Skip to main content

The BvgS/BvgA Phosphorelay System of Pathogenic Bordetellae

Structure, Function and Evolution

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 631))

Abstract

In the genus Bordetella several important human and animal pathogens are classified with B. pertussis, the etiological agent of whooping cough, being medically the most relevant. In these bacteria expression of the most important virulence factors including several toxins, adhesins and colonization factors is controlled by a single master regulatory two-component system, the BvgS/BvgA system. This system represents a paradigm of a complex phosphorelay system that mediates a fine-tuned transcriptional response resulting in different expression levels of virulence factors during different stages of the infection process. In this chapter the current knowledge about signal perception and the molecular basis of differential gene expression controlled by a single two-component system is discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beier D, Gross R. Regulation of bacterial virulence by two-component systems. Curr Opin Microbiol 2006; 9:143–152.

    Article  PubMed  CAS  Google Scholar 

  2. Cotter PA, DiRita V. Bacterial virulence gene regulation: an evolutionary perspective. Annu Rev Microbiol 2000; 54:519–565.

    Article  PubMed  CAS  Google Scholar 

  3. Cotter PA, Jones AM. Phosphorelay control of virulence gene expression in Bordetella. Trends Microbiol 2003; 11:367–373.

    Article  PubMed  CAS  Google Scholar 

  4. Mattoo S, Cherry JD. Molecular pathogenesis, epidemiology and clinical manifestation of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev 2005; 18:326–382.

    Article  PubMed  CAS  Google Scholar 

  5. Bock A, Gross R. The BvgS/BvgA two-component system of Bordetella spp.: a versatile modulator of virulence gene expression. Int J Med Microbiol 2001; 291:119–130.

    Article  PubMed  CAS  Google Scholar 

  6. Irie Y, Matto S, Yuk MH. The Bvg virulence control system regulates biofilm production in Bordetella bronchiseptica. J Bacteriol 2004; 186:5692–5698.

    Article  PubMed  CAS  Google Scholar 

  7. Mishra M, Parise G, Jackson KD et al. The BvgS/BvgA signal transduction system regulates biofilm development in Bordetella. J Bacteriol 2005; 187:1474–1484.

    Article  PubMed  CAS  Google Scholar 

  8. Preston A, Maxin E, Toland E et al. Bordetella bronchiseptica PagP is a Bvg-regulated lipid A palmitoyl transferase that is required for persistent colonization of the mouse respiratory tract. Mol Microbiol 2003; 48:725–736.

    Article  PubMed  CAS  Google Scholar 

  9. Parkhill J, Sebaihia M, Preston A et al. Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet 2003; 35:32–40.

    Article  PubMed  Google Scholar 

  10. Arico B, Rappuoli R. Bordetella parapertussis and Bordetella bronchiseptica contain transcriptionally silent pertussis toxin genes. J Bacteriol 1987; 169:2847–2853.

    PubMed  CAS  Google Scholar 

  11. Gerlach G, von Wintzingerode F, Middendorf B et al. Evolutionary trends in the genus Bordetella. Microbes Infect 2001; 3:61–72.

    Article  PubMed  CAS  Google Scholar 

  12. Spears PA, Temple LM, Miyamoto DM et al. Unexpected similaritites between Bordetella avium and other pathogenic Bordetellae. Infect Immun 2003; 71:2591–2597.

    Article  PubMed  CAS  Google Scholar 

  13. Sebaihia M, Preston A, Maskell DJ et al. Comparison of the genome sequence of the poultry pathogen Bordetella avium with those of B. bronchiseptica, B. pertussis and B. parapertussis reveals extensive diversity in surface structures associated with host interaction. J Bacteriol 2006; 188:6002–6015.

    Article  PubMed  CAS  Google Scholar 

  14. Mazengia E, Silva EA, Peppe JA et al. Recovery of Bordetella holmesii from patients with pertussis-like symptoms: use of pulsed-field gel electrophoresis to characterize circulating strains. J Clin Microbiol 2000; 38:2330–2333.

    PubMed  CAS  Google Scholar 

  15. Gadea I, Cuenca-Estrella M, Benito N et al. Bordetella hinzii, a “new” opportunistic pathogen to think about. J Infect 2000; 40:298–299.

    Article  PubMed  CAS  Google Scholar 

  16. Vandamme P, Heyndrickx M, Vancanneyt M et al. Bordetella trematum sp. nov., isolated from wounds and ear infections in humans and reassessment of Alcaligenes denitrificans Ruger and Tan 1983. Int J Syst Microbiol 1996; 46:849–858.

    Article  CAS  Google Scholar 

  17. von Wintzingerode F, Schattke A, Siddiqui RA et al. Bordetella petrii sp. nov., isolated from an anaerobic bioreactor and emended description of the genus Bordetella. Int J Syst Evol Microbiol 2001; 51:1257–1265.

    Google Scholar 

  18. Gerlach G, Janzen S, Beier D et al. Functional characterization of the BvgS/BvgA two-component system of Bordetella holmesii. Microbiology 2004; 150:3715–3729.

    Article  PubMed  CAS  Google Scholar 

  19. Lacey CW. Antigenic modulation of Bordetella pertussis. J Hyg (Lond) 1960; 58:57–93.

    CAS  Google Scholar 

  20. Leslie PH, Gardner AD. The phases of Haemophilus pertussis. J Hyg (Lond) 1931; 31:423–434.

    Google Scholar 

  21. Weiss AA, Falkow S. Genetic analysis of phase change in Bordetella pertussis. Infect Immun 1984; 43:263–269.

    PubMed  CAS  Google Scholar 

  22. Arico B, Miller JF, Roy C et al. Sequences required for expression of Bordetella pertussis virulence factors share homology with prokaryotic signal transduction proteins. Proc Natl Acad Sci USA 1989; 86:6671–6675.

    Article  PubMed  CAS  Google Scholar 

  23. Stibitz S, Yang MS. Subcellular localization and immunological detection of proteins encoded by the vir locus of Bordetella pertussis. J Bacteriol 1991; 173:4288–4296.

    PubMed  CAS  Google Scholar 

  24. Scarlato V, Arico B, Prugnola A et al. Sequential activation and environmental regulation of virulence genes in Bordetella pertussis. EMBO J 1991; 10:3971–3975.

    PubMed  CAS  Google Scholar 

  25. Cotter PA, Miller JF. A mutation in the Bordetella bronchiseptica bvgS gene results in reduced virulence and increased resistance to starvation and identifies a new class of Bvg-regulated antigens. Mol Microbiol 1997; 24:671–685.

    Article  PubMed  CAS  Google Scholar 

  26. Stockbauer KE, Fuchalocher B, Miller JF et al. Identification and characterization of BipA, a Bordetella Bvg-intermediate phase protein. Mol Microbiol 2001; 39:65–78.

    Article  PubMed  CAS  Google Scholar 

  27. Merkel TJ, Stibitz S. Identification of a locus required for the regulation of bvg-repressed genes in Bordetella pertussis. J Bacteriol 1995; 177:2727–2736.

    PubMed  CAS  Google Scholar 

  28. Merkel TJ, Boucher PE, Stibitz S et al. Analysis of bvgR expression in Bordetella pertussis. J Bacteriol 2003; 185:6902–6912.

    Article  PubMed  CAS  Google Scholar 

  29. Grebe TW, Stock JB. The histidine protein kinase superfamily. Adv Microb Physiol 1999; 41:139–227.

    Article  PubMed  CAS  Google Scholar 

  30. Bantscheff M, Perraud AL, Bock A et al. Structure-function relationships in the Bvg and Evg two-component phosphorelay systems. Int J Med Microbiol 2000; 290:317–323.

    PubMed  CAS  Google Scholar 

  31. Bock A, Bantscheff M, Perraud AL et al. Rational design and molecular characterization of a chimaeric response regulator protein. J Mol Biol 2001; 310:283–290.

    Article  PubMed  CAS  Google Scholar 

  32. Boucher PE, Maris AE, Yang MS et al. The response regulator BvgA and RNA polymerase alpha subunit C-terminal domain bind simultaneously to different faces of the same segment of promoter DNA. Mol Cell 2003; 11:163–173.

    Article  PubMed  CAS  Google Scholar 

  33. Taylor BL, Zhulin IB. PAS domains: internal sensors of oxygen, redox potential and light. Microbiol Mol Biol Rev 1999; 63:479–506.

    PubMed  CAS  Google Scholar 

  34. Beier D, Deppisch H, Gross R. Conserved sequence motifs in the unorthodox BvgS two-component sensor protein of Bordetella pertussis. Mol Gen Genet 1996; 252:169–176.

    Article  PubMed  CAS  Google Scholar 

  35. Manetti R, Arico B, Rappuoli R et al. Mutations in the linker region of BvgS abolish response to environmental signals for the regulation of the virulence factors in Bordetella pertussis. Gene 1994; 150:123–127.

    Article  PubMed  CAS  Google Scholar 

  36. Miller JF, Johnson SA, Black WJ et al. Constitutive sensory transduction mutations in the Bordetella pertussis bvgS gene. J Bacteriol 1992; 174:970–979.

    PubMed  CAS  Google Scholar 

  37. Beier D, Fuchs TM, Schwarz B et al. In vivo characterization of the unorthodox BvgS two-component sensor protein of Bordetella pertussis. J Mol Biol 1995; 248:596–610.

    Article  PubMed  CAS  Google Scholar 

  38. Perraud AL, Kimmel B, Weiss V et al. Specificity of the BvgS/BvgA and EvgAS phosphorelay is mediated by the C-terminal HPt domains of the sensor proteins. Mol Microbiol 1998; 27:875–887.

    Article  PubMed  CAS  Google Scholar 

  39. Perraud AL, Weiss V, Gross R. Signalling pathways in two-component phosphorelay systems. Trends Microbiol 1999; 7:115–120.

    Article  PubMed  CAS  Google Scholar 

  40. Uhl MA, Miller JF. Autophosphorylation and phosphotransfer in the Bordetella pertussis BvgAS signal transduction cascade. Proc Natl Acad Sci USA 1994; 91:1163–1167.

    Article  PubMed  CAS  Google Scholar 

  41. Uhl MA, Miller JF. Integration of multiple domains in a two-component sensor protein: the Bordetella pertussis BvgAS phosphorelay. EMBO J 1996a; 15:1028–1036.

    PubMed  CAS  Google Scholar 

  42. Bogdan JA, Nazario-Larrieu J, Sarwar J et al. Bordetella pertussis autoregulates pertussis toxin production through the metabolism of cysteine. Infect Immun 2001; 69:6823–6830.

    Article  PubMed  CAS  Google Scholar 

  43. Bock A, Gross R. The unorthodox histidine kinases BvgS and EvgS are responsive to the oxidation status of a quinone electron carrier. Eur J Biochem 2002; 269:3479–3484.

    Article  PubMed  CAS  Google Scholar 

  44. Boucher PE, Stibitz S. Synergistic binding of RNA polymerase and BvgA phosphate to the pertussis toxin promoter of Bordetella pertussis. J Bacteriol 1995; 177:6486–6491.

    PubMed  CAS  Google Scholar 

  45. Karimova G, Bellalou J, Ullmann A. Phosphorylation-dependent binding of BvgA to the upstream region of the cyaA gene of Bordetella pertussis. Mol Microbiol 1996; 20:489–496.

    Article  PubMed  CAS  Google Scholar 

  46. Zu T, Manetti R, Rappuoli R et al. Differential binding of BvgA to two classes of virulence genes of Bordetella pertussis directs promoter selectivity by RNA polymerase. Mol Microbiol 1996; 21:557–565.

    Article  PubMed  CAS  Google Scholar 

  47. Boucher PE, Murakami K, Ishihama A et al. Nature of DNA binding and RNA polymerase interaction of the Bordetella pertussis BvgA transcriptional activator at the fha promoter. J Bacteriol 1997; 179:1755–1763.

    PubMed  CAS  Google Scholar 

  48. Kinnear SM, Boucher PE, Stibitz S et al. Analysis of BvgA activation of the pertactin gene promoter in Bordetella pertussis. J Bacteriol 1999; 181:5234–5241.

    PubMed  CAS  Google Scholar 

  49. Boucher PE, Yang MS, Schmidt DM et al. Genetic and biochemical analyses of BvgA interaction with the secondary binding region of the fha promoter of Bordetella pertussis. J Bacteriol 2001; 183:536–544.

    Article  PubMed  CAS  Google Scholar 

  50. Deora R. Differential regulation of the Bordetella bipA gene: distinct roles for different BvgA binding sites. J Bacteriol 2002; 184:6942–6951.

    Article  PubMed  CAS  Google Scholar 

  51. Mishra M, Deora R. Mode of action of the Bordetella BvgA protein: transcriptional activation and repression of the Bordetella bronchiseptica bipA promoter. J Bacteriol 2005; 187:6290–6299.

    Article  PubMed  CAS  Google Scholar 

  52. Williams CL, Boucher PE, Stibitz S et al. BvgA functions as both an activator and a repressor to control Bvg phase expression of bipA in Bordetella pertussis. Mol Microbiol 2005; 56:175–188.

    Article  PubMed  CAS  Google Scholar 

  53. Boucher PE, Yang M-S, Stibitz S. Mutational analysis of the high-affinity BvgA binding site in the fha promoter of Bordetella pertussis. Mol Microbiol 2001b; 40:991–999.

    Article  PubMed  CAS  Google Scholar 

  54. Perraud AL, Rippe K, Bantscheff M et al. Dimerization of signalling modules of the EvgAS and BvgAS phosphorelay systems. Biochim Biophys Acta 2000; 1478:341–354.

    PubMed  CAS  Google Scholar 

  55. Maris AE, Sawaya, MR, Kaqczot-Grzeskowiak M et al. Dimerization allows DNA target site recognition by the NarL response regulator. Nat Struct Biol 2002; 10:771–778.

    Article  CAS  Google Scholar 

  56. Karimova G, Ullmann A. Characterization of DNA binding sites for the BvgA protein of Bordetella pertussis. J Bacteriol 1997; 179:3790–3792.

    PubMed  CAS  Google Scholar 

  57. Steffen P, Goyard S, Ullmann A. Phosphorylated BvgA is sufficient for transcriptional activation of virulence-regulated genes in Bordetella pertussis. EMBO J 1996; 15:102–109.

    PubMed  CAS  Google Scholar 

  58. Jones AM, Boucher PE, Williams CL et al. Role of BvgA phosphorylation and DNA binding affinity in control of BvgA-mediated phenotypic phase transition in Bordetella pertussis. Mol Microbiol 2005; 58:700–713.

    Article  PubMed  CAS  Google Scholar 

  59. Scarlato V, Prugnola A, Arico B et al. Positive transcriptional feedback, at the bvg locus controls expression of virulence factors in Bordetella pertussis. Proc Natl Acad Sci USA 1990; 87:6753–6757.

    Article  PubMed  CAS  Google Scholar 

  60. Uhl MA, Miller JF. Central role of the BvgS receiver as a phosphorylated intermediate in a complex two-component phosphorelay. J Biol Chem 1996b; 271:33176–33180.

    Article  PubMed  CAS  Google Scholar 

  61. Errington J. Regulation of endospore formation in Bacillus subtilis. Nat Rev Microbiol 2003; 1:117–126.

    Article  PubMed  CAS  Google Scholar 

  62. Akerley BJ, Cotter PA, Miller JF. Ectopic expression of the flagellar regulon alters development of the Bordetella-host interaction. Cell 1995; 80:611–620.

    Article  PubMed  CAS  Google Scholar 

  63. Kinnear SM, Marques RR, Carbonetti NH. Differential regulation of Bvg-activated virulence factors plays a role in Bordetella pertussis pathogenicity. Infect Immun 2001; 69:1983–1993.

    Article  PubMed  CAS  Google Scholar 

  64. Cotter PA, Miller JF. BvgAS-mediated signal transduction: analysis of phase-locked regulatory mutants of Bordetella bronchiseptica in a rabbit model. Infect Immun 1994; 62:3381–3390.

    PubMed  CAS  Google Scholar 

  65. Vergara-Irigaray N, Chavarri-Martinez A, Rodriguez-Cuesta J et al. Evaluation of the role of the Bvg intermediate phase in Bordetella pertussis during experimental respiratory infection. Infect Immun 2005; 73:748–760.

    Article  PubMed  CAS  Google Scholar 

  66. Fernandez J, Sisti F, Bottero D et al. Constitutive expression of bvgR-repressed factors is not detrimental to the Bordetella bronchiseptica-host interaction. Res Microbiol 2005; 156:843–850.

    Article  PubMed  CAS  Google Scholar 

  67. Merkel TJ, Stibitz S, Keith JM et al. Contribution of regulation by the bvg locus to respiratory infection of mice by Bordetella pertussis. Infect Immun 1998; 66:4367–4373.

    PubMed  CAS  Google Scholar 

  68. Veal-Carr WL, Stibitz S. Demonstration of differential virulence gene promoter activation in vivo in Bordetella pertussis using RIVET. Mol Microbiol 2005; 55:788–798.

    Article  PubMed  CAS  Google Scholar 

  69. Martinez de Tejada G, Miller JF, Cotter PA. Comparative analysis of the virulence control systems of Bordetella pertussis and Bordetella bronchiseptica. Mol Microbiol 1996; 22:895–908.

    Article  PubMed  CAS  Google Scholar 

  70. Porter JF, Parton R, Wardlaw AC. Growth and survival of Bordetella bronchiseptica in natural waters and in buffered saline without added nutrients. Appl Environ Microbiol 1991; 57:1202–1206.

    PubMed  CAS  Google Scholar 

  71. von Wintzingerode F, Gerlach G, Schneider B et al. Phylogenetic relationships and virulence evolution in the genus Bordetella. Curr Top Microbiol Immunol 2002; 264:177–199.

    Google Scholar 

  72. Cummings CA, Bootsma HJ, Relman DA et al. Species-and strain-specific control of a complex, flexible regulon by Bordetella BvgAS. J Bacteriol 2006; 188:1775–1785.

    Article  PubMed  CAS  Google Scholar 

  73. Hot D, Antoine R, Renauld-Mongenie G et al. Differential modulation of Bordetella pertussis virulence genes as evidenced by DNA microarray analysis. Mol Genet Genomics 2003; 269:475–486.

    Article  PubMed  CAS  Google Scholar 

  74. Brinig MM, Cummings CA, Sanden GN et al. Significant gene order and expression differences in Bordetella pertussis despite limited gene content variation. J Bacteriol 2006; 188:2375–2382.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy Gross .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Beier, D., Gross, R. (2008). The BvgS/BvgA Phosphorelay System of Pathogenic Bordetellae . In: Utsumi, R. (eds) Bacterial Signal Transduction: Networks and Drug Targets. Advances in Experimental Medicine and Biology, vol 631. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78885-2_10

Download citation

Publish with us

Policies and ethics