Vancomycin Resistance VanS/VanR Two-Component Systems

  • Hee-Jeon Hong
  • Matthew I. Hutchings
  • Mark J. Buttner
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 631)


Vancomycin is a member of the glycopeptide class of antibiotics. Vancomycin resistance (van) gene clusters are found in human pathogens such as Enterococcus faecalis, Enterococcus faecium and Staphylococcus aureus, glycopeptide-producing actinomycetes such as Amycolotopsis orientalis, Actinoplanes teichomyceticus and Streptomyces toyocaensis and the nonglycopeptide producing actinomycete Streptomyces coelicolor. Expression of the van genes is activated by the VanS/VanR two-component system in response to extracellular glycopeptide antibiotic. Two major types of inducible vancomycin resistance are found in pathogenic bacteria; VanA strains are resistant to vancomycin itself and also to the lipidated glycopeptide teicoplanin, while VanB strains are resistant to vancomycin but sensitive to teicoplanin. Here we discuss the enzymes the van genes encode, the range of different VanS/VanR two-component systems, the biochemistry of VanS/VanR, the nature of the effector ligand(s) recognised by VanS and the evolution of the van cluster.


Antimicrob Agent Vancomycin Resistance Acetyl Phosphate Sensor Domain Glycopeptide Antibiotic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Williams DH, Williamson MP, Butcher DW et al. Detailed binding sites of the antibioties vancomycin and ristocetin A: determination of intermolecular distances in antibiotic/substrate complexes by use of the time-dependent NOE. J Am Chem Soc 1983; 105:1332–1339.CrossRefGoogle Scholar
  2. 2.
    Barna JCJ, Williams DH. The structure and mode of action of glycopeptide antibiotics of the vancomycin group. Annu Rev Microbiol 1984; 38:339–57.PubMedCrossRefGoogle Scholar
  3. 3.
    Bugg TDH, Wright GD, Dutka-Malen S et al. Molecular basis for vancomycin resistance in Enterococcus faccium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. Biochemistry 1991; 30:10408–10415.PubMedCrossRefGoogle Scholar
  4. 4.
    Healy VL, Lessard IA, Roper DI et al. Vancomycin resistance in enterococci: reprogramming of the D-Ala-D-Ala ligases in bacterial peptidoglycan biosynthesis. Chem Biol 2000; 7:R109–119.PubMedCrossRefGoogle Scholar
  5. 5.
    Walsh CT, Fisher SL, Park IS et al. Bacterial resistance to vancomycin: five genes and one missing hydrogen bond tell the story. Chem Biol 1996; 3:21–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Pootoolal J, Neu J, Wright GD. Glycopeptide antibiotic resistance. Annu Rev Pharmacol Toxicol 2002; 42:381–408.PubMedCrossRefGoogle Scholar
  7. 7.
    Weigel, LM, Clewell DB, Gill SR et al. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus Science 2003; 28:1569–1571.CrossRefGoogle Scholar
  8. 8.
    Pearson, H. ’superbug’ hurdles key drug barrier. Nature 2002; 418:469–470.PubMedCrossRefGoogle Scholar
  9. 9.
    Chang S, Sievert DM, Hageman JC et al. Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N Engl J Med 2003; 348:1342–1347.PubMedCrossRefGoogle Scholar
  10. 10.
    Tenover FC, Weigel LM, Appelbaum PC et al. Vancomycin-resistant Staphylococcus aureus isolate from a patient in Pennsylvania. Antimicrob Agents Chemother 2004; 48:275–280.PubMedCrossRefGoogle Scholar
  11. 11.
    Arthur M, Quintiliani R. Regulation of VanA-and VanB-type glycopeptide resistance in enterococci. Antimicrob Agents Chemother 2001; 45:375–81.PubMedCrossRefGoogle Scholar
  12. 12.
    Reynolds PE, Courvalin P. Vancomycin resistance in enterococci due to synthesis of precursors terminating in D-alanyl-D-serine. Antimicrob Agents Chemother 2005; 49:21–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Billot-Klein D, Blanot D, Gutmann L et al. Association constants for the binding of vancomycin and teicoplanin to N-acetyl-D-alanyl-D-alanine and N-acetyl-D-alanyl-D-serine. Biochem J 1994; 304:1021–1022.PubMedGoogle Scholar
  14. 14.
    Davies J. Inactivation of antibiotics and the dissemination of resistance genes. Science 1994; 264:375–382.PubMedCrossRefGoogle Scholar
  15. 15.
    Pootoolal J, Thomas MG, Marshall CG et al. Assembling the glycopeptide antibiotic scaffold: the biosynthesis of A47934 from Streptomyces toyocaensis. Proc. Natl Acad Sci USA 2002; 99:8962–8967.PubMedGoogle Scholar
  16. 16.
    Sosio M, Kloosterman H, Bianchi A et al. Organization of the teicoplanin gene cluster in Actinoplanes teichomyceticus. Microbiology 2004; 150:95–102.PubMedCrossRefGoogle Scholar
  17. 17.
    Serina S, Radice F, Maffioli S et al. Glycopeptide resistance determinants from the teicoplanin producer Actinoplanes teichomyceticus. FEMS Microbiol Lett 2004; 240:69–74.PubMedCrossRefGoogle Scholar
  18. 18.
    Beltrametti F, Consolandi A, Carrano L et al. Resistance to glycopeptide antibiotics in the teicoplanin producer is mediated by van-gene homologue expression directing the synthesis of a modified cell wall peptidoglycan. Antimicrob Agents Chemother 2007; 51:1135–41.PubMedCrossRefGoogle Scholar
  19. 19.
    Arthur M, Depardieu F, Cabanie L et al. Requirement of the VanY and VanX D,D-peptidases for glycopeptide resistance in enterococci. Mol Microbiol 1998; 30: 819–30.PubMedCrossRefGoogle Scholar
  20. 20.
    Wright GD, Molinas C, Arthur M et al. Characterization of VanY, a DD-carboxypeptidase from vancomycin-resistant Enterococcus faecium BM4147. Antimicrob Agents Chemother 1992; 36:1514–8.PubMedGoogle Scholar
  21. 21.
    Arthur M, Depardieu F, Molinas C et al. The vanZ gene of Tn1546 from Enterococcus faecium BM4147 confers resistance to teicoplanin. Gene 1995; 154:87–92.PubMedCrossRefGoogle Scholar
  22. 22.
    Hong H-J, Hutchings MI, Neu JM et al. Characterisation of an inducible vancomycin resistance system in Streptomyces coelicolor reveals a novel gene (vanK) required for drug resistance. Mol Microbiol 2004; 52:1107–1121.PubMedCrossRefGoogle Scholar
  23. 23.
    Hong H-J, Hutchings MI, Hill LM et al. The role of the novel Fem protein VanK in vancomycin resistance in Streptomyces coelicolor. J Biol Chem 2005; 280:13055–13061.PubMedCrossRefGoogle Scholar
  24. 24.
    Wright GD, Holman TR, Walsh CT. Purification and characterization of VanR and the cytosolic domain of VanS: a two-component regulatory system required for vancomycin resistance in Enterococcus faecium BM4147. Biochemistry 1993; 32:5057–63.PubMedCrossRefGoogle Scholar
  25. 25.
    Depardieu F, Courvalin P, Msadek T. A six amino acid deletion, partially overlapping the VanSB G2 ATP-binding motif, leads to constitutive glycopeptide resistance in VanB-type Enterococcus faecium. Mol Microbiol 2003; 50:1069–1083.PubMedCrossRefGoogle Scholar
  26. 26.
    Hutchings MI, Hong H-J, Buttner MJ. The vancomycin resistance VanS/VanR two-component signal transduction system of Streptomyces coelicolor. Mol Microbiol 2006; 59:923–935.PubMedCrossRefGoogle Scholar
  27. 27.
    Holman TR, Wu Z, Wanner BL et al. Identification of the DNA-binding site for the phosphorylated VanR protein required for vancomycin resistance in Enterococcus faccium. Biochemistry 1994; 33:4625–31.PubMedCrossRefGoogle Scholar
  28. 28.
    Depardieu F, Courvalin P, Kolb A. Binding sites of VanRB and C70 RNA polymerase in the vanB vancomycin resistance operon of Enterococcus faccium BM4524. Mol Microbiol 2005; 57:550–64.PubMedCrossRefGoogle Scholar
  29. 29.
    Arthur M, Depardieu F, Gerbaud G et al. The VanS sensor negatively controls VanR-mediated transcriptional activation of glycopeptide resistance genes of Tn1546 and related elements in the absence of induction. J Bacteriol 1997; 179:97–106.PubMedGoogle Scholar
  30. 30.
    Haldimann A, Fisher SL, Daniels LL et al. Transcriptional regulation of the Enterococcus faecium BM4147 vancomycin resistance gene cluster by the VanS-VanR two-component regulatory system in Escherichia coli K-12. J Bacteriol 1997; 179:5903–5913.PubMedGoogle Scholar
  31. 31.
    Baptista M, Rodrigues P, Depardieu F et al. Single-cell analysis of glycopeptide resistance gene expression in teicoplanin-resistant mutants of a VanB-type Enterococcus faecalis. Mol Microbiol 1999; 32:17–28.PubMedCrossRefGoogle Scholar
  32. 32.
    Comenge Y, Quintiliani R Jr, Li L et al. The CroRS two component regulatory system is required for intrinsic beta-lactam resistance in Enterococcus faecalis. J Bacteriol 2003; 185:7184–92.PubMedCrossRefGoogle Scholar
  33. 33.
    Mascher T. Intramembrane-sensing histidine kinases: a new family of bacterial cell envelope stress sensors. FEMS Microbiol Lett 2006; 264:133–144.PubMedCrossRefGoogle Scholar
  34. 34.
    Ulijasz AT, Grenader A, Weisblum B. A vancomycin-inducible lacZ reporter system in Bacillus subtilis: induction by antibiotics that inhibit cell wall synthesis and by lysozyme. J Bacteriol 1996; 178:6305–6309.PubMedGoogle Scholar
  35. 35.
    Arthur M, Depardieu F, Courvalin P. Regulated interactions between partner and nonpartner sensors and response regulators that control glycopeptide resistance gene expression in enterococci. Microbiology 1999; 145:1849–58.PubMedCrossRefGoogle Scholar
  36. 36.
    Lai MH, Kirsch DR. Induction signals for vancomycin resistance encoded by the vanA gene cluster in Enterococcus faecium. Antimicrob Agents Chemother 1996; 40:1645–1648.PubMedGoogle Scholar
  37. 37.
    Mani N, Sancheti P, Jiang ZD et al. Screening systems for detecting inhibitors of cell wall transglycosylation in Enterococcus. Cell wall transglycosylation inhibitors in Enterococcus. J Antibiot 1998; 51:471–479.PubMedGoogle Scholar
  38. 38.
    Grissom-Arnold J, Alborn WE, Nicas TI et al. Induction of VanA vancomycin resistance genes in Enterococcus faecalis: use of a promoter fusion to evaluate glycopeptide and nonglycopeptide induction signals. Microbial Drug Resistance 1997; 3:53–64.PubMedGoogle Scholar
  39. 39.
    Baptista M, Depardieu F, Courvalin P et al. Specificity of induction of glycopeptide resistance genes in Enterococcus faecalis. Antimicrob Agents Chemother 1996; 40:2291–2295.PubMedGoogle Scholar
  40. 40.
    Allen NE, Hobbs JN. Induction of vancomycin resistance in Enterococcus faecium by nonglycopeptide antibiotics. FEMS Microbiol Lett 1995; 132:107–114.PubMedCrossRefGoogle Scholar
  41. 41.
    Handwerger S, Kolokathis A. Induction of vancomycin resistance in Enterococcus faecium by inhibition of transglycosylation. FEMS Microbiol Lett 1990; 58:167–170.PubMedGoogle Scholar
  42. 42.
    van Heijenoort J. Formation of the glycan chains in the synthesis of bacterial peptidoglycan. Glycobiology 2001; 11:25R–36R.PubMedCrossRefGoogle Scholar
  43. 43.
    Chen L, Walker D, Sun B, et al. Vancomycin analogues active against vanA-resistant strains inhibit bacterial transglycosylase without binding substrate. Proc Natl Acad Sci USA 2003; 100:5658–5663.PubMedCrossRefGoogle Scholar
  44. 44.
    Baptista M, Depardieu F, Reynolds P et al. Mutations leading to increased levels of resistance to glycopeptide antibiotics in VanB-type enterococci. Mol Microbiol 1997; 25:93–105.PubMedCrossRefGoogle Scholar
  45. 45.
    Neu JM, Wright GD. Inhibition of sporulation, glycopeptide antibiotic production and resistance in Streptomyces toyocaensis NRRL 15009 by protein kinase inhibitors. FEMS Microbiol Lett 2001; 199:15–20.PubMedCrossRefGoogle Scholar
  46. 46.
    Dong SD, Oberthur M, Losey HC et al. The structural basis for induction of VanB resistance. J Am Chem Soc 2002; 124:9064–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Sharman GJ, Try AC, Dancer RJ et al. The roles of dimerization and membrane anchoring in activity of glycopeptide antibiotics against vancomycin-resistant bacterial. J Am Chem Soc 1997; 119:12041–12047.CrossRefGoogle Scholar
  48. 48.
    Cooper MA, Williams, DH. Binding of glycopeptide antibiotics to a model of a vancomycin-resistant bacterium. Chem Biol 1999; 6:891–899.PubMedCrossRefGoogle Scholar
  49. 49.
    Beauregard DA, Williams DH, Gwynn MN et al. Dimerization and membrane anchors in extracellular targeting of vancomycin group antibioties. Antimicrob Agents Chemother 1995; 39:781–785.PubMedGoogle Scholar
  50. 50.
    Ge M, Chem Z, Onishi HR et al. Vancomycin derivatives that inhibit peptidoglycan biosynthesis without binding D-Ala-D-Ala. Science 1999; 284:507–511.PubMedCrossRefGoogle Scholar
  51. 51.
    Sinha Roy R, Yang P, Kodali S et al. Direct interaction of a vancomycin derivative with bacterial enzymes involved in cell wall biosynthesis. Chem Biol 2001; 8:1095–1106.CrossRefGoogle Scholar
  52. 52.
    Kerns R, Dong, S.D., Fukuzawa S et al. The Role of hydrophobic substituents in the biological activity of glycopeptide antibiotics. J Am Chem Soc 2000; 122:12608–12609.CrossRefGoogle Scholar
  53. 53.
    Billot-Klein D, Gutmann L, Sable S et al. Modification of peptidoglycan precursors is a common feature of the low-level vancomycin-resistant VANB-type Enterococcus D366 and of the naturally glycopeptide-resistant species Lactobacillus casei, Pediococcus pentosaceus, Leuconostoc mesenteroides and Enterococcus gallinarum. J Bacteriol 1994; 176:2398–405.PubMedGoogle Scholar
  54. 54.
    Billot-Klein D, Legrand R, Schoot B et al. Peptidoglycan structure of Lactobacillus casei, a species highly resistant to glycopeptide antibiotics. J Bacteriol; 1997; 179:6208–12.PubMedGoogle Scholar
  55. 55.
    Handwerger S, Pucci MJ, Volk KJ et al. Vancomycin-resistant Leuconostoc mesenteroides and Lactobacillus casei synthesize cytoplasmic peptidoglycan precursors that terminate in lactate. J Bacteriol 1994; 176:260–4.PubMedGoogle Scholar
  56. 56.
    Nicas TI, Cole CT, Preston DA et al. Activity of glycopeptides against vancomycin-resistant Gram-positive bacteria. Antimicrob Agents Chemother 1989; 33:1477–81.PubMedGoogle Scholar
  57. 57.
    Gutmann L, al-Obeid S, Billot-Klein D et al. Synergy and resistance to synergy between ß-lactam antibiotics and glycopeptides against glycopeptide-resistant strains of Enterococcus faecium. Antimicrob Agents Chemother 1994; 38:824–9.PubMedGoogle Scholar
  58. 58.
    Severin A, Wu SW, Tabei K et al. Penicillin-binding protein 2 is essential for expression of high-level vancomycin resistance and cell wall synthesis in vancomycin-resistant Staphylococcus aureus carrying the enterococcal vanA gene complex. Antimicrob Agents Chemother 2004; 48:4566–73.PubMedCrossRefGoogle Scholar
  59. 59.
    Severin A, Tabei K, Tenover F et al. High level oxacillin and vancomycin resistance and altered cell wall composition in Staphylococcus aureus carrying the staphylococcal mecA and the enterococcal vanA gene complex. J Biol Chem 2004; 279:3398–3407.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  • Hee-Jeon Hong
    • 1
  • Matthew I. Hutchings
    • 2
  • Mark J. Buttner
    • 3
  1. 1.Department of BiochemistryUniversity of CambridgeCambridgeUK
  2. 2.School of Biological Sciences and School of Medicine Health Policy and PracticeUniversity of East AngliaNorwichUK
  3. 3.Department Molecular MicrobiologyJohn Innes CentreNorwichUK

Personalised recommendations