Advertisement

Cdk5 and Neuregulin-1 Signaling

  • Yi Wen
  • Haung Yu
  • Karen Duff
Chapter

Abstract

Cyclin-dependent kinase 5 (cdk5) is implicated in many neurodegenerative diseases including Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), and Parkinson’s disease (PD). Overexpression of p25 in transgenic mice leads to enhanced cdk5 activity, together with aberrant phosphorylation of cytoskeletal components and the formation of hyperphosphorylated tau. Consistent with previous findings, we observed enhanced NRG-1/ErbB receptor signaling in the p25 overexpressing mice, together with increased PI3 kinase (P13 K)/Akt activity and GSK3β inhibition by S9 phosphorylation. Further, a specific cdk5 inhibitor CP-681301 reduces ErbB2 receptor tyrosine phosphorylation. These results imply that cdk5 is involved in neuregulin-dependent activation of the PI3 K/Akt neuronal survival pathway and potentially other NRG-1-related signaling pathways by regulating the phosphorylation of ErbB2/ErbB3.

Keywords

Alzheimer Disease Amyotrophic Lateral Sclerosis Cdk5 Activity Susceptibility Candidate Gene Acetylcholine Receptor Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Pelech, S. L. (1995) Neurobiology of aging 16(3), 247–256; discussion 257–261PubMedGoogle Scholar
  2. 2.
    Michaelis, M. L., Dobrowsky, R. T., and Li, G. (2002) J Mol Neurosci 19(3), 289–293PubMedCrossRefGoogle Scholar
  3. 3.
    Hanger, D. P., Hughes, K., Woodgett, J. R., Brion, J. P., and Anderton, B. H. (1992) Neurosci Lett 147(1), 58–62PubMedCrossRefGoogle Scholar
  4. 4.
    Paudel, H. K., Lew, J., Ali, Z., and Wang, J. H. (1993) J Biol Chem 268(31), 23512–23518PubMedGoogle Scholar
  5. 5.
    Shelton, S. B., and Johnson, G. V. (2004) J Neurochem 88(6), 1313–1326PubMedCrossRefGoogle Scholar
  6. 6.
    Ishizawa, T., Sahara, N., Ishiguro, K., Kersh, J., McGowan, E., Lewis, J., Hutton, M., Dickson, D. W., and Yen, S. H. (2003) Am J Pathol 163(3), 1057–1067Google Scholar
  7. 7.
    Dhavan, R., and Tsai, L. H. (2001) Nat Rev Mol Cell Biol 2(10), 749–759PubMedCrossRefGoogle Scholar
  8. 8.
    Tsai, L. H., Delalle, I., Caviness, Jr., V. S., Chae, T., and Harlow, E. (1994) Nature 371(6496), 419–423PubMedCrossRefGoogle Scholar
  9. 9.
    Cruz, J. C., and Tsai, L. H. (2004) Curr Opin Neurobiol 14(3), 390–394PubMedCrossRefGoogle Scholar
  10. 10.
    Fletcher, A. I., Shuang, R., Giovannucci, D. R., Zhang, L., Bittner, M. A., and Stuenkel, E. L. (1999) J Biol Chem 274(7), 4027–4035PubMedCrossRefGoogle Scholar
  11. 11.
    Wang, J., Liu, S., Fu, Y., Wang, J. H., and Lu, Y. (2003) Nature Neurosci 6(10), 1039–1047PubMedCrossRefGoogle Scholar
  12. 12.
    Fu, A. K., Fu, W. Y., Cheung, J., Tsim, K. W., Ip, F. C., Wang, J. H., and Ip, N. Y. (2001) Nat Neurosci. 4(4), 374–381Google Scholar
  13. 13.
    Lee, M. S., Kwon, Y. T., Li, M., Peng, J., Friedlander, R. M., and Tsai, L. H. (2000) Nature 405(6784), 360–364PubMedCrossRefGoogle Scholar
  14. 14.
    Patzke, H., and Tsai, L. H. (2002) J Biol Chem 277(10), 8054–8060Google Scholar
  15. 15.
    Ahlijanian, M. K., Barrezueta, N. X., Williams, R. D., Jakowski, A., Kowsz, K. P., McCarthy, S., Coskran, T., Carlo, A., Seymour, P. A., Burkhardt, J. E., Nelson, R. B., and McNeish, J. D. (2000) Proc Natl Acad Sci USA 97(6), 2910–2915PubMedCrossRefGoogle Scholar
  16. 16.
    Bian, F., Nath, R., Sobocinski, G., Booher, R. N., Lipinski, W. J., Callahan, M. J., Pack, A., Wang, K. K., and Walker, L. C. (2002) J Comp Neurol 446(3), 257–266PubMedCrossRefGoogle Scholar
  17. 17.
    Cruz, J. C., Kim, D., Moy, L. Y., Dobbin, M. M., Sun, X., Bronson, R. T., and Tsai, L. H. (2006) J Neurosci 26(41), 10536–10541PubMedCrossRefGoogle Scholar
  18. 18.
    Noble, W., Olm, V., Takata, K., Casey, E., Mary, O., Meyerson, J., Gaynor, K., LaFrancois, J., Wang, L., Kondo, T., Davies, P., Burns, M., Veeranna, Nixon, R., Dickson, D., Matsuoka, Y., Ahlijanian, M., Lau, L. F., and Duff, K. (2003) Neuron 38(4), 555–565Google Scholar
  19. 19.
    Kitazawa, M., Oddo, S., Yamasaki, T. R., Green, K. N., and LaFerla, F. M. (2005) J Neurosci 25(39), 8843–8853PubMedCrossRefGoogle Scholar
  20. 20.
    Nguyen, M. D., Boudreau, M., Kriz, J., Couillard-Despres, S., Kaplan, D. R., and Julien, J. P. (2003) J Neurosci 23(6), 2131–2140PubMedGoogle Scholar
  21. 21.
    Smith, P. D., Crocker, S. J., Jackson-Lewis, V., Jordan-Sciutto, K. L., Hayley, S., Mount, M. P., O'Hare, M. J., Callaghan, S., Slack, R. S., Przedborski, S., Anisman, H., and Park, D. S. (2003) Proc Natl Acad Sci USA 100(23), 13650–13655PubMedCrossRefGoogle Scholar
  22. 22.
    Falls, D. L. (2003) Exp Cell Res 284(1), 14–30PubMedCrossRefGoogle Scholar
  23. 23.
    Law, A. J., Lipska, B. K., Weickert, C. S., Hyde, T. M., Straub, R. E., Hashimoto, R., Harrison, P. J., Kleinman, J. E., and Weinberger, D. R. (2006) Proc Natl Acad Sci USA 103(17), 6747–6752PubMedCrossRefGoogle Scholar
  24. 24.
    Willem, M., Garratt, A. N., Novak, B., Citron, M., Kaufmann, S., Rittger, A., DeStrooper, B., Saftig, P., Birchmeier, C., and Haass, C. (2006) Science (New York, NY) 314(5799), 664–666CrossRefGoogle Scholar
  25. 25.
    Horiuchi, K., Zhou, H. M., Kelly, K., Manova, K., and Blobel, C. P. (2005) Dev Biol 283(2), 459–471PubMedCrossRefGoogle Scholar
  26. 26.
    Nave, K. A., and Salzer, J. L. (2006) Curr Opin Neurobiol 16(5), 492–500PubMedCrossRefGoogle Scholar
  27. 27.
    Taveggia, C., Zanazzi, G., Petrylak, A., Yano, H., Rosenbluth, J., Einheber, S., Xu, X., Esper, R. M., Loeb, J. A., Shrager, P., Chao, M. V., Falls, D. L., Role, L., and Salzer, J. L. (2005) Neuron 47(5), 681–694PubMedCrossRefGoogle Scholar
  28. 28.
    Burgess, A. W., Cho, H. S., Eigenbrot, C., Ferguson, K. M., Garrett, T. P., Leahy, D. J., Lemmon, M. A., Sliwkowski, M. X., Ward, C. W., and Yokoyama, S. (2003) Mol Cell 12(3), 541–552PubMedCrossRefGoogle Scholar
  29. 29.
    Esper, R. M., Pankonin, M. S., and Loeb, J. A. (2006) Brain Res Rev 51(2), 161–175PubMedCrossRefGoogle Scholar
  30. 30.
    Li, B. S., Ma, W., Jaffe, H., Zheng, Y., Takahashi, S., Zhang, L., Kulkarni, A. B., and Pant, H. C. (2003) J Biol Chem 278(37), 35702–35709Google Scholar
  31. 31.
    Lee, M. S., and Tsai, L. H. (2001) Nat Neurosci 4(4), 340–342PubMedCrossRefGoogle Scholar
  32. 32.
    Guy, P. M., Platko, J. V., Cantley, L. C., Cerione, R. A., and Carraway, K. L., III. (1994) Proc Natl Acad Sci USA 91(17), 8132–8136Google Scholar
  33. 33.
    Sierke, S. L., Cheng, K., Kim, H. H., and Koland, J. G. (1997) Biochem J 322(Pt 3), 757–763PubMedGoogle Scholar
  34. 34.
    Fukazawa, T., Reedquist, K. A., Panchamoorthy, G., Soltoff, S., Trub, T., Druker, B., Cantley, L., Shoelson, S. E., and Band, H. (1995) J Biol Chem 270(34), 20177–20182PubMedCrossRefGoogle Scholar
  35. 35.
    Datta, S. R., Brunet, A., and Greenberg, M. E. (1999) Genes Dev 13(22), 2905–2927PubMedCrossRefGoogle Scholar
  36. 36.
    Patrick, G. N., Zukerberg, L., Nikolic, M., de la Monte, S., Dikkes, P., and Tsai, L. H. (1999) Nature 402(6762), 615–622Google Scholar
  37. 37.
    Norton, N., Moskvina, V., Morris, D. W., Bray, N. J., Zammit, S., Williams, N. M., Williams, H. J., Preece, A. C., Dwyer, S., Wilkinson, J. C., Spurlock, G., Kirov, G., Buckland, P., Waddington, J. L., Gill, M., Corvin, A. P., Owen, M. J., and O'Donovan, M. C. (2006) Am J Med Genet B Neuropsychiatr Genet 141(1), 96–101Google Scholar
  38. 38.
    Lachman, H. M., Pedrosa, E., Nolan, K. A., Glass, M., Ye, K., and Saito, T. (2006) Am J Med Genet B Neuropsychiatr Genet 141(1), 102–109Google Scholar
  39. 39.
    Straub, R. E., and Weinberger, D. R. (2006) Biol Psychiatry 60(2), 81–83PubMedCrossRefGoogle Scholar
  40. 40.
    Hahn, C. G., Wang, H. Y., Cho, D. S., Talbot, K., Gur, R. E., Berrettini, W. H., Bakshi, K., Kamins, J., Borgmann-Winter, K. E., Siegel, S. J., Gallop, R. J., and Arnold, S. E. (2006) Nat Med 12(7), 824–828PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Pathology, Taub Institute for Alzheimer’s Disease researchColumbia University; NYS Psychiatric InstituteUSA

Personalised recommendations