Inhibitors Targeting Two-Component Signal Transduction

  • Takafumi Watanabe
  • Ario Okada
  • Yasuhiro Gotoh
  • Ryutaro Utsumi
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 631)


A two-component signal transduction system (TCS) is an attractive target for antibacterial agents. In this chapter, we review the TCS inhibitors developed during the past decade and introduce novel drug discovery systems to isolate the inhibitors of the YycG/YycF system, an essential TCS for bacterial growth, in an effort to develop a new class of antibacterial agents.


Bacillus Subtilis Antibacterial Agent Streptococcus Pneumoniae Histidine Kinase Caulobacter Crescentus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Inouye M, Dutta R, eds. Histidine kinases in signal transduction: San Diego: Academic Press, 2003.Google Scholar
  2. 2.
    Parkinson JS, Kofoid EC. Communication module in bacterial signaling proteins. Annu Rev Genet 1992; 26:71–121.PubMedCrossRefGoogle Scholar
  3. 3.
    T Deretic V. An essential two-component signal transduction system in Mycobacterium tuberculosis. J Bacteriol 2000; 182:3832–3838.PubMedCrossRefGoogle Scholar
  4. 4.
    Beir D, Frank R. Molecular characterization of two-component systems of Helicobacter pylori. J Bacteriol 2000; 182:2068–2076.CrossRefGoogle Scholar
  5. 5.
    Fabret C, Hoch JA. A two-component signal transduction system essential for growth of Bacillus subtilis: implications for anti-infective therapy. J Bacteriol 1998; 180:6375–6383.PubMedGoogle Scholar
  6. 6.
    Hancock L, Perego M. Two-component signal transduction in Enterococcus faecalis. J Bacteriol 2002; 184:5819–5825.PubMedCrossRefGoogle Scholar
  7. 7.
    Lange R, Wagner C, de Saizieu A et al. Domain organization and molecular characterization of 13 two-component systemsidentified by genome sequencing of Streptococcus pneumoniae. Gene 1999; 237:223–234.PubMedCrossRefGoogle Scholar
  8. 8.
    Throup JP, Koretke KK, Bryant AP et al. A genomic analysis of two-component signal transduction in Streptococcus pneumoniae. Mol Microbiol 2000; 35:566–576.PubMedCrossRefGoogle Scholar
  9. 9.
    Martin PK, Li T, Sun D et al. Role in cell permeability of an essential two-component system in Staphylococcus aureus. J Bacteriol 1999; 181:3666–3673.PubMedGoogle Scholar
  10. 10.
    Macielag MJ, Goldschmidt R. Inhibitors of bacterial two-component signaling systems. Exp Opin Invest Drugs 2000; 9:2351–2369.CrossRefGoogle Scholar
  11. 11.
    Matsushita M, Janda KD. Histidine kinases as targets for new antimicrobial agents. Bioorg Med Chem 2002; 10:855–867.PubMedCrossRefGoogle Scholar
  12. 12.
    Barrette JF, Hoch JA. Two-component signal transduction as a target for microbial anti-infective therapy. Antimicrob Agents Chemother 1998; 42:1529–1536.Google Scholar
  13. 13.
    Roychoudhurry S, Zielinski NA, Ninfa AJ et al. Inhibitor of two-component signal transduction systems: Inhibition of alginate gene activation in Pseudomonaas aeruginosa. Proc Natl Acad Sci USA 1993; 90:965–969.CrossRefGoogle Scholar
  14. 14.
    Yamamoto K, Kitayama T, Ishida N et al. Identification and characterization of a potent antibacterial agent, NH125 against drug-resistant bacteria. Biosci Biotechnol Biochem 2000; 64:912–923.Google Scholar
  15. 15.
    Gilmour R, Foster JE, Sheng O et al. New class of competitive inhibitor of bacterial histidine kinases. J Bacteriol 2005; 187:8196–8200.PubMedCrossRefGoogle Scholar
  16. 16.
    Hilliard JJ, Goldschmidt RM, Licata L et al. Multiple mechanisms of Action for inhibitors of histidine protein kinases from bacterial two-component systems. Antimicrob Agents Chemother 1999; 43:1693–1699.PubMedGoogle Scholar
  17. 17.
    Barrett JF, Goldschmidt RM, Lawrence LE et al. Antibacterial agents that inhibit two-component signal transduction systems. Proc Natl Acad Sci USA 1998; 95:5317–5322.PubMedCrossRefGoogle Scholar
  18. 18.
    Trew SJ, Wrigley SK, Pairet L et al. Novel Streptopyrroles from Streptomyces rimousus with bacterial protein histidine kinase inhibitory and antimicrobial activities. J Antibiotics 2000; 53:1–11.Google Scholar
  19. 19.
    Yamamoto K, Kitayama T, Minagawa S et al. Antibacterial agents that inhibit histidine protein kinase YycG of Bacillus subtilis. Biosci Biotechnol Biochem 2001; 65:2306–2310.PubMedCrossRefGoogle Scholar
  20. 20.
    Kitayama T, Iwabuchi R, Minagawa S et al. Unprecedented olefin-dependent histidine-kinase inhibitory of zerumbone ring-opening material. Bioorgn Medicin Chem. Lett 2004; 14:5943–5946.CrossRefGoogle Scholar
  21. 21.
    Okada A, Gotoh Y, Watanabe T et al. Targeting two-component signal transduction: a novel drug discovery system. Methods Enzymol 2007; 422:386–395.PubMedCrossRefGoogle Scholar
  22. 22.
    Watanabe T, Hashimoto Y, Yamamoto K et al. Isolation and characterization of inhibitors of the essential histidine kinase, YycG in Bacillus subtilis and Staphylococcus aureus. J Antibiot 2003; 56:1045–1052.PubMedGoogle Scholar
  23. 23.
    Kamogashira T, Takegata S. A screening method for cell wall inhibitors using a D-cycloserine hypersensitive mutant. J Antibiot 1988; 41:803–806.PubMedGoogle Scholar
  24. 24.
    Numata K, Yamamoto H, Hatori M et al. Isolation of an aminoglycoside hypersensitive mutant and its application in screening. J Antibiot 1986; 39:994–1000.PubMedGoogle Scholar
  25. 25.
    Furuta E, Yamamoto K, Tatebe D et al. Targeting protein homodimerization: A novel drug discovery system. FEBS Lett 2005; 579:2065–2070.PubMedCrossRefGoogle Scholar
  26. 26.
    Hidaka Y, Park H, Inouye M. Demonstration of dimer formation of the cytoplasmic domain of a transmembrane osmosensor protein, EnvZ of Escherichia coli using N-histidine tag affinity chromatography. FEBS Lett 1997; 400:238–243.PubMedCrossRefGoogle Scholar
  27. 27.
    Tomomori C, Tanaka T, Dutta R et al. Solution structure of the homodimerization core domain of Escherichia coli histidine kinase EnvZ. Nat Struc Biol 1999; 6:729–734.CrossRefGoogle Scholar
  28. 28.
    Watanabe T, Hashimoto Y, Umemoto Y et al. Molecular characterization of the essential response regulator protein YycF in Bacillus subtilis. J Mol Microbiol Biotechnol 2003; 6:155–163.PubMedCrossRefGoogle Scholar
  29. 29.
    Qin Z, Zhang J, Xu B et al. Structure-based discovery of inhibitors of the YycG histidine kinase: new chemical leads to combat Staphylococcus epidermidis infections. BMC Microbiol 2006; 6:1–18.CrossRefGoogle Scholar
  30. 30.
    Qin Z, Lee B, Zhang J et al. Antimicrobial activities of YycG histidine kinase inhibitors against Staphylococcus epidermidis biofilms. FEMS Microbiol. Lett in press.Google Scholar
  31. 31.
    Nierman WC, Feldblyum TV, Laub MT et al. Complete genome sequence of Caulobacter crescentus. Proc Natl Acad Sci USA 2001; 98:4136–4141.PubMedCrossRefGoogle Scholar
  32. 32.
    Cole ST, Brosch R, Parkhill J et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998; 393:537–544.PubMedCrossRefGoogle Scholar
  33. 33.
    Tomb JF, White O, Kerlavage AR et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 2000; 388:539–547.CrossRefGoogle Scholar
  34. 34.
    Kunst F, Ogasawara N, Moszer I et al. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 1997; 390:249–256.PubMedCrossRefGoogle Scholar
  35. 35.
    Hoskins J, Alborn WE Jr, Arnold J et al. Genome of the bacterium Streptococcus pneumoniae strain R6. J Bacteriol 2001; 183:5709–5717.PubMedCrossRefGoogle Scholar
  36. 36.
    Kuroda M, Ohta T, Uchiyama I et al. Whole genome sequencing of methicillin-resistant Staphylococcus aureus. Lancet 2001; 357:1225–1240.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  • Takafumi Watanabe
    • 1
  • Ario Okada
    • 1
  • Yasuhiro Gotoh
    • 1
  • Ryutaro Utsumi
    • 1
  1. 1.Department of Bioscience, Graduate School of AgricultureKinki UniversityNaraJapan

Personalised recommendations