, Qi RZ (2002) The protein SET binds the neuronal Cdk5 activator p35nck5a and modulates Cdk5/p35nck5a activity. J Biol Chem 277:7324–7332PubMedCrossRefGoogle Scholar
  58. Saito T, Ishiguro K, Onuki R, Nagai Y, Kishimoto T, Hisanaga S (1998) Okadaic acid-stimulated degradation of p35, an activator of CDK5, by proteasome in cultured neurons. Biochem Biophys Res Commun 252:775–778PubMedCrossRefGoogle Scholar
  59. Saito T, Konno T, Hosokawa T, Asada A, Ishiguro K, Hisanaga S (2007) p25/Cyclin-dependent kinase 5 promotes the progression of cell death in nucleus of endoplasmic reticulum-stressed neurons. J Neurochem 102:133–140PubMedCrossRefGoogle Scholar
  60. Saito T, Onuki R, Fujita Y, Kusakawa G, Ishiguro K, Bibb JA, Kishimoto T, Hisanaga S (2003) Developmental regulation of the proteolysis of the p35 cyclin-dependent kinase 5 activator by phosphorylation. J Neurosci 23:1189–1197PubMedGoogle Scholar
  61. Sakaue F, Saito T, Sato Y, Asada A, Ishiguro K, Hasegawa M, Hisanaga S (2005) Phosphorylation of FTDP-17 mutant tau by cyclin-dependent kinase 5 complexed with p35, p25, or p39. J Biol Chem 280:31522–31529PubMedCrossRefGoogle Scholar
  62. Sasaki Y, Cheng C, Uchida Y, Nakajima O, Ohshima T, Yagi T, Taniguchi M, Nakayama T, Kishida R, Kudo Y, Ohno S, Nakamura F, Goshima Y (2002) Fyn and Cdk5 mediate semaphorin-3A signaling, which is involved in regulation of dendrite orientation in cerebral cortex. Neuron 35:907–920PubMedCrossRefGoogle Scholar
  63. Sato Y, Taoka M, Sugiyama N, Kubo K, Fuchigami T, Asada A, Saito T, Nakajima K, Isobe T, Hisanaga S (2007b) Regulation of the interaction of disabled-1 with CIN85 by phosphorylation with cyclin-dependent kinase 5. Genes Cells 12:1315–1327.CrossRefGoogle Scholar
  64. Sato K, Zhu YS, Saito T, Yotsumoto K, Asada A, Hasegawa M, Hisanaga S (2007a) Regulation of the membrane association and kinase activity of Cdk5-p35 by phosphorylation of p35. J Neurosci Res 85:3071–3078CrossRefGoogle Scholar
  65. Sharma P, Sharma M, Amin ND, Albers RW, Pant HC (1999) Regulation of cyclin-dependent kinase 5 catalytic activity by phosphorylation. Proc Natl Acad Sci USA 96:11156–11160PubMedCrossRefGoogle Scholar
  66. Shelton SB, Johnson GV (2004) Cyclin-dependent kinase-5 in neurodegeneration. J Neurochem 88:1313–1326.Erratum in: J Neurochem 89:528 (2004)CrossRefGoogle Scholar
  67. Shetty KT, Kaech S, Link WT, Jaffe H, Flores CM, Wray S, Pant HC, Beushausen S (1995) Molecular characterization of a neuronal-specific protein that stimulates the activity of Cdk5. J Neurochem 64:1988–1995PubMedCrossRefGoogle Scholar
  68. Shetty KT, Link WT, Pant HC (1993) cdc2-like kinase from rat spinal cord specifically phosphorylates KSPXK motifs in neurofilament proteins: isolation and characterization. Proc Natl Acad Sci USA 90:6844–6848PubMedCrossRefGoogle Scholar
  69. Smith PD, Crocker SJ, Jackson-Lewis V, Jordan-Sciutto KL, Hayley S, Mount MP, O'Hare MJ, Callaghan S, Slack RS, Przedborski S, Anisman H, Park DS (2003) Cyclin-dependent kinase 5 is a mediator of dopaminergic neuron loss in a mouse model of Parkinson's disease. Proc Natl Acad Sci USA 100:13650–13655PubMedCrossRefGoogle Scholar
  70. Smith PD, Mount MP, Shree R, Callaghan S, Slack RS, Anisman H, Vincent I, Wang X, Mao Z, Park DS (2006) Calpain-regulated p35/cdk5 plays a central role in dopaminergic neuron death through modulation of the transcription factor myocyte enhancer factor 2. J Neurosci 26:440–447PubMedCrossRefGoogle Scholar
  71. Takahashi S, Saito T, Hisanaga S, Pant HC, Kulkarni AB (2003) Tau phosphorylation by cyclin-dependent kinase 5/p39 during brain development reduces its affinity for microtubules. J Biol Chem 278:10506–10515PubMedCrossRefGoogle Scholar
  72. Tang D, Chun AC, Zhang M, Wang JH (1997) Cyclin-dependent kinase 5 (Cdk5) activation domain of neuronal Cdk5 activator. J Biol Chem 272:2318–2327Google Scholar
  73. Tang D, Wang JH (1996) Cyclin-dependent kinase 5 (Cdk5) and neuron-specific Cdk5 activators. Prog Cell Cycle Res 2:205–216PubMedCrossRefGoogle Scholar
  74. Tang D, Yeng J, Lee KY, Matsushita M, Matsui H, Tomizawa K, Hatase O, Wang JH (1995) An isoform of the neuronal cyclin-dependent kinase 5 (Cdk5) activator. J Biol Chem 270:26897–26903PubMedCrossRefGoogle Scholar
  75. Taniguchi S, Fujita Y, Hayashi S, Kakita A, Takahashi H, Murayama S, Saido TC, Hisanaga S, Iwatsubo T, Hasegawa M (2001) Calpain-mediated degradation of p35 to p25 in postmortem human and rat brains. FEBS Lett 489:46–50PubMedCrossRefGoogle Scholar
  76. Tarricone C, Dhavan R, Peng J, Areces LB, Tsai LH, Musacchio A (2001) Structure and regulation of the CDK5-p25nck5a complex. Mol Cell 8:657–669PubMedCrossRefGoogle Scholar
  77. Tokuoka H, Saito T, Yorifuji H, Wei F, Kishimoto T, Hisanaga S (2000) Brain-derived neurotrophic factor-induced phosphorylation of neurofilament-H subunit in primary cultures of embryo rat cortical neurons. J Cell Sci 113:1059–1068PubMedGoogle Scholar
  78. Tsai LH, Delalle I, Caniness VS, Chae T, Harlow E (1994) p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature 371:419–423PubMedCrossRefGoogle Scholar
  79. Tsai LH, Takahashi T, Caviness Jr VS, Harlow E (1993) Activity and expression pattern of cyclin-dependent kinase 5 in the embryonic mouse nervous system. Devlopment 119:1029–1040Google Scholar
  80. Uchida T, Ishiguro K, Ohnuma J, Takamatsu M, Yonekura S, Imahori K (1994) Precursor of cdk5 activator, the 23 kDa subunit of tau protein kinase II: its sequence and developmental change in brain. FEBS Lett 355:35–40PubMedCrossRefGoogle Scholar
  81. Wada Y, Ishiguro K, Itoh TJ, Uchida T, Hotani H, Saito T, Kishimoto T, Hisanaga S (1998) Microtubule-stimulated phosphorylation of tau at Ser202 and Thr205 by cdk5 decreases its microtubule nucleation activity. J Biochem (Tokyo) 124:738–746CrossRefGoogle Scholar
  82. Wei FY, Tomizawa K, Ohshima T, Asada A, Saito T, Nguyen C, Bibb JA, Ishiguro K, Kulkarni AB, Pant HC, Mikoshiba K, Matsui H, Hisanaga S (2005) Control of cyclin-dependent kinase 5 (Cdk5) activity by glutamatergic regulation of p35 stability. J Neurochem 93:502–512PubMedCrossRefGoogle Scholar
  83. Wu DC, Yu YP, Lee NT, Yu AC, Wang JH, Han YF (2000) The expression of Cdk5, p35, p39, and Cdk5 kinase activity in developing, adult and aged rat brains. Neurochem Res 25:923–929PubMedCrossRefGoogle Scholar
  84. Yamada M, Saito T, Sato Y, Kawai Y, Sekigawa A, Hamazumi Y, Asada A, Wada M, Doi H, Hisanaga S (2007) Cdk5-p39 is a labile complex with the similar substrate specificity to Cdk5-p35. J Neurochem 102:1477–1487PubMedCrossRefGoogle Scholar
  85. Zheng Y-L, Kesavapany S, Gravell M, Hamilton RS, Schebert M, Amin N, Albers W, Grant P, Pant HC (2005) A Cdk5 inhibitory peptide reduces tau hyperphosphorylation and apoptosis in neurons. EMBO J 24:209–220PubMedCrossRefGoogle Scholar
  86. Zheng M, Leung CL, Liem RKH (1998) Region-specific expression of cyclin-dependent kinase 5 (cdk5) and its activators, p35 and p39, in the developing and adult rat central nervous system. J Neurobiol 35:141–159PubMedCrossRefGoogle Scholar
  87. Zukerberg LR, Patrick GN, Nikolic M, Humbert S, Wu CL, Lanier LM, Gertler FB, Vidal M, Van Etten RA, Tsai LH (2000) Cables links Cdk5 and c-Abl and facilitates Cdk5 tyrosine phosphorylation, kinase upregulation, and neurite outgrowth. Neuron 26:633–646PubMedCrossRefGoogle Scholar
  88. Zhu YS, Saito T, Asada A, Maekawa S, Hisanaga S (2005) Activation of latent cyclin-dependent kinase 5 (Cdk5)-p35 complexes by membrane dissociation. J Neurochem. 94:1535–1545PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Molecular Neuroscience, Department of Biological SciencesGraduate School of Science, Tokyo Metropolitan UniversityHachiojiJapan

Personalised recommendations