Two-Component Signaling Systems and Cell Cycle Control in Caulobacter crescentus

  • Erin B. Purcell
  • Cara C. Boutte
  • Sean Crosson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 631)


Recent work on the regulation of prokaryotic growth and development by two-component systems (TCS) has revealed unsuspected levels of complexity. In the dimorphic freshwater bacterium Caulobacter crescentus, TCS provide stringent temporal and spatial control of cellular development and cell-cycle progression. While the environmental signals modulating TCS regulatory networks are largely unknown, the components of the network and their interactions with each other are increasingly well-defined. Here, we present an overview of TCS regulation of cell-cycle control in C. crescentus.


Response Regulator Histidine Kinase Chromosome Replication Swarmer Cell Caulobacter Crescentus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Koshland Jr DE. A response regulator model in a simple sensory system. Science 1977; 196:1055–63.PubMedCrossRefGoogle Scholar
  2. 2.
    Hoch JA. Genetic analysis of pleiotropic negative sporulation mutants in Bacillus subtilis. J Bacteriol 1971; 105:896–901.PubMedGoogle Scholar
  3. 3.
    Ollington JF, Haldenwang WG, Huynh TV et al. Developmentally regulated transcription in a cloned segment of the Bacillus subtilis chromosome. J Bacteriol 1981; 147:432–42.PubMedGoogle Scholar
  4. 4.
    Stock A, Koshland Jr DE, Stock J. Homologies between the Salmonella typhimurium CheY protein and proteins involved in the regulation of chemotaxis, membrane protein synthesis, and sporulation. Proc Natl Acad Sci USA 1985; 82:7989–93.PubMedCrossRefGoogle Scholar
  5. 5.
    Trach KA, Chapman JW, Hoch JA. Deduced product of the stage 0 sporulation gene spo0F shares homology with the Spo0A, OmpR, and SfrA proteins. Proc Natl Acad Sci USA 1985; 82:7260–4.PubMedCrossRefGoogle Scholar
  6. 6.
    Skerker JM, Prasol MS, Laub MT Two-Component Signal Transduction Pathways Regulating Growth and Cell Cycle Progression in a Bacterium: A System-Level Analysis. PLoS Biology 2005; 3:e.334.CrossRefGoogle Scholar
  7. 7.
    Hoch JA, Silhavy TJ, eds. Two-Component signal transduction. Washington, DC: ASM; 1995.Google Scholar
  8. 8.
    Fabret C, Hoch JA. A two-component signal transduction system essential for growth of Bacillus subtilis: implications for anti-infective therapy. J Bacteriol 1998; 180:6375–83.PubMedGoogle Scholar
  9. 9.
    Kobayashi K, Ehrlich SD, Ogasawara N et al. Essential Bacillus subtilis genes. Proc Natl Acad Sci USA 2003; 100:4678–83.PubMedCrossRefGoogle Scholar
  10. 10.
    Zhou L, Lei XH, Wanner BL et al. Phenotype microarray analysis of Escherichia coli K-12 mutants with deletions of all two-component systems. J Bacteriol 2003; 185:4956–72.PubMedCrossRefGoogle Scholar
  11. 11.
    Hecht GB, Lane T, Ohta N et al. An essential single domain response regulator required for normal cell division and differentiation in Caulobacter crescentus. EMBO J 1995; 14:3915–24.PubMedGoogle Scholar
  12. 12.
    Quon KC, Marczynski GT, Shapiro L. Cell Cycle Control by an Essential Bacterial Two-Component Signal Transduction Protein. Cell 1996; 84:83–93.PubMedCrossRefGoogle Scholar
  13. 13.
    Jacobs C, Domian IJ, Shapiro L et al. Cell cycle-dependent polar localization of an essential bacterial histidine kinase that controls DNA replication and cell division. Cell 1999; 97:111–20.PubMedCrossRefGoogle Scholar
  14. 14.
    Wu J, Ohta N, Newton A et al. A novel bacterial tyrosine kinase essential for cell division and differentiation. Proc Natl Acad Sci USA 1999; 96:13068–73.PubMedCrossRefGoogle Scholar
  15. 15.
    Jacobs-Wagner C. Regulatory proteins with a sense of direction: cell cycle signalling network in Caulobacter. Mol Microbiol 2004; 51:7–13.PubMedCrossRefGoogle Scholar
  16. 16.
    Skerker JM, Laub MT. Cell-cycle progression and the generation of asymmetry in Caulobacter crescentus. Nat Rev Microbiol 2004; 2:325–337.PubMedCrossRefGoogle Scholar
  17. 17.
    Skerker JM, Prasol MS, Laub MT et al. (2005) Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a system-level analysis. PLoS Biol 2005; 3:e.334.CrossRefGoogle Scholar
  18. 18.
    Gitai Z. The New Bacterial Cell Biology: Moving Parts and Subcellular Architecture. Cell 2005; 120:577–586.PubMedCrossRefGoogle Scholar
  19. 19.
    Poindexter JS. Biological Properties and Classification of the Caulobacter Group. Bacteriol Rev 1964; 28:231–295.PubMedGoogle Scholar
  20. 20.
    Sommer J, Newton A. Pseudoreversion Analysis Indicates a Direct Role of Cell Division Genes in Polar Morphogenesis and Differentiation in Caulobacter crescentus. Genetics 1991; 129:623–630.PubMedGoogle Scholar
  21. 21.
    McGrath P, Viollier P, McAdams H. Setting the pace: mechanisms tying Caulobacter cell-cycle progression to macroscopic cellular events. Curr Opin Microbiol 2004; 7:192–197.PubMedCrossRefGoogle Scholar
  22. 22.
    Holtzendorff J, Hung D, Shapiro L et al. Oscillating Global Regulators Control the Genetic Circuit Driving a Bacterial Cell Cycle. Science 2004; 304:983–987.PubMedCrossRefGoogle Scholar
  23. 23.
    Gorbatyuk B, Marczynski GT. Physiological consequences of blocked Caulobacter crescentus dnaA expression, an essential DnA replication gene. Molecular Microbiology 2001; 40:485–497.PubMedCrossRefGoogle Scholar
  24. 24.
    Collier J, Murray SR, Shapiro L. DnaA couples DNA replication and the expression of two cell cycle master regulators. EMBO J 2006; 25:346–356.PubMedCrossRefGoogle Scholar
  25. 25.
    Jacobs C, Domian IJ, Shapiro L et al. Cell Cycle-Dependent Polar Localization of an Essential Bacterial Histidine Kinase that Controls DNA Replication and Cell Division. Cell 1999; 97:111–120.PubMedCrossRefGoogle Scholar
  26. 26.
    Wu J, Ohta N, Newton A et al. A novel bacterial tyrosine kinase essential for cell division and differentiation. Proc Natl Acad Sci USA 1999; 96:13068–13073.PubMedCrossRefGoogle Scholar
  27. 27.
    Quon KC, Yang B, Marczynski GT et al. Negative control of bacterial DNA replication by a cell cycle regulatory protein that binds at the chromosome † origin. Proc Natl Acad Sci USA 1998; 95:120–125.PubMedCrossRefGoogle Scholar
  28. 28.
    Biondi E, Reisinger S, Laub M et al. Regulation of the bacterial cell cycle by an integrated genetic circuit. Nature 2006; 444:899–404.PubMedCrossRefGoogle Scholar
  29. 29.
    Laub M, Chen S, McAdams H et al. Genes directly controlled by CtrA, a master regulator of the Caulobacter cell cycle. Proc Natl Acad Sci USA 2002; 99:4632–4637.PubMedCrossRefGoogle Scholar
  30. 30.
    Hottes A, Shapiro L, McAdams H. DnaA coordinates replication initiation and cell cycle transcription in Caulobacter crescentus. Mol Microbiol 2005; 58:1340–1353.PubMedGoogle Scholar
  31. 31.
    Zweiger G, Shapiro L. Expression of Caulobacter dnaA as a Function of the Cell Cycle. J Bacteriol 1994; 176:401–408.PubMedGoogle Scholar
  32. 32.
    Gorbatyuk B, Marczynski GT. Regulated degradation of chromosome replication proteins DnaA and CtrA in Caulobacter crescentus. Mol Microbiol 2005; 55:1233–1245.PubMedCrossRefGoogle Scholar
  33. 33.
    Domian IJ, Reisenauer A, Shapiro L. Feedback control of a master bacterial cell-cycle regulator. Proc Natl Acad Sci USA 1999; 96:6648–6653.PubMedCrossRefGoogle Scholar
  34. 34.
    Reisenauer A, Shapiro L. DNA methylation affects the cell cycle transcription of the CtrA global regulator in Caulobacten. EMBO J 2002; 21:4969–4977.PubMedCrossRefGoogle Scholar
  35. 35.
    Reisenauer A, Quon K, Shapiro L. The CtrA Response Regulator Mediates Temporal Control of Gene Expression during the Caulobacter Cell Cycle. J Bacteriol 1999; 181:2430–2439.PubMedGoogle Scholar
  36. 36.
    Jenal U, Fuchs T. An essential protease involved in bacterial cell-cycle control. EMBO J 1998; 17:5658–5669.PubMedCrossRefGoogle Scholar
  37. 37.
    Ryan KR, Judd EM, Shapiro L. J The CtrA Response Regulator Essential for Caulobacter crescentus Cell-cycle Progression Requires a Bipartite Degradation Signal for Temporally Controlled Proteolysis. Mol Biol 2002; 324:443–455.CrossRefGoogle Scholar
  38. 38.
    Ausmees N, Jacobs-Wagner C. Spatial and Temporal Control of Differentiation and Cell Cycle Progression in Caulobacter Crescentus. Ann Rev Microbiol 2003; 57:225–247.CrossRefGoogle Scholar
  39. 39.
    Domian IJ, Quon KC, Shapiro L. Cell Type-Specific Phosphorylation and Proteolysis of a Transcriptional Regulator Controls the G1-to-S Transition in a Bacterial Cell Cycle. Cell 1997; 90:415–424.PubMedCrossRefGoogle Scholar
  40. 40.
    McGrath P, Iniesta AA, McAdams H et al. A Dynamically Localized Protease Complex and a Polar Specificity Factor Control a Cell Cycle Master Regulator. Cell 2006; 124:535–547.PubMedCrossRefGoogle Scholar
  41. 41.
    Iniesta A, McGrath P, Shapiro L et al. A phospho-signaling pathway control the localization activity of a protease complex critical for bacterial cell cycle progression. Proc Natl Acad Sci USA 2006; 103:0935–10940.CrossRefGoogle Scholar
  42. 42.
    Bylsma N, Drakenberg T. Prokaryotic calcium-binding protein of the calmodulin superfamily FEBS Lett 1992; 299:44–47.PubMedCrossRefGoogle Scholar
  43. 43.
    Ohta N, Newton A. The Core Dimerization Domains of Histidine Kinases Contain Recognition Specificity for the Cognate Response Regulator. J Bacteriol 2003; 185:4424–4431.PubMedCrossRefGoogle Scholar
  44. 44.
    Sciochetti S, Ohta N, Newton A. The role of polar localization in the function of an essential Caulobacter crescentus tyrosine kinase. Mol Microbiol 2005; 56:1467–1480.PubMedCrossRefGoogle Scholar
  45. 45.
    Wheeler RT, Shapiro L. Differential Localization of Two Histidine Kinases Controlling Bacterial Cell Differentiation. Mol Cell 1999; 4:683–694.PubMedCrossRefGoogle Scholar
  46. 46.
    Matroule J-Y, Lam H, Jacobs-Wagner et al. Cytokinesis Monitoring during Development: Rapid Pole-to-Pole Shuttling of a Signaling Protein by Localized Kinase and Phosphatase in Caulobacter. Cell 2004; 118:579–590.PubMedCrossRefGoogle Scholar
  47. 47.
    Pierce D, O’Donnol D, Brun Y et al. Mutations in DivL and CckA Rescue a divJ Null Mutant of Caulobacter crescentus by Reducing the Activity of CtrA. J Bacteriol 2006; 188:2473–2482.PubMedCrossRefGoogle Scholar
  48. 48.
    Viollier PH, Sternbeim N, Shapiro L. A dynamically localized histidine kinase controls the assymetric distribution of polar pili proteins. EMBO J 2002; 21:4420–4428.PubMedCrossRefGoogle Scholar
  49. 49.
    Viollier PH, Sternheim N, Shapiro L. Identification of a localization factor for the polar positioning of bacterial structural and regulatory proteins. Proc Natl Acad Sci USA 2002; 99:13831–13836.PubMedCrossRefGoogle Scholar
  50. 50.
    Chen JC, Hottes AK, Shapiro L et al. Cytokinesis signals truncation of the PodJ polarity factor by a cell cycle-regulated protease. EMBO J 2006; 25:377–386.PubMedCrossRefGoogle Scholar
  51. 51.
    Chen JC, Viollier PH, Shapiro L. A membrane metalloprotease participates in the sequential degradation of a Caulobacter polarity determinant. Mol Microbiol 2005; 55:1085–1103.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  • Erin B. Purcell
    • 2
  • Cara C. Boutte
    • 2
  • Sean Crosson
    • 2
    • 1
  1. 1.Committee on MicrobiologyThe University of Chicago, Gordon Center for Integrative ScienceChicagoUSA
  2. 2.Department of Biochemistry and Molecular BiologyThe University of Chicago, Gordon Center for Integrative ScienceChicagoUSA

Personalised recommendations