Child Forensic Neuropsychology: A Scientific Approach

  • Robert J. Mccaffrey
  • Julie E. Horwitz
  • Julie K. Lynch

In the early part of the 20th century, Binet and Simon began work on what would become the Binet-Simon scale, published in 1905 (Binet & Simon, 1905).


Lead Exposure Blood Lead Level Intellectual Functioning Neuropsychological Functioning Forensic Evaluation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ardila, A. (1995). Directions of research in cross-cultural neuropsychology. Journal of Clinical and Experimental Neuropsychology, 17, 143-150.CrossRefPubMedGoogle Scholar
  2. Ardila, A., Rosselli, M., & Rosas, P. (1989). Neuropsychological assessment in illiterates: Visuospatial and memory abilities. Brain and Cognition, 11, 147-166.CrossRefPubMedGoogle Scholar
  3. Baghurst, P. A., McMichael, A. J., Wigg, N. R., Vimpani, G. V., Robertson, E. F., Roberts, R. J., et al. (1992). Environmental exposure to lead and children’s intelligence at age seven years: The Port Pirie cohort study. New England Journal of Medicine, 327, 1279-1284.CrossRefPubMedGoogle Scholar
  4. Balderston, J. B. (1981). Investigating the web of poverty - The need for research. In J. B. Balderston, A. B. Wilson, M. E. Freire, & M. S. Simonen, Malnourished children of the rural poor: The web of food, health, education, fertility, and agricultural production (pp. 1-22). Boston, MA: Auburn House Publishing Company.Google Scholar
  5. Bellinger, D. & Rappaport, L. (2002). Developmental assessment and interventions. In B. Harvey, (Ed.), Managing elevated blood lead levels among young children: Recommendations from the Advisory Committee on Childhood Lead Poisoning Prevention (pp. 77-95). Atlanta, GA: CDC.Google Scholar
  6. Binet, A. & Simon, T. (1905). Methodes nouvelles pour le diagnostic du niveau intellectual des anormaux. L’Annee Psychologique, 11, 191-244.CrossRefGoogle Scholar
  7. Bradley, R. H., & Caldwell, B. M. (1977). Home observation for measurement of the environment: A validation study of screening efficiency. American Journal of Mental Deficiency, 81, 417-420.PubMedGoogle Scholar
  8. Bradley, R. H., & Caldwell, B. M. (1980). The relation of home environment, cognitive competence, and IQ among males and females. Child Development, 51, 1140-1148.CrossRefGoogle Scholar
  9. Bradley, R. H., Rock, S. L., Caldwell, B. M., Harris, P. T., & Hamrick, H. M. (1987). Home environment and school performance among black elementary school children. Journal of Negro Education, 56, 499-509CrossRefGoogle Scholar
  10. Canfield, R. L., Henderson, C. R., Cory-Slechta, D. A., Cox, C., Jusko, T., & Lanphear, B. P. (2003). Intellectual impairment in children with blood lead concentrations below 10 µg per deciliter. New England Journal of Medicine, 348, 1517-1526.CrossRefPubMedGoogle Scholar
  11. Canfield, R. L., Kreher, D. A., Cornwell, C., & Henderson, C. R. (2003). Low-level lead exposure, executive functioning, and learning in early childhood. Child Neuropsychology, 9, 35-53.PubMedGoogle Scholar
  12. Centers for Disease Control (1991). Preventing lead poisoning in young children - A statement by the United States Centers for Disease Control. Atlanta, GA: United States Department of Health and Human Services, Public Health Service, Center for Disease Control.Google Scholar
  13. Centers for Disease Control (2006). Death of a child after ingestion of a metallic charm -Minnesota 2006. Morbidity and Mortality Weekly Report, 55, 1-2.Google Scholar
  14. Chamberlain, G., Philipp, E., Howlett, B., & Masters, K. (1978). British births 1970: A survey under the joint auspices of the National Birthday Trust Fund and the Royal College of Obstetricians and Gynaecologists. Volume 2: Obstetric care. London: William Heinemann Medical Books Ltd.Google Scholar
  15. Coscia, J. M., Ris, M. D., Succop, P. A., & Dietrich, K. N. (2003). Cognitive development of lead exposed children from ages 6-15 years: An application of growth curve analysis. Child Neuropsychology, 9, 10-21.PubMedGoogle Scholar
  16. Cravioto, J., DeLicardie, E. R., & Birch, H. G. (1966). Nutrition, growth and neurointegrative development: An experimental and ecologic study. Pediatrics, 38, 319-372.Google Scholar
  17. Dennis, W. (1948). The Development of the Binet-Simon Scale. In W. Dennis (Ed.), Readings in the History of Psychology (pp. 112-124). New York: Appleton-Century-Crofts.Google Scholar
  18. Dietrich, K. N., Berger, O. G., Succop, P. A., Hammond, P. B., and Bornschien, R. L. (1993). The developmental consequences of low to moderate prenatal and postnatal lead exposure: Intellectual attainment in the Cincinnati Lead Study Cohort following school entry. Neurotoxicology and Teratology, 15, 37-44.,CrossRefPubMedGoogle Scholar
  19. Dietrich, K. N., Ris, M. D., Succop, P. A., Berger, O. G., & Bornschein, R. L. (2001). Early exposure to lead and juvenile delinquency. Neurotoxicology and Teratology, 23, 511-518.CrossRefPubMedGoogle Scholar
  20. Duncan, G. J., Brooks-Gunn, J., & Klebanov, P. K. (1994). Economic deprivation and early childhood development. Child Development, 65, 296-318.CrossRefPubMedGoogle Scholar
  21. Ernhart, C. B., Morrow-Tlucak, M., Wolf, A. W., Super, D., & Drotar, D. (1989). Low level lead exposure in the prenatal and early preschool periods: intelligence prior to school entry. Neurotoxicology and Teratology, 11, 161-170.CrossRefPubMedGoogle Scholar
  22. Espy, K. A., Molfese, V. J., & DiLalla, L. F. (2001). Effects of environmental measures on intelligence in young children: Growth curve modeling of longitudinal data. Merrill-Palmer Quarterly, 47, 42-73.CrossRefGoogle Scholar
  23. Faust, D., & Brown, J. (1987). Moderately elevated blood lead levels: Effects on neuropsychologic functioning in children. Pediatrics, 80, 623-629.PubMedGoogle Scholar
  24. Freeman, H. E., Klein, R. E., Townsend, J. W., & Lechtig, A. (1980). Nutrition and cognitive development among rural Guatemalan children. American Journal of Public Health, 70, 1277-1285.CrossRefPubMedGoogle Scholar
  25. Geary, D. C., Hamson, C. O., Chen, G-P., Liu, F., Hoard, M. K., & Salthouse, T. A. (1997). Computational and reasoning abilities in arithmetic: Cross-generational change in China and the United States. Psychonomic Bulletin & Review, 4, 425-430.CrossRefGoogle Scholar
  26. Green, M. D., Freedman, D. M., & Gordis, L. (2000). Reference Guide on Epidemiology. In Reference Manual on Scientific Evidence (2 nd Ed.). Federal Judicial Center: Washington, DC.Google Scholar
  27. Howell, K. K., Lynch, M. E., Platzman, K. A., Smith, G. H., & Coles, C. D. (2006). Prenatal alcohol exposure and ability, academic achievement and school functioning in adolescence: a longitudinal follow-up. Journal of Pediatric Psychology, 31, 116-126.CrossRefPubMedGoogle Scholar
  28. Ingalls, S., & Goldstein, S. (1999). Learning disabilities. In S. Goldstein & C. R. Reynolds (Eds.), Handbook of neurodevelopmental and genetic disorders in children (pp.101-153). New York, NY: Guilford Press.Google Scholar
  29. Jacobson, J. L., Jacobson, S. W., Sokol, R. J., & Ager, J. A. (1998). Relation of maternal age and pattern of pregnancy drinking to functionally significant cognitive deficit in infancy. Alcoholism: Clinical and Experimental Research, 22, 345-351.CrossRefGoogle Scholar
  30. Kaufman, A. S. (2006). Assessing adolescent and adult intelligence (3rd ed.). Hoboken, NJ: John Wiley & Sons, Inc.Google Scholar
  31. Kety, S. S. (1962). Regional neurochemistry and its application to brain function. In J. D. French (Ed.), Frontiers in brain research (pp. 97-120). New York, NY: Columbia University Press.Google Scholar
  32. Korenman, S., Miller, J. E., & Sjaastad, J. E. (1995). Long-term poverty and child development in the United States: Results from the NLSY. Children and Youth Services Review, 17, 127-155.CrossRefGoogle Scholar
  33. Levav, M., Cruz, M. E., & Mirsky, A. F. (1995). EEG abnormalities, malnutrition, parasitism and goiter: A study of schoolchildren in Ecuador. Acta Paediatrica, 84, 197-202.CrossRefPubMedGoogle Scholar
  34. Levav, M., Mirsky, A. F., Schantz, P. M., Castro, S., & Cruz, M. E. (1995). Parasitic infection in malnourished school children: Effects on behaviour and EEG. Parasitology, 110, 103-111.CrossRefPubMedGoogle Scholar
  35. McMichael, A. J., Baghurst, P. A., Vimpani, G. V., Wigg, N. R., Robertson, E. F., & Tong, S. (1994). Tooth lead levels and IQ in school-age children: The Port Pirie cohort study. American Journal of Epidemiology, 140, 489-499.PubMedGoogle Scholar
  36. Mirsky, A. F. (1995). Perils and pitfalls on the path to normal potential: The role of impaired attention. Homage to Herbert G. Birch. Journal of Clinical and Experimental Neuropsychology, 17, 481-498.CrossRefPubMedGoogle Scholar
  37. Molfese, V. J., Modglin, A., & Molfese, D. L. (2003). The role of environment in the development of reading skills: A longitudinal study of preschool and school-age measures. Journal of Learning Disabilities, 36, 59-67.CrossRefPubMedGoogle Scholar
  38. Neisser, U., Boodoo, G., Bouchard, T. J., Boykin, A. W., Brody, N., Ceci, S. J., et al. (1996). Intelligence: Knowns and Unknowns. American Psychologist, 51, 77-101.CrossRefGoogle Scholar
  39. Nell, V. (1999). Luria in Uzbekistan: The vicissitudes of cross-cultural neuropsychology. Neuropsychology Review, 9, 45-52.CrossRefPubMedGoogle Scholar
  40. Picard, E. M., Del Dotto, J. E., & Breslau, N. (2000). Prematurity and low birthweight, in Pediatric Neuropsychology. In K. O. Yeates, M. D. Ris, & H. G. Taylor (Eds.), Research, theory, and practice. New York, NY: Guilford Press.Google Scholar
  41. Pocock, S. J., Ashby, D., & Smith, M. A. (1987). Lead exposure and children’s intellectual performance. International Journal of Epidemiology, 16, 57-67.CrossRefPubMedGoogle Scholar
  42. Reynolds, C. R. (1997). Postscripts on premorbid ability estimation: conceptual addenda and a few words on alternative and conditional approaches. Archives of Clinical Neuropsychology, 12, 769-778.PubMedGoogle Scholar
  43. Reynolds, C. R. (1999). Inferring causality from relational data and designs: Historical and contemporary lessons for research and clinical practice. The Clinical Neuropsychologist, 13, 386 - 395.PubMedGoogle Scholar
  44. Ris, M. D., Dietrich, K. N., Succop, P. A., Berger, O. G., & Bornschein, R. L. (2004). Early exposure to lead and neuropsychological outcome in adolescence. Journal of the International Neuropsychological Society, 10, 261-270.CrossRefPubMedGoogle Scholar
  45. Rosselli, M., & Ardila, A. (1993). Developmental norms for the Wisconsin Card Sorting test in 5- to 12-year-old children. The Clinical Neuropsychologist, 7, 145-154.CrossRefGoogle Scholar
  46. Sameroff, A. J., Seifer, R., Baldwin, A., & Baldwin, C. (1993). Stability of intelligence from preschool to adolescence: The influence of social and family risk factors. Child Development, 64, 80-97.CrossRefPubMedGoogle Scholar
  47. Schantz, P. M. (1991). Parasitic zoonoses in perspective. International Journal for Parasitology, 21, 161-170.CrossRefPubMedGoogle Scholar
  48. Silberg, J., Rutter, M., Meyer, J., Maes, H., Hewitt, J., Simonoff, E., et al. (1996). Genetic and environmental influences on the covariation between hyperactivity and conduct disturbance in juvenile twins. Journal of Child Psychology and Psychiatry, 37(7), 803-816.CrossRefPubMedGoogle Scholar
  49. Silva, P. A, Hughes, P., Williams, S., & Faed, J. M. (1988). Blood lead, intelligence, reading attainment, and behaviour in eleven year old children in Dunedin, New Zealand. Journal of Child Psychology and Psychiatry and Allied Disciplines, 29, 43-52.CrossRefGoogle Scholar
  50. Simonoff, E. (2001). Gene-environment interplay in oppositional defiant and conduct disorder. Child and Adolescent Psychiatric Clinics of North America, 10(2), 351-374.PubMedGoogle Scholar
  51. Singer, L. T., Arendt, R., Minnes, S., Farkas, K., Salvator, A., Kirchner, H. L., et al. (2002). Cognitive and motor outcomes of cocaine-exposed infants. Journal of the American Medical Association, 287, 1952-60.CrossRefPubMedGoogle Scholar
  52. Smith, M., Delves, T., Lansdown, R., Clayton, B., & Graham, P. (1983). The effects of lead exposure on urban children: The Institute of Child Health/Southampton study. Developmental Medicine and Child Neurology, 25(Suppl. 47), 1-54.Google Scholar
  53. Spencer, T. J., Biederman, J., Wilens, T. E., & Faraone, S. V. (2002). Overview and neurobiology of attention-deficit/hyperactivity disorder. Journal of Clinical Psychiatry, 63, 3-9.PubMedGoogle Scholar
  54. Streissguth, A. P., Barr, H. M., & Sampson, P. D. (1990). Moderate prenatal alcohol exposure: Effects of child IQ and learning problems at age 7-1/2 years. Alcoholism: Clinical and Experimental Research, 14, 662-669.CrossRefGoogle Scholar
  55. Taylor, H. G., Yeates, K. O., Wade, S. L., Drotar, D., Klein, S. K., & Stancin, T. (1999). Influences on first-year recovery from traumatic brain injury in children. Neuropsychology, 13, 76-89.CrossRefPubMedGoogle Scholar
  56. Taylor, H. G., Yeates, K. O., Wade, S. L., Drotar, D., Stancin, T., & Minich, N. (2002). A prospective study of short- and long-term outcomes after traumatic brain injury in children: Behavior and achievement. Neuropsychology, 16, 15-27.CrossRefPubMedGoogle Scholar
  57. Veltman, M. W. M. & Browne, K. D. (2001). Three decades of child maltreatment research: implications for the school years. Trauma, Violence, & Abuse, 2, 215-239.CrossRefGoogle Scholar
  58. Wasserman, G. A., Factor-Litvak, P., Liu, N. J., Todd, A. C., Kline, J. K., Slavkovich, V., et al. (2003). The relationship between blood lead, bone lead, and child intelligence. Child Neuropsychology, 9, 22-34.PubMedGoogle Scholar
  59. Wasserman, G. A., Liu, N. J., LoIacono, P., Factor-Litvak, P., Kline, J. K., Popovac, D., et al. (1997). Lead exposure and intelligence in 7 year old children: The Yugoslavia Prospective Study. Environmental Health Perspective, 105, 956-962.Google Scholar
  60. Wasserman, G. A., Liu, X., Popvac, D., Factor-Litvac, P., Kline, J., Waternaux, C., et al. (2000). Yugoslavia prospective lead study: Contribution of prenatal and postnatal lead exposure to early intelligence. Neurotoxicology and Teratology, 22, 811-818.CrossRefPubMedGoogle Scholar
  61. Wasserman, G. A., Musabegovic, A., Liu, X., Kline, J., Factor-Litvak, P., & Graziano, J. H. (2000). Lead exposure and motor functioning in 4½ year old children: The Yugoslavia prospective lead study. Journal of Pediatrics, 137, 555-561.CrossRefPubMedGoogle Scholar
  62. Wasserman, G. A., Staghezza-Jaramillo, B., Shrout, P., Popovac, D., & Graziano, J. (1998). The effect of lead exposure on behavior problems in preschool children. American Journal of Public Health, 88, 482-486.Google Scholar
  63. Williams, A. D. (1997). The forensic evaluation of adult traumatic brain injury. In R. J. McCaffrey, A. D. Williams, J. M Fisher, & L. C. Laing (Eds.), The practice of forensic neuropsychology (pp. 37-56). New York, NY: Plenum Press.Google Scholar
  64. Winneke, G., Brockhaus, A., Ewers, U., Kramer, U., & Neuf, M. (1990). Results from the European Multicenter Study on lead neurotoxicity in children: Implications for risk assessment. Neurotoxicity and Teratology, 12, 553-559.CrossRefGoogle Scholar
  65. Winneke, G., & Kraemer, U. (1984). Neuropsychological effects of lead in children: Interactions with social background variables. Neuropsychobiology, 11, 195-202.CrossRefPubMedGoogle Scholar
  66. Worley, G., Green, J. A., Frothingham, T. E., Sturner, R. A., Walls, K. W., Pakalnis, V. A., et al. (1984). Toxocara canis infection: Clinical and epidemiological associations with seropositivity in kindergarten children. The Journal of Infectious Diseases, 149, 591-597.PubMedGoogle Scholar
  67. Yeates, K. O., Taylor, H. G., Barry, C. T., Drotar, D., Wade, S. L., & Stancin, T. (2001). Neurobehavioral symptoms in childhood closed-head injuries: Changes in prevalence and correlates during the first year postinjury. Journal of Pediatric Psychology, 26, 79-91.CrossRefPubMedGoogle Scholar
  68. Yeates, K. O., Taylor, H. G., Drotar, D., Wade, S. L., Klein, S., Stancin, T., et al. (1997). Preinjury family environment as a determinant of recovery from traumatic brain injuries in school-age children. Journal of the International Neuropsychological Society, 3, 617-630.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Robert J. Mccaffrey
    • 1
    • 2
  • Julie E. Horwitz
    • 1
  • Julie K. Lynch
    • 2
  1. 1.Department of PsychologyUniversity at Albany, State University of New YorkNew York
  2. 2.Albany Neurological AssociatesNew York

Personalised recommendations