Development of Higher Brain Functions: Birth Through Adolescence

  • Lawrence V. Majovski
  • David Breiger

The bane of pain in understanding the healthy, normal, developing brain lay vainly in the unfolding story of life’s unfinished experiment as to what we know and do not know regarding “what’s going on age-wise” and how mapping structure onto function looks from birth through adolescence.


White Matter Gray Matter Cerebral Blood Flow Magnetic Resonance Spectroscopy Cerebral Hemisphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aboitiz, F., Scheibel, A. B., Fisher, R. S., & Zaidel, E. (1992). Fiber composition of the human corpus callosum. Brain Research, 598, 143-153.PubMedGoogle Scholar
  2. Afifi, A. K., & Bergman, R. A. (1980). Basic neuroscience. Munich: Urban & Schwarzenberg.Google Scholar
  3. Allen, J. S., Damasio, H., Grabowski, T. J., Bruss, J., & Zhang, W. (2003). Sexual dimorphism and asymmetries in the gray-white composition of the human cerebrum. Neuroimage, 18 (4), 880-894.PubMedGoogle Scholar
  4. Altman, J., Brunner, R. L., & Bayer, S. A. (1973). The hippocampus and behavioral maturation. Behavioral Biology, 8, 557.PubMedGoogle Scholar
  5. Altman, D. I., Powers, W. J., Perlman, J. M., Herscovitch, P., Volpe, S. L., & Volpe, J. J. (1988). Cerebral blood flow requirements for brain viability in newborn infants is lower than adults. Annals of Neurology, 24, 218-226.PubMedGoogle Scholar
  6. Anderson, P. (1975). Organization of hippocampal neurons and their interconnections. In R. L. Isaacson, & K. H. Pribam (Eds.), The hippocampus (Vol. I). New York: Plenum Press.Google Scholar
  7. Anderson, V., Jacobs, R., & Harvey, A. S. (2005). Prefrontal lesions and attentional skills in childhood. Journal of the International Neuropsychological Society, 11 (7), 817-831.PubMedGoogle Scholar
  8. Annett, M. (1978). Genetic and nongenetic influences on handedness. Behavior, 8, 227-249.Google Scholar
  9. Arey, L. B. (1974). Developmental anatomy (7th ed.). Philadelphia: Saunders.Google Scholar
  10. Arnett, J. J. (1999). Adolescents storm and stress, reconsidered. American Psychologist, 54, 317-326.PubMedGoogle Scholar
  11. Aylward, E. H., Richards, T. L., Berninger, V. W., Nagy, W. E., Field, K. M., Grimme, A. C., et al. (2003). Instructional treatment associated with changes in brain activation in children with dyslexia. Neurology, 61, 212-219.PubMedGoogle Scholar
  12. Bakan, P. (1971). Handedness and birth order. Nature, 229, 195.PubMedGoogle Scholar
  13. Barnet, A. B. (1966). Visual responses in infancy and their relation to early visual experience. Clinical Proceedings Children’s Hospital National Medical Center, 22, 273.Google Scholar
  14. Baxter, L. C., Saykin, A. J., Flashman, L. A., Johnson, S. C., Guerin, S. J., Babcock, D. R., et al. (2003). Sex differences in semantic language processing: a functional MRI study. Brain & Language, 84 (2), 264-272.Google Scholar
  15. Bear, D. M. (1986). Hemispheric asymmetries in emotional functioning. In B. K. Doane, & K. E. Livingston (Eds.), The limbic system: Functional organization and clinical disorders. New York: Raven Press.Google Scholar
  16. Becker, J. B., Arnold, A. P., Berkley, K. J., Blaustein, J. D., Eckel, L. A., & Hampson, E. (2005). Strategies and methods for research on sex differences in brain and behavior. Endocrinology, 146 (4), 1650-1673.PubMedGoogle Scholar
  17. Bekkers, J. M. (1993). Enhancement by histamine of NMDA-mediated synaptic transmission in the hippocampus. Science, 261, 104-106.PubMedGoogle Scholar
  18. Belmonte, M. K., Allen, G., Beckel-Mitchener, A., Boulanger, L. M., Carper, R. A., & Webb, S. J. (2004a). Autism and abnormal development of brain connectivity. Journal of Neuroscience, 24 (42), 9228-9231.Google Scholar
  19. Belmonte, M. K., Cook, E. H., Jr., Anderson, G. M., Rubenstein, J. L., Greenough, W. T., Beckel-Mitchener, A., et al. (2004b). Autism as a disorder of neural information processing: directions for research and targets for therapy. Molecular Psychiatry, 9 (7), 646-663.Google Scholar
  20. Bennes, F. M., Turtle, M., Khan, Y., & Farol, P. (1994). Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence and adulthood. Archives of General Psychiatry, 51, 477-484.Google Scholar
  21. Benson, D. F., & Zaidel, E. (Eds.). (1985). The dual brain: Hemispheric specialization in humans. New York: Guilford Press.Google Scholar
  22. Bernier, R. (2006). EEG correlates of mirror neuron activity and imitation impairments in autism. Unpublished doctoral dissertation, University of Washington.Google Scholar
  23. Bernstine, R. L., Borkowski, W. J., & Price, A. H. (1955). Prenatal fetal electroencephalography. American Journal of Obstetrics and Gynecology, 70, 623.PubMedGoogle Scholar
  24. Best, M., Williams, J. M., & Coccaro, E. F. (2002). Evidence for a dysfunctional prefrontal circuit in patients with an impulsive aggressive disorder. Proceedings of the National Academy of Sciences of the United States of America, 99, 8448-8453.PubMedGoogle Scholar
  25. Biederman, J., Newcorn, J., & Sprich, S. (1991). Comorbidity of attention deficit hyperactivity disorder with conduct, depressive, anxiety, and other disorders. American Journal of Psychiatry, 148, 564-577.Google Scholar
  26. Blair, K. S., Mitchell, D. G. V., Leonard, A., Newman, C., Richell, R. A., & Morton, J. (2006). Differentiating prefrontal substrates in psychopathy: Neuropsychological findings. Neuropsychology, 20, 153-165.PubMedGoogle Scholar
  27. Bloom, F. E. (1973). Dynamic synaptic communication: Finding the vocabulary. Brain Research, 62, 229-305.Google Scholar
  28. Bloom, F. E. (1979). Neurobiological research and selective attention. H. G. Birch Memorial Lecture, 1979 International Neuropsychological Society, San Francisco.Google Scholar
  29. Bloom, F. E. (Ed.). (1994). Neuroscience: From the molecular to the cognitive. Progress in Brain Research, 100. New York: Elsevier.Google Scholar
  30. Bogen, J. E. (1969). The other side of the brain: Parts I, II, III. Bulletin of the Los Angeles Neurological Society, 34, 73-105, 135-162, 191-203.Google Scholar
  31. Bookheimer, S. (2000). Methodological issues in pediatric neuroimaging. Mental Retardation and Developmental Disabilities Research Reviews, 6, 161-165.PubMedGoogle Scholar
  32. Bower, T. G. R. (1977). The perceptual world of the child. Cambridge, MA: Harvard University Press.Google Scholar
  33. Bradshaw, J. L., & Nettleson, N. C. (1983). Human cerebral asymmetry. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  34. Brandeis, D., Vitacco, D., & Steinhausen, H. C. (1994). Mapping brain electric microstates in dyslexic children during reading. Acta-Paedopsychiatrica, 56, 239-247.PubMedGoogle Scholar
  35. Bronson, G. W. (1982). The scanning patterns of human infants: Implications for visual learning. Norwood, NJ: Ablex.Google Scholar
  36. Bruns, F. J., Fraley, D. S., Haigh, J., Marquez, J. M., Martin, D. J., Matuschak, G. M., & Snyder, J. V. (1987). Control of blood flow in organs. In J. V. Snyder, & M. R. Pinsky (Eds.), Oxygen transport in the critically ill (pp. 87-125). Chicago: Year Book Medical.Google Scholar
  37. Bryden, M. (1979). Evidence for sex differences in cerebral organization. In M. Wittig, & A. Peterson (Eds.), Determinants of sex-related differences in cognitive functioning. New York: Academic Press.Google Scholar
  38. Buffery, A. W. H. (1976). Sex differences in the neuropsychological development of verbal and spatial skills. In R. M. Knights, & D. J. Bakker (Eds.), The neuropsychology of learning disorders. Baltimore: University Park Press.Google Scholar
  39. Bushnell, E. W. (1982). Visual-tactual knowledge in 8-, 9½-, and 11-month-old infants. Infant Behavior and Development, 5, 63-75.Google Scholar
  40. Cady, E. B., Costello, A. M., Dawson, M. J., Delpy, D. T., Hope, P. L., Reynolds, E. O., et al. (1983). Non-invasive investigation of cerebral metabolism in newborn infants by phosphorus nuclear magnetic resonance spectroscopy. Lancet, 8333, 1059-1062.Google Scholar
  41. Carlson, B. M. (1994a). Human embryology and developmental biology(pp. 204-251). St. Louis: Mosby.Google Scholar
  42. Carlson, N. R. (1994b). Physiology of behavior(5th ed.). Boston: Allyn & Bacon.Google Scholar
  43. Carpenter, M. B. (1978). Core text of neuroanatomy(2 nd ed.). Baltimore: Williams & Wilkins.Google Scholar
  44. Casey, B., Giedd, J., & Thomas, K. (2000). Structural and functional brain development and its relation to cognitive development. Biological Psychology, 54, 241-257.PubMedGoogle Scholar
  45. Caviness, V. S., Jr., Kennedy, D. N., Richelme, C., Rademacher, J., & Filipek, P. A. (1996). The human brain age 7-11 years: a volumetric analysis based on magnetic resonance images. Cerebral Cortex, 6(5), 726-736.Google Scholar
  46. Chang, B., & Walsh, C. (2003). Mapping form and function in the human brain: the emerging field of functional neuroimaging and cortical malformations. Epilepsy and Behavior, 4, 618-625.PubMedGoogle Scholar
  47. Chugani, H. T. (1992). Functional brain imaging in pediatrics. Pediatric Clinics of North America, 39, 777-799.PubMedGoogle Scholar
  48. Chugani, H. T. (1993). Positron emission tomographic scanning: Applications in newborns. Clinic in Perinatology, 20, 395-409.Google Scholar
  49. Chugani, H. T. (1994). The role of PET in childhood epilepsy. Journal of Child Neurology, 9(Suppl.), 582-588.Google Scholar
  50. Chugani, H. T., & Jacobs, B. (1994). Metabolic recovery in caudate nucleus following cerebral hemispherectomy. Annals of Neurology, 36, 794-797.PubMedGoogle Scholar
  51. Chugani, H. T., & Phelps, M. E. (1986). Maturational changes in cerebral function in infants determined by 18FDG positron emission tomography. Science, 231, 840-843.PubMedGoogle Scholar
  52. Cohen, M., & Roesmann, U. (1994). In utero brain damage: Relationship of gestational age to pathological consequences. Developmental Medicine and Child Neurology, 36, 263-268.PubMedGoogle Scholar
  53. Colledge, E., & Blair, R. J. R. (2001). Relationship between attention deficit-hyperactivity disorder and psychopathic tendencies in children. Personality and Individual Differences, 30, 1175-1187.Google Scholar
  54. Colom, R., Jung, R. E., & Haier, R. J. (2006). Distributed brain sites for the g-factor of intelligence. Neuroimage, 31(3), 1359-1365.Google Scholar
  55. Colom, R., Jung, R. E., & Haier, R. J. (in press). Finding the key factor of intelligence in brain structure using the method of correlated vectors.Google Scholar
  56. Connelly, A., Jackson, G. D., Frackowiak, R. S., Belliveau, J. W., Vargha-Khadem, F., & Gadian, G. D. (1993). Functional mapping of activated human primary cortex with a clinical MR imaging system. Radiology, 188, 125-130.PubMedGoogle Scholar
  57. Cooke, J. (1980). Early organization of the central nervous system: Form and pattern. In R. K. Hunt (Ed.), Neural development. New York: Academic Press.Google Scholar
  58. Cooper, J. R. & Bloom, F. E. (1991). The biochemical basis of neuropharmacology (6th ed.). London: Oxford University Press.Google Scholar
  59. Corballis, M. C. (1980). Is left-handedness genetically determined? In J. Herron (Ed.), Neuropsychology of left handedness. New York: Academic Press.Google Scholar
  60. Corballis, M. C. (1982). Asymmetries in spatial representation: Anatomical or perceptual? In R. N. Malatesha, & L. C. Hartlage (Eds.), Neuropsychology and cognition (Vol. 1). The Hague: Nijhoff.Google Scholar
  61. Courchesne, E., & Pierce, K. (2005). Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection. Current Opinion in Neurobiology, 15 (2), 225-230.PubMedGoogle Scholar
  62. Courchesne, E., Townsend, J., & Saitoh, O. (1994). The brain in infantile autism: Posterior fossa structures are abnormal: Neurology, 44, 214-223.PubMedGoogle Scholar
  63. Cowell, P. E., Allen, L. S., Kertesz, A., Zalatimo, N. S., & Demenberg, V. H. (1994). Human corpus callosum: A stable mathematical model of regional neuroanatomy. Brain and Cognition, 25, 52-66.PubMedGoogle Scholar
  64. Cravioto, J., & Arrieta, R. (1979). Stimulation and mental development of malnourished infants. Lancet, 2, 899.PubMedGoogle Scholar
  65. Cravioto, J., & Arrieta, R. (1983). Malnutrition in childhood. In M. D. Rutter (Ed.), Developmental neuropsychiatry. New York: Guilford Press.Google Scholar
  66. Crelin, E. S. (1973). Functional anatomy of the newborn. New Haven, CT: Yale University Press.Google Scholar
  67. Crelin, E. S. (1974). Development of the nervous system: A logical approach to neuroanatomy. Ciba Clinical Symposia, 26, 1-32.Google Scholar
  68. Cross, J. H., Gadian, D. G., Connelly, A., & Leonard, J. V. (1993). Proton magnetic resonance spectroscopy studies in lactic acidosis and mitochondrial disorders. Journal of Inherited Metabolic Disorders, 16, 800-811.Google Scholar
  69. Curtiss, S. (1979). Genie: Language and cognition. UCLA Working Papers in Cognitive Linguistics, 1, 15-62.Google Scholar
  70. Damasio, H. (1989). Anatomical and neuroimaging contribution to the study of aphasia. In H. Goodglass (Ed.), Handbook of neuropsychology (Vol. II). Amsterdam: Elsevier.Google Scholar
  71. Damon, W., Lerner, R., Kuhn, D., & Siegler, R. (Eds.). (2006). Handbook of Child Psychology, Vol. 2, Cognition, Perception, and Language, (6th ed.). New Jersey: Ablex.Google Scholar
  72. Darley, F. L., & Fay, W. H. (1980). Speech mechanism. In F. M. Laasman, R. O. Fisch, D. K. Vetter, & E. S. Benz (Eds.), Early correlates of speech, language, and hearing. Little ton, MA: PSG Publishing.Google Scholar
  73. Daughaday, W. H. (1981). The adenohypophysis. In R. H. Williams (Ed.), Textbooks of endocrinology. Philadelphia: Saunders.Google Scholar
  74. Davies, P., & Stewart, A. L. (1975). Low birthweight infants: Neurological sequelae and later intelligence. British Medical Bulletin, 31, 85.PubMedGoogle Scholar
  75. Davison, A. N., & Dobbing, J. (1968). The developing brain. In A. N. Davison, & J. Dobbing (Eds.), Applied neurochemistry. Oxford: Blackwell.Google Scholar
  76. Davison, A. N., & Peter, A. (1970). Myelination. Springfield, IL: Thomas.Google Scholar
  77. DeLoache, J. S. (2004a). Becoming symbol minded. Trends in Cognitive Science, 8, 66-70.Google Scholar
  78. DeLoache, J., Uttal, D., & Rosengren, K. (2004b). Scale errors offer evidence for a perception-action dissociation early in life. Science, 304, 1027-1029.Google Scholar
  79. DeLong, G. R. (1993). Effects of nutrition on brain development in humans. American Journal of Clinical Nutrition, 57 (Suppl. 2), 2868-2905.Google Scholar
  80. DeVilliers, P. A., & DeVilliers, J. G. (1979). Early language. Cambridge, MA: Harvard University Press.Google Scholar
  81. DeVos, K. J., Wyllie, E., Geckler, C., Kotagal, P., & Comair, Y. (1995). Language dominance in patients with early childhood tumors near left hemisphere language areas. Neurology, 45, 349-356.PubMedGoogle Scholar
  82. di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. ( 1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91(1), 176-180.Google Scholar
  83. Dietrich, R. B. (1990). Myelin disorders of childhood: Correlation of MR findings and severity of neurological impairment. Journal of Computer Assisted Tomography, 14, 693.PubMedGoogle Scholar
  84. Dietrich, R. B., Bradley, W. G., Zaragoza, E. J., Otto, R. J., Taira, R. K., Wilson, G. H., et al. (1988). MR evaluation of early myelination patterns in normal and developmentally delayed infants. American Journal of Roentgenology, 150, 889-896.PubMedGoogle Scholar
  85. Dietrich, R. B., & Hoffman, C. H. (1992). Myelination and dysmyelination. In D. D. Stark, & W. G. Bradley (Eds.), Magnetic resonance imaging. St. Louis: Mosby-Year Book.Google Scholar
  86. DiGuilio, D. V., Seidenberg, M., O’Leary, D. S., & Raz, N. (1994). Procedural and declarative memory: A developmental study. Brain and Cognition, 25, 79-91.Google Scholar
  87. Dobbing, J. (1975). Prenatal nutritional and neurological development. In N. A. Buchwald, & M. A. B. Brazier (Eds.), Brain mechanism in mental retardation. New York: Academic Press.Google Scholar
  88. Dobbing, J. (1990). Early nutrition and later achievement. Boyd Memorial Lecture. Proceedings of the Nutrition Society, 49, 103-118.PubMedGoogle Scholar
  89. Dobbing, J., & Sands, J. (1970). Timing of neuroblast multiplication in developing human brain. Nature, 226, 639.PubMedGoogle Scholar
  90. Dobbing, J., & Sands, J. (1973). Quantitative growth and development of human brain. Archives of Disabled Children, 48, 757.Google Scholar
  91. Dobbing, J., & Smart, J. L. (1974). Vulnerability of developing brain and behavior. British Medical Bulletin, 30, 164.PubMedGoogle Scholar
  92. Dodge, P., Prensky, A., & Feigin, R. (1975). Nutrition and the developing nervous system. St. Louis: Mosby.Google Scholar
  93. Dodgson, M. C. H. (1962). The growing brain: An essay in developmental neurology. Bristol, England: Wright Press.Google Scholar
  94. Dunn, A. J. (1976). The chemistry of learning and the formation of memory. In W. H. Gispen (Ed.), Molecular and functional neurobiology. Amsterdam: Elsevier.Google Scholar
  95. Dunn, A. J. (1980). Neurochemistry of learning and memory: An evaluation of recent data. Annual Review of Psychology, 31, 343-390.PubMedGoogle Scholar
  96. Ellingson, R. J. (1964). Studies of the electrical activity of the developing human brain. Progress in Brain Research, 9, 26-53.Google Scholar
  97. Emde, R. N., Gaensbauer, T. J., & Harmon, R. J. (1976). Emotional expression of infancy: A behavioral study (Vol. 10). New York: International University Press.Google Scholar
  98. Epstein, H. T. (1978). Growth spurts during brain development: Implications for educational policy and practice. In J. S. Chall, & A. F. Mirsky (Eds.), Education and the brain: The 77th yearbook of the National Society for the Study of Education (Part II). Chicago: University of Chicago Press.Google Scholar
  99. Farmer, S. F., Harrison, L. M., Ingram, D. A., & Stephens, J. A. (1991). Plasticity of central motor pathways in children with hemiplegic cerebral palsy. Neurology, 41, 1505-1150.Google Scholar
  100. Finkelstein, S., Alpert, N. M., Ackerman, R. H., Buonano, F. S., Correia, J. A., Chang, J., et al. (1980). Positron imaging of the normal brain—Regional patterns of cerebral blood flow and metabolism. Transactions of the American Neurological Association, 105, 8-10.Google Scholar
  101. Flagg, E. J., Cardy, J. E., Roberts, W., & Roberts T. P. (2005). Language lateralization development in children with autism: insights from the late field magnetoencephalogram. Neuroscience letters, 386 (2), 82-87.PubMedGoogle Scholar
  102. Flechsig, P. (1883). Plan des menschlichen Gehirns. Leipzig: Veit.Google Scholar
  103. Franz, R. L. (1963). Pattern vision in newborn infants. Science, 140, 296.Google Scholar
  104. Gaddes, W. H. (1980). Learning disabilities and brain function: A neuropsychological approach. Berlin: Springer-Verlag.Google Scholar
  105. Gadian, D. G., Connelly, A., Duncan, J. S., Cross, J. H., Kirkhan, F. J., Johnson, C. L., et al. (1994). 1 H magnetic resonance spectroscopy in the investigation of intractable epilepsy. Acta Neurological Scandinavica, 152, 116-121.Google Scholar
  106. Gallen, C. C., Sobel, D. F., Schwartz, B., Copeland, B., Waltz, T., & Aung, M. (1993, August 28). Magnetic source imaging: Present and future. Investigative Radiology, 3 (Suppl.), 5153-5157.Google Scholar
  107. Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119 (2), 593-609.PubMedGoogle Scholar
  108. Geschwind, N., & Galaburda, A. M. (Eds.). (1984). Cerebral dominance. Cambridge, MA: Harvard University Press.Google Scholar
  109. Giedd, J. N., Vaituzis, A. C., Hamburger, S. D., Lange, N., Rajapakse, J. C., Kaysen, D., et al. (1996). Quantitative MRI of the temporal lobe, amygdala, and hippocampus in normal human development: ages 4-18 years. Journal of Comparative Neurology, 366 (2), 223-230.PubMedGoogle Scholar
  110. Giedd, J., Blumenthal, J., Jeffries, N., Castellanos, F., Lui, H., Zijenbos, A., et al. (1999). Brain development during childhood and adolescence: a longitudinal MRI study. Nature Neuroscience, 2, 861-863.PubMedGoogle Scholar
  111. Gogtay, N., Giedd, J., & Rapport, J. (2002). Brain development in healthy, hyperactive and psychotic children. Archives of Neurology, 59 (8), 1244-1248.PubMedGoogle Scholar
  112. Goldman, P. S. (1975). Age, sex and experience as related to the neural basis of development. In N. A. Buchwald, & M. A. B. Brazier (Eds.), Brain mechanisms in mental retardation. New York: Academic Press.Google Scholar
  113. Goldstein, J. M., Seidman, L. J., Horton, N. J., Makris, N., Kennedy, D. N., Caviness, V. S., Jr., et al. (2001). Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cerebral Cortex, 11 (6), 490-497.PubMedGoogle Scholar
  114. Goodglass, H., & Kaplan, E. (1972). The assessment of aphasia and related disorders. Philadelphia: Lea & Febiger.Google Scholar
  115. Goplerud, J. M., & Delivoria-Papadopoulos, M. (1993). Nuclear magnetic resonance imaging and spectroscopy following asphyxia. Clinical Perinatology, 20, 345-367.Google Scholar
  116. Gorrindo, T., Blair, R.J., Budhani, S., Dickstein, D. P., Pine, D. S., Leibenluft, E. (2005). Deficits on a probabilistic response-reversal task in patients with pediatric bipolar disorder. American Journal of Psychiatry, 162(10), 1975-1977.Google Scholar
  117. Gottlieb, G. (1976a). Conceptions of prenatal development: Behavioral embryology. Psychological Review, 83, 215-234.Google Scholar
  118. Gottlieb, G. (1976b). The roles of experience in the development of behavior and the nervous system. In G. Gottleib (Ed.), Neural and behavioral specificity. New York: Academic Press.Google Scholar
  119. Graham, S. H., Myerhoff, D. J., Bayne, L., Sharp, F. R., & Weiner, M. W. (1994). Magnetic resonance spectroscopy of N-acetylaspartate in hypoxic-ischemic encephalopathy. Annals of Neurology, 35, 490-494.PubMedGoogle Scholar
  120. Grossberg, S. (1980). How does a brain build a cognitive code? Psychological Review, 87, 1-51.PubMedGoogle Scholar
  121. Gur, R. C., & Reivich, M. (1980). Cognitive task effects on hemispheric blood flow in humans; evidence for individual differences in hemispheric activation. Brain and Language, 9, 78-92.PubMedGoogle Scholar
  122. Hack, M., Taylor, H. G., Klein, N., Eiben, R., Schatschneider, C., & Mercuri-Minich, N. (1994). School-age outcomes in children with birth weights under 750 g. New England Journal of Medicine, 331, 753-759.PubMedGoogle Scholar
  123. Hagne, I. (1972). Development of the EEG in the normal infants during the first year of life. Acta Paediatrica Scandinavica, 232 (Suppl. 1), 5.Google Scholar
  124. Haier, R. J., Jung, R. E., Yeo, R. A., Head, K., & Alkire, M. T. (2005). The neuroanatomy of general intelligence: sex matters. Neuroimage, 25 (1), 320-327.PubMedGoogle Scholar
  125. Halasz, B. (1994). Hypothalamo-anterior pituitary system and pituitary portal vessels. In H. Imura (Ed.), The pituitary gland (2 nd ed., pp. 1-28). New York: Raven Press.Google Scholar
  126. Hamilton, W. J., & Mossman, H. W. (1974). Human embryology: Prenatal development of form and function (4th ed.). London: Heffer.Google Scholar
  127. Hebb, D. O. (1949). The organization of behavior. New York: Wiley.Google Scholar
  128. Heindel, W. C., Salmon, D. P., Shults, C. W., Walicke, P. A., & Butters, N. A. (1989). Neuropsychological evidence for multiple implicit memory strategies: A comparison of Alzheimers, Huntington, and Parkinson disease patients. Journal of Neuroscience, 9, 282-287.Google Scholar
  129. Herba, C., & Phillips., M. (2004). Annotation: Development of facial expression recognition from childhood to adolescence: behavioural and neurological perspectives., Journal of Child Psychology & Psychiatry & Allied Disciplines, 45(7), 1185-1198.Google Scholar
  130. Hillyard, S. J. (1987). Electrophysiology of cognition. In V. Mountcastle, F. Plum, & S. Geiger (Eds.), Handbook of physiology: Sec. I. The Nervous System: Vol. V. (pp. 519-584). Bethesda: American Physiological Society.Google Scholar
  131. Hittmair, K., Wimberger, D., Rand T., Prayer, L., Bernert, G., Kramer, J., et al. (1994). MR assessment of brain maturation: Comparison of consequences. American Journal of Neuroradiology, 15, 425-433.PubMedGoogle Scholar
  132. Hope, P. L., Costelo, A. M., Cady, E. B., Delpy, D. T., Tofts, P. S., Chu, A., et al. (1984). Cerebral energy metabolism studied with phosphorus NMR spectroscopy in normal and birth-asphyxiated infants. Lancet, 2, 366-370.PubMedGoogle Scholar
  133. Hope, P. L., & Moorecraft, J. (1991). Magnetic resonance spectroscopy. Clinical Perinatology, 18, 535-548.Google Scholar
  134. Hudspeth, W. J., & Pribram, K. H. (1992). Psychophysiological indices of cerebral maturation. International Journal of Psychophysiology, 12, 19-29.PubMedGoogle Scholar
  135. Huk, W. J., & Vieth, J. (1993). Functional imaging of the brain. Radiologe, 33, 633-638.PubMedGoogle Scholar
  136. Humphrey, T. (1964). Some correlation between the appearance of human fetal reflexes and the development of the nervous system. In D. P. Purpura, & J. P. Schade (Eds.), Progress in brain research: Growth and maturation of the brain (Vol. 4). Amsterdam: Elsevier.Google Scholar
  137. Humphrey, T. (1978). Function of the nervous system during prenatal life. In U. Stave, & A. A. Weech (Eds.), Perinatal physiology. New York: Plenum Medical.Google Scholar
  138. Imura, H. (1994). The pituitary gland (2 nd ed.). New York: Raven Press.Google Scholar
  139. Ingvar, D. H., Sjölund, B., & Ardö, A. (1976). Correlation between dominant EEG frequency, cerebral oxygen uptake and blood flow. Encephalography and Clinical Neurophysiology, 41, 268-276.Google Scholar
  140. Ito, M. (1984). The cerebellum and neural control. New York: Raven Press.Google Scholar
  141. Izquierdo, I. (1975). The hippocampus and learning. Progress in Neurobiology, 5, 37-75.PubMedGoogle Scholar
  142. Jackson, G. D., Connelly, A., Cross, J. H., Gordon, I., & Gaidan, D. E. (1994). Functional magnetic resonance imaging of focal seizures. Neurology, 44, 850-856.PubMedGoogle Scholar
  143. Jacobs, B. L. (1994). Serotonin, motor activity, and depression-related disorders. American Scientist, 82, 456-463.Google Scholar
  144. Jancke, L., Staiger, J. F., Schlaug, G., Huang, Y., & Steinmetz, H. (1997). The relationship between corpus callosum size and forebrain volume. Cerebral Cortex, 7 (1), 48-56.PubMedGoogle Scholar
  145. Jernigan, T. L., Hesselink, J. R., Sowell, E., & Tallal, P. A. (1991). Cerebral structure on magnetic resonance imaging in language and learning-impaired children. Archives of Neurology,48, 539-545.PubMedGoogle Scholar
  146. Jones, E. G., & Cowan, W. M. (1978). Nervous tissue: Development of nervous tissue. In E. Weiss (Ed.), Textbook of histology. New York: McGraw-Hill.Google Scholar
  147. Kagan, J. (1981). The second year. Cambridge, MA: Harvard University Press.Google Scholar
  148. Kagan, J. (1985). The human infant. In A. M. Rogers, & C. J. Scheirer (Eds.), The G. Stanley Hall lecture series (Vol. 5). Washington, DC: American Psychological Association.Google Scholar
  149. Kagan, J., Kearsley, R. B., & Zelazo, P. R. (1978). Infancy: Its place in human development. Cambridge, MA: Harvard University Press.Google Scholar
  150. Kagan, J., & Moss, H. A. (1983). Birth to maturity. New Haven, CT: Yale University Press.Google Scholar
  151. Kahle, W., Leonhardt, H., & Platzer, W. (1978). Color atlas and textbook of human anatomy (Vol. 3). Chicago: Year Book Medical.Google Scholar
  152. Kail, R. V., Jr., & Hagen, J. W. (1977). Perspectives on the development of memory and cognition. Hillsdale, NJ: Erlbaum.Google Scholar
  153. Kaplan, S. L., Grumbach, M. M., & Aubert, M. L. (1976). The ontogenesis of pituitary hormone and hypothalamic factors in the human fetus: Maturation of the central nervous system regulation of anterior pituitary function. Recent Progress in Hormone Research, 32, 161.PubMedGoogle Scholar
  154. Kety, S. S. (1970). The biogenic amines in the central nervous system: Their possible roles in arousal, emotion and learning. In F. O. Schmitt (Ed.), The neurosciences: Second study program. New York: Rockefeller University Press.Google Scholar
  155. Kiehl, K. A., Smith, A. M., Hare, R. D., Mendrek, A., Forster, B. B. Brink, J., et al. (2001). Limbic abnormalities in affective processing by criminal psychopaths as revealed by functional magnetic resonance imaging. Biological Psychiatry, 50, 677-684.PubMedGoogle Scholar
  156. Kimura, D. (1967). Functional asymmetry of the brain in dichotic listening. Cortex, 3, 163-178.Google Scholar
  157. Kimura, D., & Harshman, R. (1984). Sex differences in brain organization for verbal and nonverbal functions. In G. De Vries, J. De Bruin, H. Vylings, & M. Conner (Eds.), Progress in brain research. Amsterdam: Elsevier.Google Scholar
  158. Kinsbourne, M. (1974). Mechanisms of hemisphere interaction in man. In M. Kinsbourne, & W. L. Smith (Eds.), Hemisphere disconnection and cerebral function. Springfield, IL: Thomas.Google Scholar
  159. Kinsbourne, M. (1976). The ontogeny of cerebral dominance. In R. Reiber (Ed.), The neuropsychology of language. New York: Plenum Press.Google Scholar
  160. Kinsbourne, M. (1982). Hemispheric specialization and the growth of human understanding. American Psychologist, 37, 411-420.PubMedGoogle Scholar
  161. Kinsbourne, M., & Hiscock, M. (1977). Does cerebral dominance develop? In S. J. Segalowitz, & F. A. Gruber (Eds.), Language development and neurological theory. New York: Academic Press.Google Scholar
  162. Kinsbourne, M., & Hiscock, M. (1978). Cerebral lateralization and cognitive development. In J. S. Chall, & A. F. Mirsky (Eds.), Education and the brain: The 77th yearbook of the National Society for the Study of Education (Part II). Chicago: University of Chicago Press.Google Scholar
  163. Kizildag, B., Dusunceli, E., Fitoz, S., & Erden, I. (2005). The role of classic spin echo sequences for the evaluation of myelination in MR imaging. Diagnostic & Interventional Radiology, 11(3), 130-136.Google Scholar
  164. Kolb, B., & Milner, B. (1981). Performance of complex arm and facial movements after focal brain lesions. Neuropsychologia, 19, 491-503.Google Scholar
  165. Krashen, S. (1973). Lateralization, language, learning, and the critical period: Some new evidence. Language and Learning, 23, 63-74.Google Scholar
  166. Kreis, R., Ernst, T., & Ross, B. D. (1993). Development of the human brain: In vivo quantification of metabolite and water content with proton magnetic resonance spectroscopy (1 H-MRS). Magnetic Resonance Medicine, 30, 424-437.Google Scholar
  167. Kuffler, S. W., & Nicholls, J. G. (1977). From neuron to brain: A cellular approach to the function of the nervous system. Sunderland, MA: Sinauer Associates.Google Scholar
  168. Kuhn, D. (2006). Do cognitive changes accompany developments in the adolescent brain? Perspectives on Psychological Science, 1, 59-67.Google Scholar
  169. Kulynych, J., Vladar, K., Jones, D., & Weinberger, D. (1994). Gender differences in the normal lateralization of the supratemporal cortex: MRI surface-rendering morphometry of Heschel’s gyrus and planum temporale. Cerebral Cortex, 4 (2), 107-118.PubMedGoogle Scholar
  170. Kwong, K. K., Belliveau, J. W., Chesler, D. A., Goldberg, I. E., Weisskoff, R. M., Poncelet, B. P., et al. (1992). Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proceedings of the National Academy of Sciences, USA, 89, 5675-5679.Google Scholar
  171. Langman, J. (1975). Medical embryology: Human development—normal and abnormal (3rd ed.). Baltimore: Williams & Wilkins.Google Scholar
  172. Lashley, K. S., Chow, K. L., & Semmes, J. (1951). An examination of the electrical field theory of cerebral integration. Psychology Review, 58, 123-136.Google Scholar
  173. Le Douarin, N. (1980). Migration and differentiation of neural crest cells. In R. K. Hunt (Ed.), Neural development. New York: Academic Press.Google Scholar
  174. Lehninger, A. L. (1968). The neuronal membrane. Proceedings of the National Academy of Sciences, USA, 60, 1069-1080.Google Scholar
  175. Lehninger, A. L. (1993). Principles of biochemistry. New York: Worth.Google Scholar
  176. Lemire, R. J., Loeser, J. D., Alvord, E. C., & Leech, R. W. (1975). Normal and abnormal development of the human nervous system. New York: Harper & Row.Google Scholar
  177. Lenneberg, E. H. (1964). The natural history of language. In F. Smith, & G. A. Miller (Eds.), The genesis of language: A psycholinguistic approach. Cambridge, MA: MIT Press.Google Scholar
  178. Lenneberg, E. H. (1967). Biological foundation of language. New York: Wiley.Google Scholar
  179. Levene, M. I., & Dubowitz, L. M. S. (1982). Low-birth weight babies long-term follow-up. British Journal of Hospital Medicine, 24, 487.Google Scholar
  180. Levine, S. (1982). Comparative and psychobiological perspectives on development. In A. Collins (Ed.), Minnesota symposium (Vol. 15). Hillsdale, NJ: Erlbaum.Google Scholar
  181. Leviton, A., & Paneth, N. (1990). White matter damage in preterm newborns: An epidemiologic perspective. Early Human Development, 24(1), 1-22.PubMedGoogle Scholar
  182. Levy, J. (1972). Lateral specialization of the human brain: Behavioral manifestation and possible evolutionary basis. In J. A. Kiger (Ed.), Biology of behavior. Corvaillis: Oregon State University Press.Google Scholar
  183. Levy-Agresti, J., & Sperry, R. W. (1968). Differential perceptual capacities in major and minor hemispheres. Proceedings of the National Academy of Sciences, USA, 61, 1151.Google Scholar
  184. Liben, L. S., Patterson, A. H., & Newcombe, N. (1981). Spatial representation and behavior across the life span: Theory and application. New York: Academic Press.Google Scholar
  185. Lindsley, D. B., (1939). A longitudinal study of the occipital alpha rhythm in normal children: Frequency and amplitude standards. Journal of Genetic Psychology, 55, 197-213.Google Scholar
  186. Lindsley, D. B., & Wicke, J. D. (1974). The electroencephalogram: Autonomous electrical activity in man and animals. In R. F. Thompson, & M. M. Patterson (Eds.), Bioelectric recording techniques. Part B. Electroencephalography and human brain potentials. New York: Academic Press.Google Scholar
  187. Livingston, R. B. (1978). Sensory processing, perception, and behavior. New York: Raven Press.Google Scholar
  188. Lodygensky, G. A., Rademaker, K., Zimine, S., Gex-Fabry, M., Lieftink, A. F., Lazeyras, R., et al. (2005). Structural and functional brain development after hydrocortisone treatment for neonatal chronic lung disease. Pediatrics, 116(1), 1-7.PubMedGoogle Scholar
  189. Lorber, J. (1980). Is your brain really necessary? Science, 210, 1232-1234.Google Scholar
  190. Lowrey, G. H. (1978). Growth and development of children (7th ed.). Chicago: Year Book Medical.Google Scholar
  191. Lund, R. D. (1978). Development and plasticity of the brain: An introduction. London: Oxford University Press.Google Scholar
  192. Luria, A. R. (1960). Verbal regulation of behavior. In M. Brazier (Ed.), The CNS and behavior. New York: Josiah Macy Jr. Foundation.Google Scholar
  193. Luria, A. R. (1961). The role of speech in the regulation of normal and abnormal behavior. Elmsford, NY: Pergamon Press.Google Scholar
  194. Luria, A. R. (1966). The human brain and psychological processes. New York: Harper & Row.Google Scholar
  195. Luria, A. R. (1969a). Origin and brain organization of conscious activity. Evening lecture to the 19th International Congress of Psychology. London: Dorset Press.Google Scholar
  196. Luria, A. R. (1969b). Frontal lobe syndromes. In P. J. Vinken, & G. W. Bruyn (Eds.), Handbook of clinical neurology (Vol. 2). Amsterdam: North-Holland.Google Scholar
  197. Luria, A. R. (1969c). Speech development and the formation of mental processes. In J. Cole, & I. Maltzman (Eds.), A handbook of contemporary Soviet psychology. New York: Basic Books.Google Scholar
  198. Luria, A. R. (1970). The functional organization of the brain. Scientific American, 222, 66-78.PubMedGoogle Scholar
  199. Luria, A. R. (1973a). The working brain. New York: Basic Books.Google Scholar
  200. Luria, A. R. (1973b). The frontal lobes and the regulation of behavior. In A. R. Luria, & K. H. Pribram (Eds.), The behavioral psychophysiology of the frontal lobes. New York: Academic Press.Google Scholar
  201. Luria, A. R. (1980). Higher cortical functions in man (2 nd ed.). New York: Basic Books.Google Scholar
  202. Luria, A. R. (1982). Language and cognition. New York: Wiley-Interscience.Google Scholar
  203. Luria, A. R., & Simernitskaya, E. G. (1977). Interhemispheric relations and the functioning of the minor hemisphere. Neuropsychologia, 15, 175-178.PubMedGoogle Scholar
  204. Luria, A. R., & Yudovich, F. I. (1959). Speech in the development of mental processes in the child. London: Staples.Google Scholar
  205. Magnun, G. R., Hillyard, S. A., & Luck, S. J. (1993). Attention and performance XIV (pp. 219-244). Cambridge, MA: MIT Press.Google Scholar
  206. Majovski, L. V., & Jacques, D. B. (1982). Cognitive information processing and learning mechanisms of the brain. Neurosurgery, 10, 663-677.PubMedGoogle Scholar
  207. Majovski, L. V., Jacques, D. B., Hartz, G., & Fogwell, L. A. (1981). Dopaminergic (DA) systems: Their role in pathological neurobehavioral symptoms. Neurosurgery, 9, 751-757.PubMedGoogle Scholar
  208. Martin, E., Grutter, R., & Boesch, O. (1990). In vivo NMR spectroscopy: Investigation of brain metabolism in neonates and infants. Pediatre, 45, 877-882.Google Scholar
  209. Matsuzawa, J., Matsui, M., Konishi, T., Noguchi, K., Gur, R. C., Bilker, W., et al. (2001). Age-relatedvolumetric changes in the brain gray and white matter in healthy infants and children. Cerebral Cortex, 11(4), 335-342.PubMedGoogle Scholar
  210. Mazziotta, J. C., & Phelps, M. E. (1985). Metabolic evidence of lateralized cerebral function demonstrated by positron emission tomography in patients with neuropsychiatric disorders and normal individuals. In D. F. Benson, & E. Zaidel (Eds.), The dual brain. New York: Guilford Press.Google Scholar
  211. Mazziotta, J. C., Phelps, M. E., & Miller, J. (1981). Tomographic mapping of human cerebral metabolism. Normal unstimulated state. Neurology, 31, 503-516.Google Scholar
  212. McCarthy, G., Blamire, A. M., Rothman, D. L., Gruetter, R., & Shulman, R. G. (1993). Echo-planar magnetic resonance imaging studies of frontal cortex activation during word generation in humans. Proceedings of the National Academy of Sciences, USA, 90, 4952-4956.Google Scholar
  213. McConnell, S. K. (1988). Development of decision-making in the mammalian cerebral cortex. Brain Research Review, 13, 1-23.Google Scholar
  214. McConnell, S. K. (1991). The generation of neuronal diversity in the central nervous system. Annual Review of Neuroscience, 14, 269-300.PubMedGoogle Scholar
  215. McCormick, C. M., & Witelson, S. F. (1994). Functional cerebral asymmetry and sexual orientation in men and women. Behavioral Neuroscience, 108, 525-531.PubMedGoogle Scholar
  216. Meudell, P. R. (1983). The development and dissolution of memory. In A. Mayes (Ed.), Memory in animals and humans. Princeton, NJ: Van Nostrand-Reinhold.Google Scholar
  217. Meyer-Lindenberg, A., Hariri, A. R., Munoz, K. E., Mervis, C. B., Mattay, V. S., Morris, C. A., et al. (2005). Neural correlates of genetically abnormal social cognition in Williams syndrome. Nature Neuroscience, 8(8), 991-993.PubMedGoogle Scholar
  218. Mills, D. L., Coffey, C. S., & Neville, H. J. (1993). Language acquisition and cerebral specialization in 20-month-old infants. Journal of Cognitive Neuroscience, 5, 317-334.Google Scholar
  219. Milner, E. (1976). CNS maturation and language acquisition. In H. Whitaker, & H. A. Whitaker (Eds.), Studies in neurolinguistics (Vol. I). New York: Academic Press.Google Scholar
  220. Mishkin, M., & Petri, H. L. (1984). Memories and habits: Some implications for the analysis of learning and retention. In L. R. Squire, & N. Butlers (Eds.), Neuropsychology of memory. New York: Guilford Press.Google Scholar
  221. Mistretta, C. M., & Bradley, R. M. (1978). Effect of early sensory experience on brain and behavioral development. In G. Gottlieb (Ed.), Studies on the development of behavior and the nervous system (Vol. 4). New York: Academic Press.Google Scholar
  222. Mitchell, D. G. V., Colledge, E., Leonard, A., & Blair, R. J. R. (2002). Risky decisions and response reversal: Is there evidence of orbitofrontal cortex dysfunction in psychopathic individuals? Neuropsychologia, 40, 2013-2022.PubMedGoogle Scholar
  223. Molfese, D. L. (1977). Infant cerebral asymmetry. In S. J. Segalowitz, & F. A. Gruber (Eds.), Language development and neurological theory. New York: Academic Press.Google Scholar
  224. Molfese, D., Freeman, R., & Palermo, D. (1975). The ontogeny of brain lateralization for speech and nonspeech stimuli. Brain Language, 2, 356-368.Google Scholar
  225. Moore, R. Y. (1977). The developmental organization of the fetal brain. In L. Gluck (Ed.), Intrauterine asphyxia and the developing fetal brain. Chicago: Year Book Medical.Google Scholar
  226. Moore, K. L., & Persand, T. V. N. (1993a). Before we were born: Essentials of embryology and birth defects (4th ed., pp. 45-59). Philadelphia: Saunders.Google Scholar
  227. Moore, K. L., & Persand, T. V. N. (1993b). The developing human. Clinically oriented embryology (5th ed.). Philadelphia: Saunders.Google Scholar
  228. Morgan, M. (1977). Embryology and inheritance of asymmetry. In S. Harnad, R. Doty, L. Goldstein, J. Jaynes, & G. Lruthamer (Eds.), Lateralization in the nervous system. New York: Academic Press.Google Scholar
  229. Morris, C. A., & Mervis, C. B. (2000). Williams syndrome and related disorders. Annual Review of Genomics & Human Genetics, 1, 461-484.Google Scholar
  230. Moscovitch, M. (1977). The development of lateralization of language functions and its relation to cognitive and linguistic development: A review and some theoretical speculations. In S. J. Segalowitz, & F. A. Gruber (Eds.), Language development and neurological theory. New York: Academic Press.Google Scholar
  231. Mukherjee, P., Miller, J. H., Shimony, J. S., Phillip, J. V., Nehra, D., Snyder, A. Z., et al. (2002). Diffusion-tensor MR imaging of gray and white matter development during normal human brain maturation. American Journal of Neuroradiology, 23(9), 1445-1456.PubMedGoogle Scholar
  232. Nadel, L., & Zola-Morgan, S. (1984). Infantile amnesia: A neurobiological perspective. In M. Moscovitch (Ed.), Infant memory. New York: Plenum Press.Google Scholar
  233. Nauta, W. H. (1986a). Circuitous connections linking cerebral cortex, limbic system and corpus striatum. In B. K. Doane, & K. E. Livingston (Eds.), The limbic system: Functional organization and clinical disorders. New York: Raven Press.Google Scholar
  234. Nauta, W. H. (1986b). A simplified perspective on the basal ganglia and their relation to the limbic system. In B. K. Doane, & K. E. Livingston (Eds.), The limbic system: Functional organization and clinical disorders. New York: Raven Press.Google Scholar
  235. Nelson, C., Thomas, K., & de Hann, M. (2006). Neural basis of cognitive development. In W. Damon, & Lerner (Series Eds.) & Kuhn, D. & Siegler, R. (Vol. Eds.), Handbook of Child Psychology: Vol. 2. Cognition, perception and language (6th ed., pp. 3-57). New Jersey: Wiley.Google Scholar
  236. Neville, H. (1984). Effects of early sensory and language experience on the development of the human brain. In J. Mehler, & R. Fox (Eds.), Neonate cognition: Beyond the blooming buzzing confusion. Hillsdale, NJ: Erlbaum.Google Scholar
  237. Nilsson, L. (1978). A child is born. New York: Delacorte Press.Google Scholar
  238. Oates, J. (Ed.). (1979). Early cognitive development. New York: Wiley.Google Scholar
  239. Ochsner, K. N., Knierim, K., Ludlow, D. H., Hanelin, J., Ramachandran, T., Glover, G., et al. (2004). Reflecting upon feelings: an fMRI study of neural systems supporting the attribution of emotion to self and other. Journal of Cognitive Neuroscience, 16(10), 1746-1772.PubMedGoogle Scholar
  240. O’Keefe, J. (1994). Developmental psychology. Cognitive maps in infants. Nature, 370, 57-59.Google Scholar
  241. O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Clarendon Press.Google Scholar
  242. Orrison, W. W., Davis, L. E., Sullivan, G. W., Mettler, F. A., & Flynn, L. R. (1990). Anatomic localization of cerebral cortical function by magnetoencephalography combined with MR imaging and CT. American Journal of Neuro-Radiology, 11, 713-716.Google Scholar
  243. Otsubo, H., & Snead III, O. C. (2001). Magnetoencephalography and magnetic source imagining in children. Journal of Child Neurology, 16 (4), 227-235.PubMedGoogle Scholar
  244. Peden, C. J., Rutherford, M. A., Sargentorri, J., Cox, I. J., Bryant, D. J., & Dubowitz, L. M. (1993). Proton spectroscopy of the neonatal brain following hypoxic-ischemic injury. Developmental Medicine and Child Neurology, 35, 502-510.PubMedGoogle Scholar
  245. Petersen, S. E., Gorbetta, M., Miezin, F. M., & Shulman, G. L. (1994). PET studies of parietal involvement in spatial attention: Comparison of different task types. Canadian Journal of Experimental Psychology, 48, 319-338.PubMedGoogle Scholar
  246. Phelps, M. E., Mazziotta, J., & Schelbert, H. R. (1986). Positron emission tomography and autoradiography: Principles and applications for the brain and heart. New York: Raven Press.Google Scholar
  247. Piven, J., Berthier, M. L., Storkstein, S. E., & Nehme, E. (1990). Magnetic resonance imaging evidence for a defect of cerebral cortical development in autism. American Journal of Psychiatry, 147, 734-739.PubMedGoogle Scholar
  248. Plante, E., Swisher, L., Vance, R., & Rapcsak, S. (1991). MRI findings in boys with specific language impairment. Brain and language, 41, 52-66.PubMedGoogle Scholar
  249. Plomin, R. A., & Rowe, D. C. (1979). Genetic and environmental etiology of social behavior in infancy. Developmental Psychology, 15, 62-72.Google Scholar
  250. Ploog, D. (1979). Phonation, emotion, cognition with reference to the brain mechanisms involved. Ciba Foundation Symposia, 69, 79-98.PubMedGoogle Scholar
  251. Posner, M. I. (1993). Seeing the mind. Science, 262, 673-674.PubMedGoogle Scholar
  252. Posner, M. I., & Petersen, S. E. (1990). The attentional system of the human brain. Annual Review of Neuroscience, 13, 25-42.PubMedGoogle Scholar
  253. Posner, M. I., & Rothbart, M. K. (1992). Attentional mechanisms and conscious experience. In A. D. Milner, & M. D. Rugg (Eds.), The neuropsychology of consciousness (pp. 91-112). Orlando: Academic Press.Google Scholar
  254. Pribram, K. H. (1976). Modes of central information processing in human learning and remembering. In T. J. Tyler (Ed.), Brain and learning. Baltimore: Graylock Press.Google Scholar
  255. Raichle, M. E. (1987). Circulatory and metabolic correlations of brain function in normal humans. In V. Mountcastle, F. R. Plum, & S. Geiger (Eds.), Handbook of physiology: Sec. 1. The nervous system: Vol. V. (1,2) (pp. 643-674). Bethesda: American Physiological Society.Google Scholar
  256. Raichle, M. E., Fiez, J. A., Videen, T. O., MacLeod, A. M., Pardo, J. V., Fox, P. T., et al. (1994). Practice-related changes in human brain functional anatomy during nonmotor learning. Cerebral Cortex, 4, 8-26.PubMedGoogle Scholar
  257. Raine, A. (1997). The psychopathology of crime. New York: Academic Press.Google Scholar
  258. Raine, A. (2002). Annotation: The role of prefrontal deficits, low autonomic arousal, and early health factors in the development of antisocial and aggressive behavior in children. Journal of Child Psychology and Psychiatry and Allied Disciplines, 43, 417-434.Google Scholar
  259. Raine, A., Buchsbaum., M. S., & LaCasse, L. (1997). Brain abnormalities in murderers indicated by positron emission tomography. Biological Psychiatry, 42, 495-508.PubMedGoogle Scholar
  260. Ramón y Cajal, S. (1911). Histologie du Systeme Nerveaux de l’Homme et des Vertebres. Paris: Maloine (Republished 1955, Histologie du Systeme Nerveux. L. Azoulay (Trans.). Madrid: Inst. Ramón y Cajal).Google Scholar
  261. Reiss, A. L., Abrams, M. T., Singer, H. S., Ross, J. L., & Denckla, M. B. (1996). Brain development, gender and IQ in children: a volumetric imaging study. Brain, 119(5), 1763-1774.PubMedGoogle Scholar
  262. Reynolds, E. O., McCormick, D. C., Roth, S. C., Edwards, A. O., & Wyatt, J. S. (1991). New non-invasive methods for the investigation of cerebral oxidative metabolism and hemodynamics in newborn infants. Annals of Medicine, 23, 681-686.PubMedGoogle Scholar
  263. Risberg, J., & Ingvar, D. H. (1973). Patterns of activation in the gray matter of the dominant hemisphere. Brain, 96, 737-756.PubMedGoogle Scholar
  264. Riss, W. (1972). Nonspecific thalamic projection system: Introduction. Brain, Behavior, and Evolution, 6, 329-331.Google Scholar
  265. Rizzolatti, G., Fadiga, L., Matelli, M., Bettinardi, V., Paulesu, E., Perani, D., et al., (1996). Localization of grasp representations in humans by PET: 1. Observation versus execution. Experimental Brain Research, 111(2), 246-252.Google Scholar
  266. Roberts, E. (1986). Metabolism and nervous system disease: A challenge for our times (Part I). Metabolic Brain Disease, 1, 1-25.Google Scholar
  267. Rojas, D. C., Smith, J. A., Benkers, T. L., Camou, S. L., Reite, M. L., & Rogers, S. J. (2004). Hippocampus and amygdala volumes in parents of children with autistic disorder. American Journal of Psychiatry, 161(11), 2038-2044.PubMedGoogle Scholar
  268. Roland, P. E., Eriksson, L., Widen, L., & Stone-Elander, S. (1989). Changes in regional cerebral oxidative metabolism induced by tactile learning and recognition in man. European Journal of Neuroscience, 1, 3-18.PubMedGoogle Scholar
  269. Roncagliolo, M., Benitez, J., & Perez, M. (1994). Auditory brainstem responses of children with developmental language disorders. Developmental Medicine and Child Neurology, 36, 26-33.PubMedGoogle Scholar
  270. Ross, B., Lin, A., Harris, K., Bhattacharya, P., & Schweinsburg, B. (2003). Clinical experience with 13C MRS. NMR in Biomedicine, 16(6-7), 358-369.Google Scholar
  271. Ross, B., & Michaels, T. (1994). Clinical applications of magnetic resonance spectroscopy. Magnetic Resonance Quarterly, 10, 191-247.PubMedGoogle Scholar
  272. Rourke, B. P., Bakker, D. J., Fisk, J. L., & Strang, J. D. (1983). Child neuropsychology: An introduction to theory, research, and clinical practice. New York: Guilford Press.Google Scholar
  273. Saint-Cyr, J. A., Taylor, A. E., & Lang, A. E. (1987). Procedural learning impairment in basal ganglia disease. Journal of Clinical and Experimental Neuropsychology, 9, 280.Google Scholar
  274. Saitoh, D., Courchesne, F., Egaas, B., Lincoln, A. J., & Schreibrion, L. (1995). Cross-sectional axia of posterior hippocampus in autistic patients with cerebral and corpus collosum abnormalities. Neurology, 45, 317-324.PubMedGoogle Scholar
  275. Sakari, S., Simos, P. G., Fletcher, J. M., Castillo, E. M., Breier, J. I., & Papanicolaou, A. C., (2002). Contributions of magnetic source imaging to the understanding of dyslexia. Seminars in pediatric neurology, 9(3), 229-238.Google Scholar
  276. Satz, P. (1993). Brain reserve capacity on symptom onset after brain injury: A formulation and review of evidence of threshold theory. Neuropsychology, 7, 293-295.Google Scholar
  277. Satz, P., Orsini, D. L., Saslow, E., & Henry, R. (1985). The pathological left-handedness syndrome. Brain and Cognition, 4, 27-46.PubMedGoogle Scholar
  278. Satz, P., Strauss, E., Hunter, M., & Wada, J. (1994). Re-examination of the crowding hypothesis: Effects of age of onset. Neuropsychology, 8, 255-262.Google Scholar
  279. Scheibel, A. B. (1978). Clinical neuroanatomy lecture. Anatomy and Physiology 103: Winter-Spring Quarter 1978, UCLA School of Medicine, Los Angeles.Google Scholar
  280. Scheibel, M., & Scheibel, A. (1961). On circuit patterns of brain stem reticular core. Annals of the New York Academy of Sciences, 89, 857-865.PubMedGoogle Scholar
  281. Scheibel, M., & Scheibel, A. (1963). Some neural substrates of postnatal development. In E. Hoffman (Ed.), First annual review of child development. New York: Russell Sage Foundation.Google Scholar
  282. Scheibel, M. E., & Scheibel, A. G. (1966). Patterns of organization in specific and nonspecific thalamic fields. In D. Purpura, & M. D. Yahr (Eds.), The thalamus. New York: Columbia University Press.Google Scholar
  283. Scheibel, M. E., & Scheibel, A. B. (1972). Input-output relations of the thalamic nonspecific system. Brain, Behavior, and Evolution, 6, 332-358.Google Scholar
  284. Scheibel, M. E., & Scheibel, A. B. (1973). Dendrite bundles as sites for central program: An hypothesis. International Journal of Neuroscience, 6, 195-202.PubMedGoogle Scholar
  285. Schonhaut, S., & Satz, P. (1983). Prognosis for children with learning disabilities: A review of follow-up studies. In M. Rutter (Ed.), Developmental neuropsychiatry. New York: Guilford Press.Google Scholar
  286. Schumann, C. M., Hamstra, J., Goodlin-Jones, B. L., Lotspeich, L. J., Kwon, H., Buonocore, M. H., et al. (2004). The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages. Journal of Neuroscience, 24(28), 6392-6401.PubMedGoogle Scholar
  287. Segalowitz, S., & Chapman, J. (1980). Cerebral asymmetry for speech in neonates: A behavioral measure. Brain Language, 9, 281-288.Google Scholar
  288. Selnes, D. A., & Whitaker, H. A. (1976). Morphological and functional development of the auditory system. In R. W. Rieber (Ed.), The neuropsychology of language. New York: Plenum Press.Google Scholar
  289. Semrud-Clikeman, M., Hynd, G. W., Novey, E. S., & Elipulos, D. (1991). Dyslexia and brain morphology: Relationship between neuroanatomical variation and neurolinguistic tasks. Learning and Individual Differences, 3, 225-242.Google Scholar
  290. Sergent, J., Ohta, S., & MacDonald, B. (1992). Functional neuroanatomy of face and object processing: A positron emission tomography study. Brain, 115, 15-36.PubMedGoogle Scholar
  291. Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., Gogtay, N., et al. (2006). Intellectual ability and cortical development in children and adolescents. Nature, 440, 588-589.Google Scholar
  292. Shaywitz, B. A., Shaywitz, S. E., Pugh, K. R., Constable, R. T., Skudlarski, P., Fulbright, R. K., et al. (1995). Sex differences in the functional organization of the brain for language. Nature, 373(6515), 607-609. PubMedGoogle Scholar
  293. Shaywitz, S., Shaywitz, B., Fulbright, R., Skudlarski, P., Mencl, W., Constable, R., et al. (2003). Neural systems for compensation and persistence: young adult outcome of childhood reading disability. Biological Psychiatry, 54, 25-33.PubMedGoogle Scholar
  294. Shaywitz, B., Shaywitz, S., Blachman, B., Pugh, K., Fulbright, R., Skudlarsi, W., et al. (2004). Development of left occipitotemporal systems for skilled reading in children after a phonologically-based intervention. Biological Psychiatry, 55, 926-933.PubMedGoogle Scholar
  295. Sheliga, B. M., Riggio, L., & Rizzolatti, G. (1995). Spatial attention and eye movements. Experimental Brain Research, 105(2), 261-275.Google Scholar
  296. Shulman, R. G., Blamire, A. M., Rothman, D. L., & McCarthy, G. (1993). Nuclear magnetic resonance imaging and spectroscopy of human brain function. Proceedings of the National Academy of Sciences, USA, 90, 3127-3133.Google Scholar
  297. Siegel, L. S. (1979). Infant perceptual, cognitive, and motor behavior as predictors of subsequent cognitive and language development. Canadian Journal of Psychological Reviews, 33, 382-395.Google Scholar
  298. Sips, H. J. W. A., Catsman-Berrevoets, C. E., Van Dongen, H. R., Van der Werff, P. J. J., & Brooke, L. J. (1994). Measuring right-hemisphere dysfunction in children: Validity of two new computer tests. Developmental Medicine and Child Neurology, 36, 57-63.PubMedGoogle Scholar
  299. Siqueland, E. R., & Lipsitt, L. P. (1966). Conditioned head turning in newborns. Journal of Experimental Child Psychology, 3, 356-376.PubMedGoogle Scholar
  300. Smith, D. W. (1976). Recognizable patterns of human malformation: Genetic, embryologic and clinical aspects (2 nd ed.). Philadelphia: Saunders.Google Scholar
  301. Smith, O. A., & DeVito, J. L. (1984). Central neural integration for the control of autonomic responses associated with emotion. Annual Review of Neuroscience, 7, 43-65.PubMedGoogle Scholar
  302. Smith, B. H., & Sweet, W. H. (1978a). Monoaminergic regulation of central nervous system function. I. Noradrenergic systems. Neurosurgery, 3, 109-119.Google Scholar
  303. Smith, B. H., & Sweet, W. H. (1978b). Monoaminergic regulation of central nervous system function. II. Serotonergic systems. Neurosurgery, 3, 257-272.Google Scholar
  304. Snyder, S. (1980). Brain peptides as neurotransmitters. Science, 209, 976-983.PubMedGoogle Scholar
  305. Sparks, B. F., Friedman, S. D., Shaw, D. W., Aylward, E. H., Echelard, D., Artru, A. A., et al. (2002). Brain structural abnormalities in young children with autism spectrum disorder. Neurology, 59(2), 184-192.PubMedGoogle Scholar
  306. Spearman, C. (1904). General intelligence objectively determined and measured. American Journal of Psychology, 15(2), 201-293.Google Scholar
  307. Spearman, C. (1927). The abilities of man. New York: Macmillian Co.Google Scholar
  308. Sperry, R. W. (1974). Lateral specialization in the surgically separated hemispheres. In F. O. Schmitt, & F. G. Worden (Eds.), Neurosciences: Third study program (pp. 5-19). Cambridge, MA: MIT Press.Google Scholar
  309. Sperry, R. W., Gazzaniga, M. S., & Bogen, J. E. (1969). Inter-hemispheric relationships: The neocortical commissures; syndromes of hemisphere disconnection. In P. J. Vinken, & G. W. Bruyn (Eds.), Handbook of clinical neurology (Vol. 4, pp. 273-290). Amsterdam: Elsevier.Google Scholar
  310. Spreen, O., Tupper, D., Risser, A., Tuokko, H., & Edgell, D. (1984). Human developmental neuropsychology. London: Oxford University Press.Google Scholar
  311. Squire, L. R., & Zola-Morgan, S. (1991). The medial-temporal lobe memory system. Science, 253, 1380-1386.PubMedGoogle Scholar
  312. Stark, D. D., & Bradley, W. G. (Eds.), (1992). Magnetic resonance imaging (2 nd ed., Vols. 1, 2). St. Louis: Mosby-Year Book.Google Scholar
  313. Stehling, M. K., Mansfield, P., Ordidge, R. J., Coxon, R., Chapman, B., Blamire, A., et al. (1990). Echo-planar imaging of the human fetus in utero. Magnetic Resonance in Medicine, 13, 314-318.Google Scholar
  314. Stehling, M. K., Turner, R., & Mansfield, P. (1991). Echo-planar imaging in a fraction of a second. Science, 254, 43-50.PubMedGoogle Scholar
  315. Steriade, M., McCormick, D. A., & Sejnowski, T. J. (1993). Thalamocortical oscillations in the sleeping and aroused brain. Science, 262, 679-685.PubMedGoogle Scholar
  316. Storm-Mathisen, J. (1979). Localization of transmitter candidates in the brain: The hippocampal formation as a model. Progress in Neurobiology, 8, 381-388.Google Scholar
  317. Stuss, D. T. (2006). Frontal lobes and attention: processes and networks, fractionation and integration. Journal of the International Neuropsychological Society, 12(2), 261-271.PubMedGoogle Scholar
  318. Stuss, D. T., & Benson, D. F. (1986). The frontal lobes. New York: Raven Press.Google Scholar
  319. Szentagothai, J. (1975). The “module concept” in the cerebral cortex architecture. Brain Research, 95, 475-496.PubMedGoogle Scholar
  320. Szentagothai, J. (1978). The Ferrier Lecture. The neuron network of the cerebral cortex: A functional interpretation. Proceedings of the Royal Society of London, 201, 219-248.PubMedGoogle Scholar
  321. Szentagothai, J., & Arbib, M. A. (1974). Conceptual models of neural organization. Neurosciences Research Program Bulletin, 12, 307-501.Google Scholar
  322. Taylor, D. (1969). Differential rates of cerebral maturation between sexes and between hemispheres. Lancet, 2, 140-142.PubMedGoogle Scholar
  323. Taylor, H. G., Fletcher, J. M., & Satz, P. (1984). Neuropsychological assessment of children. In L. Halpern, & G. Goldstein (Eds.), Handbook of psychological assessment. Elmsford, NY: Pergamon Press.Google Scholar
  324. Thach, W. T., Goodkin, H. P., & Keating, J. G. (1992). The cerebellum and the adaptive coordination of movement. Annual Review of Neuroscience, 15, 403-442.PubMedGoogle Scholar
  325. Theoret, H., Halligan, E., Kobayashi, M., Fregni, F., Tager-Flusberg, H., & Pascual-Leone, A. (2005). Impaired motor facilitation during action observation in individuals with autism spectrum disorder. Current Biology, 15(3), R84-R85.PubMedGoogle Scholar
  326. Tulving, E. (1985). On the classification problem in learning and memory. In L. Nilsson, & T. Archer (Eds.), Perspectives on learning and memory. Hillsdale, NJ: Erlbaum.Google Scholar
  327. Tzika, A. A., Vigneron, D. B., Ball, W. S., Dunn, R. S., & Kirks, D. R. (1993). Localized proton MR spectroscopy of the brain in children. Journal of Magnetic Resonance Imaging, 3, 719-729.PubMedGoogle Scholar
  328. Valk, J., & Van der Knapp, M. S. (1989). White matter and myelin. In J. Valk, & M. S. Van der Knapp (Eds.), Magnetic resonance of myelin, myelination, and myelin disorders (pp. 9-21). Berlin: Springer-Verlag.Google Scholar
  329. Veit, R., Flor, H., Erb, M. Hermann, C., Lotze, M., Grodd, W., et al. (2002). Brain circuits involved in emotional learning in antisocial behavior and social phobia in humans. Neuroscience Letters, 328, 233-236.PubMedGoogle Scholar
  330. Vohr, B. R., Coll, C. E., Lobato, D., Yunis, K. A., O’Dea, C., & Oh, W. (1991). Neurodevelopmental and medical status of low birth weight survivors of broncho-pulmonary dysphasia at 10-12 years of age. Developmental Medicine and Child Neurology, 33, 690-697.PubMedGoogle Scholar
  331. Vygotsky, L. S. (1974). The problem of age-periodization of child development (A. Zender, & B. F. Zender (Trans.)). Human Development, 17, 24-40.Google Scholar
  332. Vygotsky, L. S. (1980). Mind in society: The development of higher psychological process. In M. Coles, V. John-Steiner, S. Scribner, & E. Souberman, (Eds.). Cambridge, MA: Harvard University Press.Google Scholar
  333. Wang, J. Z., Kaufman, L., & Williamson, S. J. (1993). Imaging regional changes in the spontaneous activity of the brain: An extension of the minimum-norm least-squares estimate. Encephalography and Clinical Neurophysiology, 86, 36-50.Google Scholar
  334. Warren, J. M., & Akert, K. (Eds.), (1964). The frontal granular cortex and behavior. New York: McGraw-Hill.Google Scholar
  335. Weisberg, L. A., Strub, R. L., & Garcia, C. A. (1989). Neurological disorders of childhood. In L. A. Weisberg, R. L. Strub, & C. A. Garcia (Eds.), Essentials of clinical neurology (2 nd ed.). Rockville, MD: Aspen.Google Scholar
  336. Welchew, D. E., Ashwin, C., Berkouk, K., Salvador, R., Suckling, J., Baron-Cohen, S., et al. (2005). Functional disconnectivity of the medial temporal lobe in Asperger's syndrome. Biological Psychiatry, 57(9), 991-998.PubMedGoogle Scholar
  337. Wertsch, J. V. (1979). The regulation of human action and the given new organization of private speech. In G. Zivin (Ed.), The development of self-regulation through private speech. New York: Wiley.Google Scholar
  338. Wheless, J. W., Castillo, E., Maggio, V., Kim, H. L., Breier, J. I., Simos P. G., et al. (2004). Magnetoencephalography (MEG) and magnetic source imaging (MSI). Neurologist, 10(3),138-153.PubMedGoogle Scholar
  339. Wilke, M., & Holland, S. K. (2003). Variability of gray and white matter during normal development: a voxel-based MRI analysis. Neuroreport, 14(15), 1887-1890.PubMedGoogle Scholar
  340. Witelson, S. (1977). Early hemispheric specialization and inter-hemispheric plasticity: An empirical and theoretical review. In S. J. Segalowitz, & F. A. Gruber (Eds.), Language development and neurological theory. New York: Academic Press.Google Scholar
  341. Witelson, S. F. (1985). On hemispheric specialization and cerebral plasticity from birth: Mark II. In C. Best (Ed.), Hemispheric function and collaboration in the child (pp. 33-85). New York: Academic Press.Google Scholar
  342. Witelson, S., & Kigar, D. (1992). Sylvian fissure morphology and asymmetry in men and women: Bilateral differences in relation to handedness in men. Journal of Comparative Neurology, 323, 326-340.PubMedGoogle Scholar
  343. Witelson, S., & Pallie, W. (1973). Left hemisphere specialization for language in the newborn. Brain, 96, 641-646.PubMedGoogle Scholar
  344. Wong, V., & Wong, S. N. (1991). Brainstem auditory evoked potential study in children with autistic disorder. Journal of Autism and Developmental Disorders, 21, 329-340.PubMedGoogle Scholar
  345. Yakovlev, P. I. (1962). Morphological criteria of growth and maturation of the nervous system in man. Research Publications, Association for Research in Nervous and Mental Diseases, 39, 3.Google Scholar
  346. Yakovlev, P. I., & Lecours, A. R. (1967). The myelogenetic cycles of regional maturation of the brain. In A. Minkowski (Eds.), Regional development of the brain. Oxford: Blackwell.Google Scholar
  347. Zimmerman, R. A., Bilaniuk, L. T., & Grossman, R. I. (1983). Computed tomography in migratory disorders of human brain development. Neuroradiology, 25, 257-269.PubMedGoogle Scholar
  348. Zimmerman, R. A., Bilaniuk, L. T., & Gusnard, D. A. (1992). Pediatric cerebral anomalies. In D. D. Stark, & W. G. Bradley (Eds.), Magnetic resonance imaging (2 nd ed.). St. Louis: Mosby-Year Book.Google Scholar
  349. Zola-Morgan, S., & Squire, L. R. (1993). Neuroanatomy of memory. Annual Review of Neuroscience, 16, 547-564.PubMedGoogle Scholar
  350. Zucker, R. S., & Lando, L. (1986). Mechanism of transmitter release: Voltage hypothesis and calcium hypothesis. Science, 231, 574-579.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Lawrence V. Majovski
    • 1
  • David Breiger
    • 1
  1. 1.Department of Psychiatry and Behavioral Sciences, Children’s Hospital and Regional Medical CenterUniversity of Washington School of MedicineSeattle

Personalised recommendations