Cyclin-Dependent Kinase 5 and Insulin Secretion

  • Christina Bark
  • Marjan Rupnik
  • Marko Jevsek
  • Slavena A. Mandic
  • Per-Olof Berggren


Cyclin-dependent kinase 5 (Cdk5) is emerging as a multifunctional kinase involved in regulating numerous cellular processes. Lately, Cdk5 has also emerged as a key controller of regulated membrane fusion in secretory cells. The pancreatic β-cell is highly specialized to secrete insulin in response to elevated glucose concentrations in the blood. The final biochemical events leading to insulin release from the β-cell are governed by a secretion apparatus that is similar to the presynaptic machinery mediating synaptic transmission in neuronal networks. We now summarize recent developments in the field of Cdk5 and regulated exocytosis and also present some novel findings regarding Cdk5’s effect on insulin secretion.


Insulin Secretion Snare Complex Insulin Exocytosis Exocytotic Machinery Roscovitine Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Our own work presented here has been supported by funding to one or more of the authors by the following grant agencies, to which we are sincerely thankful: The Swedish Research Council, The Family Erling-Persson Foundation, The Novo Nordisk Foundation, Berth von Kantzow's Foundation, Funds from Karolinska Institutet, The Swedish Diabetes Association, EFSD, Eurodia and The Slovenian Research Agency.


  1. Bach S, Knockaert M, Reinhardt J, Lozach O, Schmitt S, et al. (2005) Roscovitine targets, protein kinases and pyridoxal kinase. J Biol Chem 280:31208–31219PubMedCrossRefGoogle Scholar
  2. Barclay JW, Aldea M, Craig TJ, Morgan A, Burgoyne RD (2004) Regulation of the fusion pore conductance during exocytosis by cyclin-dependent kinase 5. J Biol Chem 279:41495–41503PubMedCrossRefGoogle Scholar
  3. Barg S, Eliasson L, Renstrom E, Rorsman P (2002) A subset of 50 secretory granules in close contact with L-type Ca2+ channels accounts for first-phase insulin secretion in mouse β-cells. Diabetes 51 Suppl 1:S74–S82CrossRefGoogle Scholar
  4. Berggren PO, Leibiger IB (2006) Novel aspects on signal-transduction in the pancreatic β-cell. Nutr Metab Cardiovasc Dis.16 Suppl 1:S7–S10CrossRefGoogle Scholar
  5. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94PubMedGoogle Scholar
  6. Chae T, Kwon YT, Bronson R, Dikkes P, Li E, Tsai LH (1997) Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures, and adult lethality. Neuron 18:29–42PubMedCrossRefGoogle Scholar
  7. Cheung ZH, Fu AKY, Ip NY (2006) Synaptic roles of Cdk5: Implications in higher cognitive functions and neurodegenerative diseases. Neuron 50:13–18PubMedCrossRefGoogle Scholar
  8. Dean PM (1973) Ultrastructural morphometry of the pancreatic β-cell. Diabetologia 9:115–119PubMedCrossRefGoogle Scholar
  9. Dhavan R, Tsai LH (2001) A decade of CDK5. Nat Rev Mol Cell Biol 2:749–759PubMedCrossRefGoogle Scholar
  10. Dulubova I, Sugita S, Hill S, Hosaka M, Fernandez I, Südhof TC, Rizo J (1999) A conformational switch in syntaxin during exocytosis: role of munc18. EMBO J 18:4372–4382PubMedCrossRefGoogle Scholar
  11. Dulubova I, Khvotchev M, Liu S, Huryeva I, Südhof TC, Rizo J (2007) Munc18-1 binds directly to the neuronal SNARE complex. Proc Natl Acad Sci USA 104:2697–2702PubMedCrossRefGoogle Scholar
  12. Fisher RJ, Pevsner J, Burgoyne RD (2001) Control of Fusion Pore Dynamics During Exocytosis by Munc18. Science 291:875–878PubMedCrossRefGoogle Scholar
  13. Fletcher AI, Shuang R, Giovannucci DR, Zhang L, Bittner MA, et al. (1999) Regulation of exocytosis by cyclin-dependent kinase 5 via phosphorylation of Munc18. J Biol Chem 274:4027–4035PubMedCrossRefGoogle Scholar
  14. Floyd SR, Porro EB, Slepnev VI, Ochoa GC, Tsai LH, De Camilli P (2001) Amphiphysin 1 binds the cyclin-dependent kinase (cdk) 5 regulatory subunit p35 and is phosphorylated by cdk5 and cdc2. J Biol Chem 276:8104–8110PubMedCrossRefGoogle Scholar
  15. Garcia EP, Gatti E, Butler M, Burton J, De Camilli P (1994) A rat brain Sec1 homologue related to Rop and UNC18 interacts with syntaxin. Proc Natl Acad Sci USA 91:2003–2007PubMedCrossRefGoogle Scholar
  16. Giraudo CG, Eng WS, Melia TJ, Rothman JE (2006) A clamping mechanism involved in SNARE-dependent exocytosis. Science 313:676–680PubMedCrossRefGoogle Scholar
  17. Hata Y, Slaughter CA, Sudhof TC (1993) Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin. Nature 366:347–351PubMedCrossRefGoogle Scholar
  18. Hata Y and Südhof TC (1995) A novel ubiquitous form of Munc-18 interacts with multiple syntaxins. Use of the yeast two-hybrid system to study interactions between proteins involved in membrane traffic. J Biol Chem 270:13022–13028CrossRefGoogle Scholar
  19. Jahn R, Scheller RH (2006) SNAREs – engines for membrane fusion. Nat Rev Mol Cell Biol 7:631–643PubMedCrossRefGoogle Scholar
  20. Jackson MB, Chapman ER (2006) Fusion pores and fusion machines in Ca2+-triggered exocytosis. Annu Rev Biophys Biomol Struct 35:135–160PubMedCrossRefGoogle Scholar
  21. Ko J, Humbert S, Bronson RT, Takahashi S, Kulkarni AB, et al. (2001) p35 and p39 are essential for cyclin-dependent kinase 5 function during neurodevelopment. J Neurosci 21:6758–6771PubMedGoogle Scholar
  22. Lazaro JB, Kitzmann M, Poul MA, Vandromme M, Lamb NJ, et al. (1997) Cyclin dependent kinase 5, cdk5, is a positive regulator of myogenesis in mouse C2 cells. J Cell Sci 110:1251–1260PubMedGoogle Scholar
  23. Lee SY, Wenk MR, Kim Y, Nairn AC, De Camilli P (2004) Regulation of synaptojanin 1 by cyclin dependent kinase 5 at synapses. Proc Natl Acad Sci USA 101:546–551PubMedCrossRefGoogle Scholar
  24. Leibiger IB, Leibiger B, Berggren PO (2002) Insulin feedback action on pancreatic β-cell function. FEBS Lett 532:1–6PubMedCrossRefGoogle Scholar
  25. Lilja L, Yang SN, Webb DL, Juntti-Berggren L, Berggren PO, Bark C (2001) Cyclin-dependent kinase 5 promotes insulin exocytosis. J Biol Chem 276:34199–34205PubMedCrossRefGoogle Scholar
  26. Lilja L, Johansson JU, Gromada J, Mandic SA, Fried G, Berggren PO, Bark C (2004) Cyclin-dependent kinase 5 associated with p39 promotes Munc18-1 phosphorylation and Ca2+-dependent exocytosis. J Biol Chem 279:29534–29541PubMedCrossRefGoogle Scholar
  27. MacDonald PE, Joseph JW, Rorsman P (2005) Glucose-sensing mechanisms in pancreatic β-cells. Phil Trans R Soc B 360:2211–2225PubMedCrossRefGoogle Scholar
  28. Martens S, Kozlov MM, McMahon HT (2007) How Synaptotagmin promotes membrane fusion. Science 316:1205–1208PubMedCrossRefGoogle Scholar
  29. Martin TFJ (2003) Tuning exocytosis for speed: fast and slow modes. Biochem Biophy Acta 1641:157–165CrossRefGoogle Scholar
  30. Misura KMS, Scheller RH, Weis WI (2000) Three-dimensional structure of the neuronal-Sec1-syntaxin 1a complex. Nature 404:355–362PubMedCrossRefGoogle Scholar
  31. Morgan A, Burgoyne RD, Barclay JW, Craig TJ, Prescott GR, Ciufo LF, Evans GJ, Graham ME (2005) Regulation of exocytosis by protein kinase C. Biochem Soc Trans 33:1341–1344PubMedCrossRefGoogle Scholar
  32. Novick P, Field C, Schekman R (1980) Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21:205–215PubMedCrossRefGoogle Scholar
  33. Ohshima T, Ward JM, Huh CG, Longenecker G, Veeranna, Pant HC, Brady RO, Martin LJ, Kulkarni AB (1996) Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc Natl Acad Sci USA 93:11173–11178PubMedCrossRefGoogle Scholar
  34. Pevsner J, Hsu SC, Scheller RH (1994) n-Sec1: a neural-specific syntaxin-binding protein. Proc Natl Acad Sci USA 91:1445–1449PubMedCrossRefGoogle Scholar
  35. Philpott A, Porro EB, Kirschner MW, Tsai LH (1997) The role of cyclin dependent kinase 5 and a novel regulatory subunit in regulating muscle differentiation and patterning. Genes Dev 11:1409–1421PubMedCrossRefGoogle Scholar
  36. Pobbati AV, Stein A, Fasshauer D (2006) N- to C-terminal SNARE complex assembly promotes rapid membrane fusion. Science 313:673–676PubMedCrossRefGoogle Scholar
  37. Rorsman P, Renström E (2003) Insulin granule dynamics in pancreatic β-cells. Diabetologia 46:1029–1045PubMedCrossRefGoogle Scholar
  38. Rosales JL, Ernst JD, Hallows J, Lee KY (2004) GTP-dependent secretion from neutrophils is regulated by Cdk5. J Biol Chem 279:53932–53936PubMedCrossRefGoogle Scholar
  39. Rosales JL, Lee KY (2006) Extraneuronal roles of cyclin-dependent kinase 5. BioEssays 28:1023–1034Google Scholar
  40. Rose T, Efendic S, Rupnik M (2007) Ca2+-secretion coupling is impaired in diabetic Goto Kakizaki rats. J Gen Physiol 129(6):493–508PubMedCrossRefGoogle Scholar
  41. Sahlgren CM, Mikhailov A, Vaittinen S, Pallari HM, Kalimo H, et al. (2003) Cdk5 regulates the organization of Nestin and its association with p35. Mol Cell Biol 23:5090–5106PubMedCrossRefGoogle Scholar
  42. Saxena R, Voight BF, Lyssenko V,. Burtt NP, de Bakker PIW, et al. (2007) Genome-Wide Association Analysis Identifies Loci for Type 2 Diabetes and Triglyceride Levels. Published Online April 26, 2007 Science DOI: 10.1126/science.1142358Google Scholar
  43. Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, et al. (2007) A Genome-Wide Association Study of Type 2 Diabetes in Finns Detects Multiple Susceptibility Variants. Published Online April 26, 2007 Science DOI: 10.1126/science.1142382Google Scholar
  44. Sharma M, Hanchate NK, Tyagi RK, Sharma P (2007) Cyclin dependent kinase 5 (Cdk5) mediated inhibition of the MAP kinase pathway results in CREB down regulation and apoptosis in PC12 cells. Biochem Biophys Res Commun May 4; [Epub ahead of print]Google Scholar
  45. Shen S, Tareste DC, Paumet F, Rothman JE, Melia TJ (2007) Selective activation of cognate SNAREpins by Sec1/Munc18 proteins. Cell 128:183–195PubMedCrossRefGoogle Scholar
  46. Shuang R, Zhang L, Fletcher A, Groblewski GE, Pevsner J, et al. (1998) Regulation of Munc-18/syntaxin 1A interaction by cyclin-dependent kinase 5 in nerve endings. J Biol Chem 273:4957–4966PubMedCrossRefGoogle Scholar
  47. Smith DS, Tsai LH (2002) Cdk5 behind the wheel: a role in trafficking and transport? Trends Cell Biol 12:28–36PubMedCrossRefGoogle Scholar
  48. Snyder DA; Kelly ML, Woodbury DJ (2006) SNARE complex regulation by phosphorylation. Cell Biochem Biophys 45:111–123PubMedCrossRefGoogle Scholar
  49. Speier S, Rupnik M (2003) A novel approach to in situ characterization of pancreatic β-cells. Pflugers Arch 446:553–558PubMedCrossRefGoogle Scholar
  50. Speier S, Yang SB, Sroka K, Rose T, Rupnik M (2005) KATP-channels in β-cells in tissue slices are directly modulated by millimolar ATP. Mol Cell Endocrinol 230:51–58PubMedCrossRefGoogle Scholar
  51. Speier S, Gjinovci A, Charollais A, Meda P, Rupnik M (2007) Cx36-Mediated Coupling Reduces {beta}-Cell Heterogeneity, Confines the Stimulating Glucose Concentration Range, and Affects Insulin Release Kinetics. Diabetes 56:1078–1086PubMedCrossRefGoogle Scholar
  52. Steinthorsdottir V, Thorleifsson G, Reynisdottir I, Benediktsson R, Jonsdottir T, et al. (2007) A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nature Genetics Published online: 26 April 2007 | doi:10.1038/ng2043Google Scholar
  53. Sutton RB, Fasshauer D, Jahn R, Brunger AT (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395:347–353PubMedCrossRefGoogle Scholar
  54. Südhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547PubMedCrossRefGoogle Scholar
  55. Söllner T, Whiteheart SW, Brunner M, Erdjument-Bromage H, Geromanos S, Tempst P, Rothman JE (1993a) SNAP receptors implicated in vesicle targeting and fusion. Nature 362:318–324CrossRefGoogle Scholar
  56. Söllner T, Bennett MK, Whiteheart SW, Scheller RH, Rothman JE (1993b) A protein assembly disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75:409–418CrossRefGoogle Scholar
  57. Tan TC, Valova VA, Malladi CS, Graham ME, Berven LA, Jupp OJ, Hansra G, McClure SJ, Sarcevic B, Boadle RA, Larsen MR, Cousin MA, Robinson PJ (2003) Cdk5 is essential for synaptic vesicle endocytosis. Nat Cell Biol 5:701–710PubMedCrossRefGoogle Scholar
  58. Tellam JT, McIntosh S, James DE (1995) Molecular identification of two novel Munc-18 isoforms expressed in non-neuronal tissues. J Biol Chem 270:5857–58631PubMedCrossRefGoogle Scholar
  59. Tomizawa K, Sunada S, Lu YF, Oda Y, Kinuta M, Ohshima T, Saito T, Wei FY, Matsushita M, Li ST, Tsutsui K, Hisanaga S, Mikoshiba K, Takei K, Matsui H. (2003) Cophosphorylation of amphiphysin I and dynamin I by Cdk5 regulates clathrin-mediated endocytosis of synaptic vesicles. J Cell Biol 163:813–824PubMedCrossRefGoogle Scholar
  60. Ubeda M, Kemp DM, Habener JF (2004) Glucose-induced expression of the cyclin-dependent protein kinase 5 activator p35 involved in Alzheimer’s disease regulates insulin gene transcription in pancreatic β-cells. Endocrinology 145:3023–3031PubMedCrossRefGoogle Scholar
  61. Ubeda M, Rukstalis JM, Habener JF (2006) Inhibition of cyclin-dependent protein kinase 5 activity protects pancreatic β cells from glucotoxicity. J Biol Chem 281:28858–28864PubMedCrossRefGoogle Scholar
  62. Wei FY, Nagashima K, Ohshima T, Saheki Y, Lu YF, et al. (2005) Cdk5-dependent regulation of glucose-stimulated insulin secretion. Nat Med 11:1104–1108PubMedCrossRefGoogle Scholar
  63. Xin X, Ferraro F, Back N, Eipper BA, Mains RE (2004) Cdk5 and Trio modulate endocrine cell exocytosis. J Cell Sci 117:4739–4748PubMedCrossRefGoogle Scholar
  64. Yang SN, Berggren PO (2006) The role of voltage-gated calcium channels in pancreatic β-cell physiology and pathophysiology. Endocr Rev 27:621–676PubMedCrossRefGoogle Scholar
  65. Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, et al. (2007) Replication of Genome-Wide Association Signals in U.K. Samples Reveals Risk Loci for Type 2 Diabetes. Published Online April 26, 2007 Science DOI: 10.1126/science.1142364Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Christina Bark
    • 1
  • Marjan Rupnik
  • Marko Jevsek
  • Slavena A. Mandic
  • Per-Olof Berggren
  1. 1.The Rolf Luft Research Center for Diabetes and EndocrinologyKarolinska InstitutetSweden

Personalised recommendations