Capturing the VirA/VirG TCS of Agrobacterium tumefaciens

  • Yi-Han Lin
  • Rong Gao
  • Andrew N. Binns
  • David G. Lynn
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 631)


Two-component systems (TCS) regulate pathogenic commitment in many interactions and provide an opportunity for unique therapeutic intervention. The VirA/VirG TCS of Agrobacterium tummefaciens mediates inter-kingdom gene transfer in the development of host tumors and sets in motion the events that underlie the great success of this multi-host plant pathogen. Significant proof for the feasibility of interventions has now emerged with the discovery of a natural product that effectively “blinds” the pathogen to the host via inhibition of VirA/VirG signal transduction. Moreover, the emerging studies on the mechanism of signal perception have revealed general sites suitable for intervention of TCS signaling. Given the extensive functional homology, it should now be possible to transfer the models discovered for VirA/VirG broadly to other pathogenic interactions.


Agrobacterium Tumefaciens Leucine Zipper Histidine Kinase Signal Perception Sensor Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Palmer AG, Gao R, Maresh J et al. Chemical biology of multi-host/pathogen interactions: chemical perception and metabolic complementation. Annu Rev Phytopathol 2004; 42:439–464.PubMedCrossRefGoogle Scholar
  2. 2.
    Stock JB, Stock AM, Mottonen JM. Signal transduction in bacteria. Nature 1990; 344:395–400.PubMedCrossRefGoogle Scholar
  3. 3.
    West AH, Stock AM. Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci 2001; 26:369–376.PubMedCrossRefGoogle Scholar
  4. 4.
    Wolanin P, Thomason P, Stock J. Histidine protein kinases: key signal transducers outside the animal Kingdom. Genome Biol 2002; 3:1–8.CrossRefGoogle Scholar
  5. 5.
    Appleby JL, Parkinson JS, Bourret RB. Signal transduction via the multi-step phosphorelay: not necessarily a road less traveled. Cell 1996; 86:845–848.PubMedCrossRefGoogle Scholar
  6. 6.
    Cavicchioli R, Schroder I, Constanti M et al. The NarX and NarQ sensor-transmitter proteins of Escherichia coli each require two conserved histidines for nitrate-dependent signal transduction to NarI. J Bacteriol 1995; 177:2416–2424.PubMedGoogle Scholar
  7. 7.
    Diep DB, Johnsborg O, Risøen PA et al. Evidence for dual functionality of the operon plnABCD in the regulation of bacteriocin production in Lactobacillus plantarum. Mol Microbiol 2001; 41:633–644.PubMedCrossRefGoogle Scholar
  8. 8.
    Kreikemeyer B, Boyle MDP, Buttaro BA et al. Group A streptococcal growth phase-associated virulence factor regulation by a novel operon (Fas) with homologies to two-component-type regulators requires a small RNA molecule. Mol Microbiol 2001; 39:392–406.PubMedCrossRefGoogle Scholar
  9. 9.
    Stephenson K, Hoch JA. Two-component and phosphorelay signal-component-type regulators requires targets. Curr Opin Pharmacol 2002; 2:507–512.PubMedCrossRefGoogle Scholar
  10. 10.
    Stephenson K, Hoch JA. Developing inhibitors to selectively target two-component and phosphorelay signal transduction systems of pathogenic microorganisms. Curr Med Chem 2004; 11:765–773.PubMedCrossRefGoogle Scholar
  11. 11.
    Barrett JF, Goldschmidt RM, Lawrence LE et al. Antibacterial agents that inhibit two-component signal transduction systems. Proc Natl Acad Sci USA 1998; 95:5317–5322.PubMedCrossRefGoogle Scholar
  12. 12.
    Lyon GJ, Mayville P, Muir TW et al. Rational design of a global inhibitor of the virulence response in Staphylococcus aureus, based in part on localization of the site of inhibition to the receptor-histidine kinase, AgrC. Proc Natl Acad Sci USA 2000; 97:13330–13335.PubMedCrossRefGoogle Scholar
  13. 13.
    Bronner S, Monteil H, Prevost G. Regulation of virulence determinants in Staphylococcus aureus: complexity and applications. FEMS Microbiol Rev 2004; 28:183–200.PubMedCrossRefGoogle Scholar
  14. 14.
    Cotter PA, Jones AM. Phosphorelay control of virulence gene expression in Bordetella. Trends Microbiol 2003; 11:367–373.PubMedCrossRefGoogle Scholar
  15. 15.
    Kato A, Groisman EA. Connecting two-component regulatory systems by a protein that protects a response regulator from dephosphorylation by its cognate sensor. Genes Dev 2004; 18:2302–2313.PubMedCrossRefGoogle Scholar
  16. 16.
    Baruah A, Lindsey B, Zhu Y et al. Mutational analysis of the signal-sensing domain of ResE histidine kinase from Bacillus subtilis. J Bacteriol 2004; 186:1694–1704.PubMedCrossRefGoogle Scholar
  17. 17.
    Cascales E, Christie PJ. The versatile bacterial type IV secretion systems. Nature Rev Microbiol 2003; 1:137–149.CrossRefGoogle Scholar
  18. 18.
    Christie PJ. Type IV secretion: the Agrobacterium VirB/D4 and related conjugation systems. Biochim Biophys Acta 2004; 1694:219–234.PubMedCrossRefGoogle Scholar
  19. 19.
    Guttman DS. Plants as models for the study of human pathogenesis. Biotechnol Adv 2004; 22:363–382.PubMedCrossRefGoogle Scholar
  20. 20.
    Li J, Wolf SG, Elbaum M et al. Exploring cargo transport mechanics in the type IV secretion systems. Trends Microbiol 2005; 13:295–298.PubMedCrossRefGoogle Scholar
  21. 21.
    Winans SC. Two-way chemical signaling in Agrobacterium-plant interactions. Microbiol Mol Biol Rev 1992; 56:12–31.Google Scholar
  22. 22.
    Cangelosi GA, Ankenbauer RG, Nester EW. Sugars induce the Agrobacterium virulence genes through a periplasmic binding protein and a transmembrane signal protein. Proc Natl Acad Sci USA 1990; 87:6708–6712.PubMedCrossRefGoogle Scholar
  23. 23.
    Gao R, Lynn DG. Environmental pH sensing: resolving the VirA/VirG two-component system inputs for Agrobacterium pathogenesis. J Bacteriol 2005; 187:2182–2189.PubMedCrossRefGoogle Scholar
  24. 24.
    Shimoda N, Toyoda-Yamamoto A, Nagamine J et al. Control of expression of Agrobacterium vir genes by synergistic actions of phenolic signal molecules and monosaccharides. Proc Natl Acad Sci USA 1990; 87:6684–6688.PubMedCrossRefGoogle Scholar
  25. 25.
    Stachel SE, Messens E, Van Montagu M et al. Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 1985; 318:624–629.CrossRefGoogle Scholar
  26. 26.
    Stachel SE, Nester EW, Zambryski PC. A plant cell factor induces Agrobacterium tumefaciens vir gene expression. Proc Natl Acad Sci USA 1986; 83:379–383.PubMedCrossRefGoogle Scholar
  27. 27.
    Winans SC. Transcriptional induction of an Agrobacterium regulatory gene at tandem promoters by plant-released phenolic compounds, phosphate starvation and acidic growth media. J Bacteriol 1990; 172:2433–2438.PubMedGoogle Scholar
  28. 28.
    Jin SG, Prusti RK, Roitsch T et al. Phosphorylation of the VirG protein of Agrobacterium tumefaciens by the autophosphorylated VirA protein: essential role in biological activity of VirG. J Bacteriol 1990; 172:4945–4950.PubMedGoogle Scholar
  29. 29.
    Mukhopadhyay A, Gao R, Lynn DG. Integrating input from multiple signals: the VirA/VirG two-component system of Agrobacterium tumefaciens. Chembiochem 2004; 5:1535–1542.PubMedCrossRefGoogle Scholar
  30. 30.
    Mantis NJ, Winans SC. The Agrobacterium tumefaciens vir gene transcriptional activator virG is transcriptionally induced by acid pH and other stress stimuli. J Bacteriol 1992; 174:1189–1196.PubMedGoogle Scholar
  31. 31.
    Jin SG, Roitsch T, Christie PJ et al. The regulatory VirG protein specifically binds to a cis-acting regulatory sequence involved in transcriptional activation of Agrobacterium tumefaciens virulence genes. J Bacteriol 1990; 172:531–537.PubMedGoogle Scholar
  32. 32.
    Binns AN, Costantino P. The Agrobacterium oncogenes. In: Spaink HP, Kondorosis A, Hooykaas PJJ, eds. The Rhizobiaceae: Molecular Biology of Model Plant-Associated Bacteria. Dordrecht: Kluwer Academic Publishers, 1998:251–266.Google Scholar
  33. 33.
    Duban ME, Lee KH, Lynn DG. Strategies in pathogenesis—mechanistic specificity in the detection of generic signals. Mol Microbiol 1993; 7:637–645.PubMedCrossRefGoogle Scholar
  34. 34.
    Melchers LS, Regensburgtuink AJG, Schilperoort RA et al. Specify of signal molecules in the activation of Agrobacterium virulence gene-expression. Mol Microbiol 1989; 3:969–977.PubMedCrossRefGoogle Scholar
  35. 35.
    Melchers LS, Regensburg-Tuïnk TJ, Bourret RB et al. Membrane topology and functional analysis of the sensory protein VirA of Agrobacterium tumefaciens. EMBO J 1989; 8:1919–1925.PubMedGoogle Scholar
  36. 36.
    Shimoda N, Toyoda-Yamamoto A, Aoki S et al. Genetic evidence for an interaction between the VirA sensor protein and the ChvE sugar-binding protein of Agrobacterium. J Biol Chem 1993; 268:26552–26558.PubMedGoogle Scholar
  37. 37.
    Tam R, Saier MH Jr. Structural functional and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol Rev 1993; 57:320–346.PubMedGoogle Scholar
  38. 38.
    Pan SQ, Charles T, Jin S et al. Preformed dimeric state of the sensor protein VirA is involved in plant-Agrobacterium signal transduction. Proc Natl Acad Sci USA 1993; 90:9939–9943.PubMedCrossRefGoogle Scholar
  39. 39.
    Winans SC, Kerstetter RA, Ward JE et al. A protein required for transcriptional regulation of Agrobacterium virulence genes spans the cytoplasmic membrane. J Bacteriol 1989; 171:1616–1622.PubMedGoogle Scholar
  40. 40.
    Brencic A, Xia Q, Winans SC. VirA of Agrobacterium tumefaciens is an intradimer transphosphorylase and can actively block vir gene expression in the absence of phenolic signals. Mol Microbiol 2004; 52:1349–1362.PubMedCrossRefGoogle Scholar
  41. 41.
    Toyoda-Yamamoto A, Shimoda N, Machida Y. Genetic analysis of the signal-sensing region of the histidine protein kinase VirA of Agrobacterium tumefaciens. Mol Gen Genet 2000; 263:939–947.PubMedCrossRefGoogle Scholar
  42. 42.
    Wise AA, Voinov L, Binns AN. Intersubunit complementation of sugar signal transduction in VirA heterodimers and posttranslational regulation of VirA activity in Agrobacterium tumefaciens. J Bacteriol 2005; 187:213–223.PubMedCrossRefGoogle Scholar
  43. 43.
    Chang C, Winans S. Functional roles assigned to the periplasmic, linker and receiver domains of the Agrobacterium tumefaciens VirA protein. J Bacteriol 1992; 174:7033–7039.PubMedGoogle Scholar
  44. 44.
    Jin S, Roitsch T, Ankenbauer RG et al. The VirA protein of Agrobacterium tumefaciens, is autophosphorylated and is essential for vir gene regulation. J Bacteriol 1990; 172:525–530.PubMedGoogle Scholar
  45. 45.
    Parkinson JS, Kofoid EC. Communication modules in bacterial signaling proteins. Ann Rev Genet 1992; 26:71–112.PubMedCrossRefGoogle Scholar
  46. 46.
    Chang CH, Zhu J, Winans SC. Pleiotropic phenotypes caused by genetic ablation of the receiver module of the Agrobacterium tumefaciens VirA protein. J Bacteriol 1996; 178:4710–4716.PubMedGoogle Scholar
  47. 47.
    Wang Y, Gao R, Lynn DG. Ratcheting up vir gene expression in Agrobacterium tumefaciens: coiled coils in histidine kinase signal transduction. Chembiochem 2002; 3:311–317.PubMedCrossRefGoogle Scholar
  48. 48.
    Bader MW, Sanowar S, Daley ME et al. Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 2005; 122:461–472.PubMedCrossRefGoogle Scholar
  49. 49.
    Dunham CM, Dioum EM, Tuckerman JR et al. A distal arginine in oxygen-sensing heme-PAS domains is essential to ligand binding, signal transduction and structure. Biochemistry 2003; 42:7701–7708.PubMedCrossRefGoogle Scholar
  50. 50.
    Malpica R, Franco B, Rodriguez C et al. Identification of a quinone-sensitive redox switch in the ArcB sensor kinase. Proc Natl Acad Sci USA 2004; 101:13318–13323.PubMedCrossRefGoogle Scholar
  51. 51.
    Peach ML, Hazelbauer GL, Lybrand TP. Modeling the transmembrane domain of bacterial chemoreceptors. Protein Sci 2002; 11:912–923.PubMedCrossRefGoogle Scholar
  52. 52.
    Braun AC. Conditioning of the host cell as a factor in the transformation process in crown gall. Growth 1952; 16:65–74.PubMedGoogle Scholar
  53. 53.
    Baron C, Zambryski PC. The plant response in pathogenesis, symbiosis and wounding: variations on a common theme? Annu Rev Genet 1995; 29:107–129.PubMedCrossRefGoogle Scholar
  54. 54.
    Brencic A, Angert ER, Winans SC. Unwounded plants elicit Agrobacterium vir gene induction and T-DNA transfer: transformed plant cells produce opines yet are tumour free. Mol Microbiol 2005; 57:1522–1531.PubMedCrossRefGoogle Scholar
  55. 55.
    Escudero J, Hohn B. Transfer and integration of T-DNA without cell injury in the host plant. Plant Cell 1997; 9:2135–2142.PubMedCrossRefGoogle Scholar
  56. 56.
    McCullen CA, Binns AN. Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annu Rev Cell Dev Biol 2006; 22:101–127.PubMedCrossRefGoogle Scholar
  57. 57.
    Hess KM, Dudley MW, Lyn DG et al. Mechanism of phenolic activation of Agrobacterium virulence genes: development of a specific inhibitor of bacterial sensor/response systems. Proc Natl Acad Sci USA 1991; 88:7854–7858.PubMedCrossRefGoogle Scholar
  58. 58.
    Lohrke SM, Yang H, Jin S. Reconstitution of acetosyringone-mediated Agrobacterium tumefaciens virulence gene expression in the heterologous host Escherichia coli. J Bacteriol 2001; 183:3704–3711.PubMedCrossRefGoogle Scholar
  59. 59.
    Karplus K, Barrett C, Hughey R. Hidden Markov models for detecting remote protein homologies. Bioinformatics 1998; 14:846–856.PubMedCrossRefGoogle Scholar
  60. 60.
    Gough J, Karplus K, Hughey R et al. Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J Mol Biol 2001; 313:903–919.PubMedCrossRefGoogle Scholar
  61. 61.
    Gao R, Lynn DG. Integration of rotation and piston motions in coiled-coil signal transduction. J Bacteriol 2007; 189:6048–6056.PubMedCrossRefGoogle Scholar
  62. 62.
    Bateman A, Coin L, Durbin R et al. The Pfam protein families’ database. Nucleic Acids Res 2004; 32: D138–141.PubMedCrossRefGoogle Scholar
  63. 63.
    Anantharaman V, Koonin EV, Aravind L. Regulatory potential, phyletic distribution and evolution of ancient, intracellular small-molecule-binding domains. J Mol Biol 2001; 307:1271–1292.PubMedCrossRefGoogle Scholar
  64. 64.
    Zoraghi R, Corbin JD, Fancis SH. Properties and functions of GAF domains in cyclic nucleotide phosphodiesterases and other proteins. Mol Pharmacol 2004; 65:267–278.PubMedCrossRefGoogle Scholar
  65. 65.
    Ho YJ, Burden LM, Hurley JH. Structure of the GAF domain, a ubiquitous signaling motif and a new class of cyclic GMP receptor. EMBO J 2000; 19:5288–5299.PubMedCrossRefGoogle Scholar
  66. 66.
    Taylor BL, Zhulin IB. PAS domains: internal sensors of oxygen, redox potential and light. Microbiol Mol Biol Rev 1999; 63:479–506.PubMedGoogle Scholar
  67. 67.
    Martinez SE, Bruder S, Schultz A et al. Crystal structure of the tandem GAF domains from a cyanobacterial adenylyl cyclase: modes of ligand binding and dimerization. Proc Natl Acad Sci USA 2005; 102:3082–3087.PubMedCrossRefGoogle Scholar
  68. 68.
    Martinez SE, Wu AY, Glavas NA et al. The two GAF domains in phosphodiesterase 2A have distinct roles in dimerization and in cGMP binding. Proc Natl Acad Sci USA 2002; 99:13260–13265.PubMedCrossRefGoogle Scholar
  69. 69.
    Ninfa EG, Atkinson MR, Kamberov ES et al. Mechanism of autophosphorylation of Escherichia coli nitrogen regulator II (NRII or NtrB): trans-phosphorylation between subunitts. J Bacteriol 1993; 175:7024–7032.PubMedGoogle Scholar
  70. 70.
    Cai S, Inouye M. Spontaneous subunit exchange and biochemical evidence for trans-autophosphorylation in a dimer of Escherichia coli histidine kinase (EnvZ). J Mol, Biol 2003; 329:495–503.CrossRefGoogle Scholar
  71. 71.
    Falke JJ, Koshland DE Jr. Global flexibility in a sensory receptor: a site-directed cross-linking approach. Science 1987; 237:1596–1600.PubMedCrossRefGoogle Scholar
  72. 72.
    Hidaka Y, Park H, Inouye M. Demonstration of dimer formation of the cytoplasmic domain of a transmembrane osmosensor protein, EnvZ, of Escherichia coli using Ni-histidine tag affinity chromatography. FEBS Lett 1997; 400:238–242.PubMedCrossRefGoogle Scholar
  73. 73.
    Falke JJ, Hazelbauer GL. Transmembrane signaling in bacterial chemoreceptors. Trends Biochem Sci 2001; 26:257–265.PubMedCrossRefGoogle Scholar
  74. 74.
    Kwon O, Georgellis D, Lin ECC. Rotational on-off switching of a hybrid membrane sensor kinase Tar-ArcB in Escherichia coli. J Biol Chem 2003; 278:13192–13195.PubMedCrossRefGoogle Scholar
  75. 75.
    Murphy OJ, Kovacs FA, Sicard EL et al. Site-directed solid-state NMR measurement of a ligand-induced conformational change in the serine bacterial chemoreceptor. Biochemistry 2001; 40:1358–1366.PubMedCrossRefGoogle Scholar
  76. 76.
    McLean BG, Greene EA, Zambryski PC. Mutants of Agrobacterium VirA that activate vir gene expression in the absence of the inducer acetosyringone. J Biol Chem 1994; 269:2645–2651.PubMedGoogle Scholar
  77. 77.
    Aravind L, Ponting CP. The cytoplasmic helical linker domain of receptor histidine kinase and methyl-accepting proteins is common to many prokaryotic signaling proteins. FEMS Microbiol Lett 1999; 176:111–116.PubMedCrossRefGoogle Scholar
  78. 78.
    Starrett DJ, Falke JJ. Adaptation mechanism of the aspartate receptor: electrostatics of the adaptation subdomain play a key role in modulating kinase activity. Biochemistry 2005; 44:1550–1560.PubMedCrossRefGoogle Scholar
  79. 79.
    Jin T, Inouye M. Ligand binding to the receptor domain regulates the ratio of kinase to phosphatase activities of the signaling domain of the hybrid Escherichia coli transmembrane receptor, Taz1, J Mol Biol 1993; 232:484–492.PubMedCrossRefGoogle Scholar
  80. 80.
    Utsumi R, Brissette RE, Rampersaud A et al. Activation of bacterial porin gene expression by a chimeric signal transducer in response to aspartate. Science 1989; 245:1246–1249.PubMedCrossRefGoogle Scholar
  81. 81.
    Tao W, Malone CL, Ault AD et al. A cytoplasmic coiled-coil domain is required for histidine kinase activity of the yeast osmosensor, SLN1. Mol Microbiol 2002; 43:459–473.PubMedCrossRefGoogle Scholar
  82. 82.
    Xu Q, Black WP, Ward SM et al. Nitrate-dependent activation of the Dif signaling pathway of Myxococcus xanthus mediated by a NarX-DifA interspecies chimera. J Bacteriol 2005; 187:6410–6418.PubMedCrossRefGoogle Scholar
  83. 83.
    O’Hara BP, Norman RA, Wan PTC et al. Crystal structure and induction mechanism of AmiC-AmiR: a ligand-regulated transcription antitermination complex. EMBO J 1999; 18:5175–5186.PubMedCrossRefGoogle Scholar
  84. 84.
    Williams SB, Vakonakis I, Golden SS et al. Structure and function from the circadian clock protein KaiA of Synechococcus elongatus: A potential clock input mechanism. Proc Natl Acad Sci USA 2002; 99:15357–15362.PubMedCrossRefGoogle Scholar
  85. 85.
    Zhang X, Dong G, Golden SS. The pseudo-receiver domain of CikA regulates the cyanobacterial circadian input pathway. Mol Microbiol 2006; 60:658–668.PubMedCrossRefGoogle Scholar
  86. 86.
    Zhang J, Boone L, Koez R et al. At the maize/Agrobacterium interface: natural factors limiting host transformation, Chem Biol 2000; 7:611–621.PubMedCrossRefGoogle Scholar
  87. 87.
    Maresh J, Zhang J, Lynn DG. The innate immunity of maize and the dynamic chemical strategies regulating two-component signal transduction in Agrobacterium tumefaciens. ACS Chem Biol 2006; 1:165–175.PubMedCrossRefGoogle Scholar
  88. 88.
    Maresh J, Zhang J, Tzeng Y et al. Rational design of inhibitors of VirA-VirG two-component signal transduction. Bioorg Med Chem Lett 2007; 17:3281–3286.PubMedCrossRefGoogle Scholar
  89. 89.
    Gao T, Zhang X, Ivleva NB et al. NMR structure of the pseudo-receiver domain of CikA. Protein Sci 2007; 16:465–475.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  • Yi-Han Lin
    • 2
  • Rong Gao
    • 2
  • Andrew N. Binns
    • 1
  • David G. Lynn
    • 2
  1. 1.Plant Science Institute, Department of BiologyUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Center for Fundamental and Applied Molecular Evolution, Departments of Chemistry and BiologyEmory UniversityAtlantaUSA

Personalised recommendations