RegB/RegA, A Global Redox-Responding Two-Component System

  • Jiang Wu
  • Carl E. Bauer
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 631)


The RegB-RegA regulon from Rhodobacter capsulatus and Rhodobacter sphaeroides encodes proteins involved in numerous energy-generating and energy-utilizing processes such as photosynthesis, carbon fixation, nitrogen fixation, hydrogen utilization, aerobic and anaerobic respiration, denitrification, electron transport and aerotaxis. The redox signal that is detected by the membrane-bound sensor kinase, RegB, has been identified to be the ubiquinone pool in the membrane. Regulation of RegB autophosphorylation also involves a redox-active cysteine that is present in the cytosolic region of RegB. Both phosphorylated and unphosphorylated forms of the cognate response regulator RegA are capable of activating or repressing a variety of genes in the regulon. Highly conserved homologues of RegB and RegA have been found in a wide number of photosynthetic and nonphotosynthetic bacteria with evidence suggesting that RegB/RegA have a fundamental role in the transcription of redox-regulated genes in many bacterial species.


Rhodobacter Sphaeroides Sensor Kinase Rhodobacter Capsulatus Histidine Protein Kinase Anoxygenic Photosynthetic Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mosley CS, Suzuki JY, Bauer CE. Identification and molecular genetic characterization of a sensor kinase responsible for coordinately regulating light harvesting and reaction center gene expression in response to anaerobiosis. J Bacteriol 1994; 176:7566–7573.PubMedGoogle Scholar
  2. 2.
    Sganga MW, Bauer CE. Regulatory factors controlling photosynthetic reaction center and light-harvesting gene expression in Rhodobacter capsulatus. Cell 1992; 68:945–954.PubMedCrossRefGoogle Scholar
  3. 3.
    Cohen-Bazire G, Sistrom WR, Stanier RY. Kinetic studies of pigment synthesis by nonsulfur purple bacteria. J Cell Physiol 1957; 49:25–68.PubMedCrossRefGoogle Scholar
  4. 4.
    Parkinson JS, Kofoid EC. Communication modules in bacterial signaling proteins. Annu Rev Genet 1992; 26:71–112.PubMedCrossRefGoogle Scholar
  5. 5.
    Stock JB, Ninfa AJ, Stock AM. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 1989; 53:450–490.PubMedGoogle Scholar
  6. 6.
    Stock AM, Robinson VL, Goudreau PN. Two-component signal transduction. Annu Rev Biochem 2000; 69:183–215.PubMedCrossRefGoogle Scholar
  7. 7.
    Phillips-Jones MK, Hunter CN. Cloning and nucleotide sequence of regA, a putative response regulator gene of Rhodobacter sphaeroides. FEMS Microbiol Lett 1994; 116:269–275.PubMedCrossRefGoogle Scholar
  8. 8.
    Eraso JM, Kaplan S. prrA, a putative response regulator involved in oxygen regulation of photosynthesis gene expression in Rhodobacter sphaeroides. J Bacteriol 1994; 176:32–43.PubMedGoogle Scholar
  9. 9.
    Eraso JM, Kaplan S. Oxygen-insensitive synthesis of the photosynthetic membranes of Rhodobacter sphaeroides: a mutant histidine kinase. J Bacteriol 1995; 177:2695–2706.PubMedGoogle Scholar
  10. 10.
    Bauer E, Kaspar T, Fischer HM et al. Expression of the fixR-nifA operon in Bradyrhizobium japonicum depends on a new response regulator, RegR. J Bacteriol 1998; 180:3853–3863.PubMedGoogle Scholar
  11. 11.
    Tiwari RP, Reeve WG, Dilworth MJ et al. Acid tolerance in Rhizobium meliloti strain WSM419 involves a two-component sensor-regulator system. Microbiology 1996; 142:1693–1704.PubMedGoogle Scholar
  12. 12.
    Comolli JC, Donohue TJ. Pseudomonas aeruginosa RoxR, a response regulator related to Rhodobacter sphaeroides PrrA, activates expression of the cyanide-insensitive terminal oxidase. Mol Microbiol 2002; 45:755–768.PubMedCrossRefGoogle Scholar
  13. 13.
    Masuda S, Matsumoto Y, Nagashima KV et al. Structural and functional analyses of photosynthetic regulatory genes regA and regB from Rhodovulum sulfidophilum, Roseobacter denitrificans and Rhodobacter capsulatus. J Bacteriol 1999; 181:4205–4215.PubMedGoogle Scholar
  14. 14.
    Emmerich R, Hennecke H, Fischer HM. Evidence for a functional similarity between the two-component regulatory systems RegSR, ActSR and RegBA (PrrBA) in alpha-Proteobacteria. Arch Microbiol 2000; 174:307–313.PubMedCrossRefGoogle Scholar
  15. 15.
    Oh JI, Eraso JM, Kaplan S. Interacting regulatory circuits involved in orderly control of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1. J Bacteriol 2000; 182:3081–3087.PubMedCrossRefGoogle Scholar
  16. 16.
    Oh JI, Kaplan S. Generalized approach to the regulation and integration of gene expression. Mol Microbiol 2001; 39:1116–1123.PubMedCrossRefGoogle Scholar
  17. 17.
    Smart JL, Willett JW, Bauer CE. Regulation of hem gene expression in Rhodobacter capsulatus by redox and photosystem regulators RegA, CrtJ, FnrL and AerR. J Mol Biol 2004; 342:1171–1186.PubMedCrossRefGoogle Scholar
  18. 18.
    Ranson-Olson B, Jones DF, Donohue TJ et al. In vitro and in vivo analysis of the role of PrrA in Rhodobacter sphaeroides 2.4.1. hemA gene expression. J Bacteriol 2006; 188:3208–3218.PubMedCrossRefGoogle Scholar
  19. 19.
    Comolli JC, Carl AJ, Hall C et al. Transcriptional activation of the Rhodobacter sphaeroides cytochrome c(2) gene P2 promoter by the response regulator PrrA. J Bacteriol 2002; 184:390–399.PubMedCrossRefGoogle Scholar
  20. 20.
    Karls RK, Wolf JR, Donohue TJ. Activation of the cycA P2 promoter for the Rhodobacter sphaeroides cytochrome c2 gene by the photosynthesis response regulator. Mol Microbiol 1999; 34:822–835.PubMedCrossRefGoogle Scholar
  21. 21.
    Swem LR, Elsen S, Bird TH et al. The RegB/RegA two-component regulatory system controls synthesis of photosynthesis and respiratory electron transfer components in Rhodobacter capsulatus. Mol Microbiol 2001; 309:121–138.Google Scholar
  22. 22.
    Gray KAaD, F. Mutational studies of the eytochrome bc1 complexes. In: Blankenship RE, Madigan MT, Bauer CE, eds, Anoxygenic Photosynthetic Bacteria. Dordrecht: Kluwer Academic Publishers, 1995:747–774.Google Scholar
  23. 23.
    Zannoni D. Aerobic and anaerobic transport chains in anoxygenic phototrophic bacteria. In: Blankenship RE, Madigan MT, Bauer CE, eds. Anoxygenic Photosynthetic Bacteria. Dordrecht: Kluwer Academic Publishers, 1995:949–971.Google Scholar
  24. 24.
    Mouncey NJ, Kaplan S. Redox-dependent gene regulation in Rhodobacter sphaeroides 2.4.1(T): effects on dimethyl sulfoxide reductase (dor) gene expression. J Bacteriol 1998; 180:5612–5618.PubMedGoogle Scholar
  25. 25.
    Mouncey NJ, Choudhary M, Kaplan S. Characterization of genes encoding dimethyl sulfoxide reductase of Rhodobacter sphaeroides 2.4.1T: an essential metabolic gene function encoded on chromosome II. J Bacteriol 1997; 179:7617–7624.PubMedGoogle Scholar
  26. 26.
    Shaw AL, Leimkuhler S, Klipp W et al. Mutational analysis of the dimethylsulfoxide respiratory (dor) operon of Rhodobacter capsulatus. Microbiology 1999; 145:1409–1420.PubMedCrossRefGoogle Scholar
  27. 27.
    Kappler U, Huston WM, McEwan AG. Control of dimethylsulfoxide reductase expression in Rhodobacter capsulatus: the role of carbon metabolites and the response regulators DorR and RegA. Microbiology 2002; 148:605–614.PubMedGoogle Scholar
  28. 28.
    Dubbs JM, Bird TH, Bauer CE et al. Interaction of CbbR and RegA* transcription regulators with the Rhodobacter sphaeroides cbbI promoter-operator region. J Biol Chem 2000; 275:19224–19230.PubMedCrossRefGoogle Scholar
  29. 29.
    Dubbs JM, Tabita FR. Two functionally distinct regions upstream of the cbbI operon of Rhodobacter sphaeroides regulate gene expression. J Bacteriol 1998; 180:4903–4911.PubMedGoogle Scholar
  30. 30.
    Dubbs JM, Tabita FR. Interactions of the cbbII promoter-operator region with CbbR and RegA (PrrA) regulators indicate distinct mechanisms to control expression of the two cbb operons of Rhodobacter sphaeroides. J Biol Chem 2003; 278:16443–16450.PubMedCrossRefGoogle Scholar
  31. 31.
    Gibson JL, Dubbs JM, Tabita FR. Differential expression of the CO2 fixation operons of Rhodobacter sphaeroides by the Prr/Reg two-component system during chemoautotrophic growth. J Bacteriol 2002; 184:6654–6664.PubMedCrossRefGoogle Scholar
  32. 32.
    Vichivanives P, Bird TH, Bauer CE et al. Multiple regulators and their interactions in vivo and in vitro with the cbb regulons of Rhodobacter capsulatus. J Mol Biol 2000; 300:1079–1099.PubMedCrossRefGoogle Scholar
  33. 33.
    Emmerich R, Strehler P, Bauer E et al. Functional analysis of the Bradyrhizobium japonicum RegSR two-component regulatory system. In: Pedrosa FO, Hungria M, Yates G, Newton WE, eds. Nitrogen Fixation: From Molecules to Crop Productivity. London: Kluwer, 2000:89–90.Google Scholar
  34. 34.
    Fenner BJ, Tiwari RP, Reeve WG et al. ActR is a global genetic regulator in Sinorhizobium meliloti. In: Pedrosa FO, Hungria M, Yates G, Newton WE, eds. Nitrogen Fixation: From Molecules to Crop Productivity. London: Kluwer, 2000:488.Google Scholar
  35. 35.
    Masepohl BKW. Organization and regulation of genes encoding the molybdenum nitrogenase and the alternative nitrogenase in Rhodobacter capsulatus. Arch. Microbiol 1996; 165:80–90.CrossRefGoogle Scholar
  36. 36.
    Joshi HM, Tabita FR. A global two component signal transduction system that integrates the control of photosynthesis, carbon dioxide assimilation and nitrogen fixation. Proc Natl Acad Sci USA. 1996; 93:14515–14520.PubMedCrossRefGoogle Scholar
  37. 37.
    Elsen S, Dischert W, Colbeau A et al. Expression of uptake hydrogenase and molybdenum nitrogenase in Rhodobacter capsulatus is coregulated by the RegB-RegA two-component regulatory system. J Bacteriol 2000; 182:2831–2837.PubMedCrossRefGoogle Scholar
  38. 38.
    Laratta WP, Choi PS, Tosques IE et al. Involvement of the PrrB/PrrA two-component system in nitrite respiration in Rhodobacter sphaeroides 2.4.3: evidence for transcriptional regulation. J Bacteriol 2002; 184:3521–3529.PubMedCrossRefGoogle Scholar
  39. 39.
    Vignais PM, Toussaint B, Colbeau A. Regulation of hydrogenase gene expression. In: Blankenship RE, Madigan MT, Bauer CE, eds. Anoxygenic Photosynthetic Bacteria. Dordrecht: Kluwer Academic Publishers, 1995:1175–1190.Google Scholar
  40. 40.
    Dischert W, Vignais PM, Colbeau A. The synthesis of Rhodobacter capsulatus HupSL hydrogenase is regulated by the two-component HupT/HupR system. Mol Microbiol 1999; 34:995–1006.PubMedCrossRefGoogle Scholar
  41. 41.
    Toussaint B, de Sury ďAspremont R, Delic-Attree I et al. The Rhodobacter capsulatus hupSLC promoter: identification of cis-regulatory elements and of trans-activating factors involved in H2 activation of hupSLC transcription. Mol Microbiol 1997; 26:927–937.PubMedCrossRefGoogle Scholar
  42. 42.
    Barber RD, Donohue TJ. Pathways for transcriptional activation of a glutathione-dependent formaldehyde dehydrogenase gene. J Mol Biol 1998; 280:775–784.PubMedCrossRefGoogle Scholar
  43. 43.
    Chen W, Jager A, Klug G. Correction of the DNA sequence of the regB gene of Rhodobacter capsulatus with implications for the membrane topology of the sensor kinase RegB. J Bacteriol 2000; 182:818–820.PubMedCrossRefGoogle Scholar
  44. 44.
    Ouchane S, Kaplan S. Topological analysis of the membrane-localized redox-responsive sensor kinase PrrB from Rhodobacter sphaeroides 2.4.1. J Biol Chem 1999; 274:17290–17296.PubMedCrossRefGoogle Scholar
  45. 45.
    Swem LR, Gong X, Yu CA et al. Identification of a ubiquinone-binding site that affects autophosphorylation of the sensor kinase RegB. J Biol Chem 2006; 281:6768–6775.PubMedCrossRefGoogle Scholar
  46. 46.
    Swem LR, Kraft BJ, Swem DL et al. Signal transduction by the global regulator RegB is mediated by a redox-active cysteine. EMBO J 2003; 22:4699–4708.PubMedCrossRefGoogle Scholar
  47. 47.
    Bird TH, Du S, Bauer CE. Autophosphorylation, phosphotransfer and DNA-binding properties of the RegB/RegA two-component regulatory system in Rhodobacter capsulatus. J Biol Chem 1999; 274:16343–16348.PubMedCrossRefGoogle Scholar
  48. 48.
    Inoue K, Kouadio JL, Mosley CS et al. Isolation and in vitro phosphorylation of sensory transduction components controlling anaerobic induction of light harvesting and reaction center gene expression in Rhodobacter capsulatus. Biochemistry 1995; 34:391–396.PubMedCrossRefGoogle Scholar
  49. 49.
    Emmerich R, Panglungtshang K, Strehler P et al. Phosphorylation, dephosphorylation and DNA-binding of the Bradyrhizobium japonicum RegSR two-component regulatory proteins. Eur J Biochem 1999; 263:455–463.PubMedCrossRefGoogle Scholar
  50. 50.
    Potter CA, Ward A, Laguri C et al. Expression, purification and characterisation of full-length histidine protein kinase RegB from Rhodobacter sphaeroides. J Mol Biol 2002; 320:201–213.PubMedCrossRefGoogle Scholar
  51. 51.
    Oh JI, Ko IJ, Kaplan S. The default state of the membrane-localized histidine kinase PrrB of Rhodobacter sphaeroides 2.4.1 is in the kinase-positive mode. J Bacteriol 2001; 183:6807–6814.PubMedCrossRefGoogle Scholar
  52. 52.
    Inouye M, Dutta R, Zhu Y. Regulation of porins in Escherichia coli by the osmosensing histidine kinase/Phosphatase EnvZ. In: M. Inouye, ed. Histidine Kinases in Signal Tranduction. Burlington: Academic Press, 2003:25–46.CrossRefGoogle Scholar
  53. 53.
    Madigan MT, Gest H. Growth of the photosynthetic bacterium Rhodopseudomonas capsulata chemoautotrophically in darkness with H2 as the energy source. J Bacteriol 1979; 137:524–530.PubMedGoogle Scholar
  54. 54.
    Eraso JM, Kaplan S. From redox flow to gene regulation: role of the PrrC protein of Rhodobacter sphaeroides 2.4.1. Biochemistry 2000; 39:2052–2062.PubMedCrossRefGoogle Scholar
  55. 55.
    O’Gara JP, Kaplan S. Evidence for the role of redox carriers in photosynthesis gene expression and carotenoid biosynthesis in Rhodobacter sphaeroides 2.4.1. J Bacteriol 1997; 179:1951–1961.PubMedGoogle Scholar
  56. 56.
    Oh JI, Kaplan S. Redox signaling: globalization of gene expression. EMBO J 2000; 19:4237–4247.PubMedCrossRefGoogle Scholar
  57. 57.
    Roh JH, Kaplan S. Genetic and phenotypic analyses of the rdx locus of Rhodobacter sphaeroides 2.4.1. J Bacteriol 2000; 182:3475–3481.PubMedCrossRefGoogle Scholar
  58. 58.
    Buggy J, Bauer CE. Cloning and characterization of senC, a gene involved in both aerobic respiration and photosynthesis gene expression in Rhodobacter capsulatus. J Bacteriol 1995; 177:6958–6965.PubMedGoogle Scholar
  59. 59.
    Bolton JR. In: Clayton RK, Sistrom WR, eds. The Photosynthetic Bacteria. New York: Plenum Press, 1978:419–429.Google Scholar
  60. 60.
    Parson W. In: Clayton RK, Sistrom WR, eds. The Photosynthetic Bacteria. New York: Plenum Press, 1978:455–469.Google Scholar
  61. 61.
    McEwan AG, Lewin A, Davy SL et al. PrrC from Rhodobacter sphaeroides, a homologue of eukaryotic Sco proteins, is a copper-binding protein and may have a thiol-disulfide oxidoreductase activity. FEBS Lett 2002; 518:10–16.PubMedCrossRefGoogle Scholar
  62. 62.
    Du S, Bird TH, Bauer CE. DNA binding characteristics of RegA. A constitutively active anerobic activator of photosynthesis gene expression in Rhodobacter capsulatus. J Biol Chem 1998; 273:18509–18513.PubMedCrossRefGoogle Scholar
  63. 63.
    Laguri C, Phillips-Jones MK, Williamson MP. Solution structure and DNA binding of the effector domain from the global regulator PrrA (RegA) from Rhodobacter sphaeroides: insights into DNA binding specificity. Nucleic Acids Res 2003; 31:6778–6787.PubMedCrossRefGoogle Scholar
  64. 64.
    Hemschemeier SK, Ebel U, Jager A et al. In vivo and in vitro analysis of RegA response regulator mutants of Rhodobacter capsulatus. J Mol Microbiol Biotechnol 2000; 2:291–300.PubMedGoogle Scholar
  65. 65.
    Swem DL, Bauer CE. Coordination of ubiquinol oxidase and cytochrome cbb(3) oxidase expression by multiple regulators in Rhodobacter capsulatus. J Bacteriol 2002; 184:2815–2820.PubMedCrossRefGoogle Scholar
  66. 66.
    Qian Y, Tabita FR. A global signal transduction system regulates aerobic and anaerobic CO2 fixation in Rhodobacter sphaeroides. J Bacteriol 1996; 178:12–18.PubMedGoogle Scholar
  67. 67.
    Hemschemeier SK, Kirndorfer M, Hebermehl M et al. DNA binding of wild type RegA protein and its differential effect on the expression of pigment binding proteins in Rhodobacter capsulatus. J Mol Microbiol Biotechnol 2000; 2:235–243.PubMedGoogle Scholar
  68. 68.
    Du S, Kouadio JL, Bauer CE. Regulated expression of a highly conserved regulatory gene cluster is necessary for controlling photosynthesis gene expression in response to anaerobiosis in Rhodobacter capsulatus. J Bacteriol 1999; 181:4334–4341.PubMedGoogle Scholar
  69. 69.
    Emmerich R, Strehler P, Hennecke H et al. An imperfect inverted repeat is critical for DNA binding of the response regulator RegR of Bradyrhizobium japonicum. Nucleic Acids Res 2000; 28:4166–4171.PubMedCrossRefGoogle Scholar
  70. 70.
    Jones DF, Stenzel RA, Donohue TJ. Mutational analysis of the C-terminal domain of the Rhodobacter sphaeroides response regulator PrrA. Microbiology 2005; 151:4103–4110.PubMedCrossRefGoogle Scholar
  71. 71.
    Tichi MA, Tabita FR. Interactive control of Rhodobacter capsulatus redox-balancing systems during phototrophic metabolism. J Bacteriol 2001; 183:6344–6354.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  1. 1.Department of BiologyIndiana UniversityBloomingtonUSA

Personalised recommendations