Development of the Child’s Brain and Behavior

  • Bryan Kolb
  • Bryan D. Fantie

Perhaps the central issue in neuropsychology over the past 100 years has been the question of how psychological functions are represented in the brain.


Frontal Lobe Left Hemisphere Language Function Cortical Development Early Brain Injury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ackerly, S. S. (1964). A case of prenatal bilateral frontal lobe defect observed for thirty years. In J. M. Warren, & K. Ackert (Eds.), Frontal granular cortex and behavior (pp. 192-218). New York: McGraw-Hill.Google Scholar
  2. Alajouanine, T., & Lhermitte, F. (1965). Acquired aphasia in children. Brain 88, 653-662.PubMedGoogle Scholar
  3. Arlin, P. K. (1975). Cognitive development in adulthood: A fifth stage? Developmental Psychology, 11(5), 602-606.Google Scholar
  4. Aram, D. M. (1988) Language sequelae of unilateral brain lesions in children. In F. Plum (Ed.), Language Communication and the Brain (pp. 171-197). New York: Raven Press.Google Scholar
  5. Akshoomoff, N. A., Feroleto, C. C., Doyle, R. E., & Stiles, J. (2002). The impact of early unilateral brain injury on perceptual organization and visual memory. Neuropsychologia, 40, 539-561.Google Scholar
  6. Banich, M. T., Cohen-Levine, S., Kim, H., & Huttenlocher, P. (1990). The effects of developmental factors on I.Q. in hemiplegic children. Neuropsychologia, 28, 35-47.PubMedGoogle Scholar
  7. Barlow, T. (1877) On a case of double hemiplegia with cerebral symmetrical lesions. British Medical Journal, 2, 103-104.PubMedGoogle Scholar
  8. Bartzokis, G., Beckson, M., Po, H. L., Nuechterlein, N. E., & Mintz, J. (2001). Age-related changes in frontal and temporal volumes in men: A magnetic resonance imaging study. Archives of General Psychiatry, 58, 461-465.PubMedGoogle Scholar
  9. Bates, E., & Thal, D. (1991) Associations and dissociations in language development. In J. Miller (Ed.), Research on child language disorders: A decade of progress (pp. 145-168). Austin, TX: ProEd.Google Scholar
  10. Bates, E. Thal, D., Trauner, D., Fenson, J., Aram, D., Eisele, J., et al. (1997) From first words to grammar in children with focal brain injury. Developmental Neuropsychology, 13, 275-343.Google Scholar
  11. Bergstrom, R. M. (1969). Electrical parameters of the brain during ontogeny. In R. J. Robinson (Ed.), Brain and early behavior (pp. 15-37). New York: Academic Press.Google Scholar
  12. Berry, M. (1982). Cellular differentiation: Development of dendritic arborizations under normal and experimentally altered conditions. Neurosciences Research Program Bulletin, 20(4), 451-461.PubMedGoogle Scholar
  13. Bourgeois, J.-P. (2001). Synaptogenesis in the neocortex of the newborn: The ultimate frontier for individuation? In C. A. Nelson, & M. Luciana (Eds.), Handbook of developmental cognitive neuroscience. Cambridge, MA: MIT Press.Google Scholar
  14. Broca, P. (1865) Sur la siege de la faculte du langage articule dans l’hemisp;here gauche du cerveau. Bulletins de la Scoiete d’Anthropologie, 6, 377-393.Google Scholar
  15. Caplan, P. J., & Kinsbourne, M. (1976). Baby drops the rattle: Asymmetry of duration of grasp by infants. Child Development, 47, 532-534.PubMedGoogle Scholar
  16. Carey, S. (1984). Cognitive development: The descriptive problem. In M. S. Gazzaniga (Ed.), Handbook of cognitive neuroscience (pp. 37-66). New York: Plenum Press.Google Scholar
  17. Carey, S., Diamond, R., & Woods, B. (1980). Development of face recognition—A maturational component? Developmental Psychology, 16(6), 257-269.Google Scholar
  18. Carlsson, G., & Hugdahl, K. (2000) Cerebral reorganization in children with congenital hemiplegia: Evidence from the dichotic listening test. In H. S. Levin, & J. Grafman (Eds.), Cerebral Reorganization of Function After Brain Damage (pp. 232-246). New York: Oxford.Google Scholar
  19. Carr, L. J. (2000) Reorganization of motor function in cerebral palsy. In H. S. Levin, & J. Grafman (Eds.), Cerebral reorganization of function after brain damage (pp. 247-262). New York: Oxford.Google Scholar
  20. Case, R. (1992). The role of the frontal lobes in the regulation of cognitive development. Brain and Cognition, 20, 51-73.PubMedGoogle Scholar
  21. Caveness, W. F. (1969). Ontogeny of focal seizures. In H. H. Jasper, A. A. Ward, Jr., & A. Pope (Eds.), Basic mechanisms of the epilepsies (pp. 517-534). Boston: Little, Brown.Google Scholar
  22. Caviness, V. S., Jr. (1982). Development of neocortical afferent systems: Studies in the reeler mouse. Neurosciences Research Program Bulletin, 20(4), 560-569.Google Scholar
  23. Caviness, V. S., & Rakic, P. (1978). Mechanisms of cortical development: A view from mutations in mice. Annual Review of Neuroscience, 1, 297-326.PubMedGoogle Scholar
  24. Caviness, V. S., Jr., & Sidman, R. L. (1973). Time of origin of corresponding cell classes in the cerebral cortex of normal and reeler mutant mice: An autoradiographic analysis. Journal of Comparative Neurology, 148, 141-152.PubMedGoogle Scholar
  25. Caviness, V. S., & Williams, R. S. (1979). Cellular pathology of developing human cortex. Research Publications of the Association for Research in Nervous and Mental Diseases, 57, 69-98.Google Scholar
  26. Chi, J. G., Dooling, E. C., & Gilles, F. H. (1977). Left-right asymmetries of the temporal speech areas of the human fetus. Archives of Neurology, 34, 346-348.PubMedGoogle Scholar
  27. Chugani, H. T., & Phelps, M. E. (1986). Maturational changes in cerebral function in infants determined by 18FDG positron emission tomography. Science, 231, 840-843.PubMedGoogle Scholar
  28. Clancy, B., Kersh, B., Hyde, J., Darlington, R.B., Anand, K.J., & Finlay, B.L. (2007) Web-based method for translating neurodevelopment from laboratory species to humans. Neuroinformatics, 5, 79-94.PubMedGoogle Scholar
  29. Conel, J. L. (1939-1967). The postnatal development of the human cerebral cortex (Vols. I-VIII). Cambridge, MA: Harvard University Press.Google Scholar
  30. Cowan, W. M. (1979). The development of the brain. Scientific American, 241, 112-133.Google Scholar
  31. Cragg, B. G. (1975). The density of synapses and neurons in normal, mentally defective and ageing human brains. Brain, 98, 81-90.PubMedGoogle Scholar
  32. Crowell, D. H., Jones, R. H., Kapuniai, L. E., & Nakagawa, J. K. (1973). Unilateral cortical activity in newborn humans: An early index of cerebral dominance? Science, 180, 205-208.PubMedGoogle Scholar
  33. Dennett, D.C. (1995). Darwin’s dangerous idea: Evolution and the meanings of life. New York: Simon & Schuster.Google Scholar
  34. Diamond, R., & Carey, S. (1977). Developmental changes in the representation of faces. Journal of Experimental Child Psychology, 23, 1-22.PubMedGoogle Scholar
  35. Drake, W. (1968). Clinical and pathological findings in a child with a developmental learning disability. Journal of Learning Disabilities, 1, 468-475.Google Scholar
  36. Entus, A. K. (1977). Hemispheric asymmetry in processing of dichotically presented speech and nonspeech stimuli by infants. In S. J. Segalowitz, & F. A. Gruber (Eds.), Language development and neurological theory (pp. 63-73). New York: Academic Press.Google Scholar
  37. Epstein, H. T. (1978). Growth spurts during brain development: Implications for educational policy and practice. In J. S. Chall, & A. F. Mirsky (Eds.), Education and the brain (pp. 343-370). Chicago: University of Chicago Press.Google Scholar
  38. Epstein, H. T. (1979). Correlated brain and intelligence development in humans. In M. E. Hahn, C. Jensen, & B. C. Dudek (Eds.), Development and evolution of brain size: Behavioral implications (pp. 111-131). New York: Academic Press.Google Scholar
  39. Eslinger, P. J., & Damasio, A. R. (1985). Severe disturbance of higher cognition after bilateral frontal lobe ablation: Patient EVR. Neurology, 35, 1731-1741.PubMedGoogle Scholar
  40. Farmer, S. F., Harrison, L. M., Ingram, D. A., & Stephens, J. A. (1991). Plasticity of central motor pathways in children with hemiplegic cerebral palsy. Neurology, 41, 1505-1150.Google Scholar
  41. Flechsig, P. (1920). Anatomie des menschlichen Gehirns und Ruckenmarks. Leipzig: Thieme.Google Scholar
  42. Galaburda, A. M., & Eidelberg, D. (1982). Symmetry and asymmetry in the human posterior thalamus. II. Thalamic lesions in a case of development dyslexia. Archives of Neurology, 39, 333-336.PubMedGoogle Scholar
  43. Galaburda, A. M., & Kemper, T. L. (1979). Cytoarchitectonic abnormalities in developmental dyslexia: A case study. Annals of Neurology, 6, 94-100.PubMedGoogle Scholar
  44. Geschwind, N., & Galaburda, A. M. (1985). Cerebral lateralization: Biological Mechanisms, associations, and pathology. 1. A hypothesis and a program for research. Archives of Neurology, 42, 428-459.PubMedGoogle Scholar
  45. Gibson, K. R. (1977). Brain structure and intelligence in macaques and human infants from a Piagetian perspective. In S. Chevalier-Skolnikoff, & F. E. Poirer (Eds.), Primate biosocial development: Biological, social, and ecological determinants (pp. 113-157). New York: Garland.Google Scholar
  46. Goldman, P. S. (1974). An alternative to developmental plasticity: Heterology of CNS structures in infants and adults. In D. G. Stein, J. J. Rosen, & N. Butters (Eds.), Plasticity and recovery of function in the central nervous system (pp. 149-174). New York: Academic Press.Google Scholar
  47. Goldman, P. S., & Galkin, T. W. (1978). Prenatal removal of frontal association cortex in the fetal rhesus monkey: Anatomical and functional consequences in postnatal life. Brain Research, 152, 451-485.PubMedGoogle Scholar
  48. Goldman-Rakic, P. S., & Brown, R. M. (1981). Regional changes of monoamines in cerebral cortex and subcortical structures of aging rhesus monkeys. Neuroscience, 6, 177-187.PubMedGoogle Scholar
  49. Goldman-Rakic, P. S., & Brown, R. M. (1982). Postnatal development of monoamine content and synthesis in the cerebral cortex of rhesus monkeys. Developmental Brain Research, 4, 339-349.Google Scholar
  50. Goldman-Rakic, P. S., Isseroff, A., Schwartz, M. L., & Bugbee, N. M. (1983). The neurobiology of cognitive development. In P. Mussen (Ed.), Handbook of child psychology: Biology and infancy development (pp. 281-344). New York: Wiley.Google Scholar
  51. Gogtay, N., Gledd, J. M. N., Lusk, L., Hayashi, K.M., Greenstein, D., Valtuzis, A. C., et al. Dynamic mapping of human cortical development during childhood and adolescence. Proceedings of the National Academy of Sciences, 101, 8174-8179, 2004.Google Scholar
  52. Gould, E. (2007) How widespread is adult neurogenesis in mammals? Nature Reviews Neuroscience, 8: 481-488.PubMedGoogle Scholar
  53. Gould, S. J. & Lewontin, R. (1979). The spandrels of San Marco and the Panglossian Paradigm: A critique of the adaptationist programme. Proceedings of the Royal Society, B205,581-598.Google Scholar
  54. Grattan, L. M., & Eslinger, P. J. (1992). Long-term psychological consequences of childhood frontal lobe lesion in patient DT. Brain and Cognition, 20, 185-195.PubMedGoogle Scholar
  55. Greenough, W. T. (1976). Enduring brain effects of differential experience and training. In M. R. Rosenzweig, & E. L. Bennett (Eds.), Neural mechanisms of learning and memory (pp. 255-278). Cambridge, MA: MIT Press.Google Scholar
  56. Hebb, D. O. (1949). Organization of behavior. New York: Wiley.Google Scholar
  57. Hicks, S. P., Damato, C. J., & Lowe, M. J., (1959).The development of the mammalian nervous system. Malformations of the brain, especially the cerebral cortex, induced in rats by radiation. Journal of Comparative Neurology, 113,435-453.PubMedGoogle Scholar
  58. Holloway, V., Gadian, D., Vargha-Khadem, F., Porter, D. A., Boyd, S.G., & Connelly, A. (2000). The reorganization of sensorimotor function in children after hemispherectomy. Brain, 123, 2432-2444.PubMedGoogle Scholar
  59. Hubel, D. H., & Wiesel, T. N. (1970). The period of susceptibility to the physiological effects of unilateral eye closure in kittens. Journal of Physiology (London), 206, 419-436.Google Scholar
  60. Huttenlocher, P.R. (1984). Synapse elimination and plasticity in developing human cerebral cortex. American Journal of Mental Deficiency, 88, 488-496.PubMedGoogle Scholar
  61. Huttenlocher, P.R. (1990). Morphometric study of human cerebral cortex development. Neuropsychologia, 28, 517-527.PubMedGoogle Scholar
  62. Ingram, D. (1975). Motor asymmetries in young children. Neuropsychologia, 13, 95-102.PubMedGoogle Scholar
  63. Jacobsen, M. (1978). Developmental neurobiology (2 nd ed.). New York: Plenum Press.Google Scholar
  64. Juraska, J. (1990). The structure of the rat cerebral cortex: Effects of gender and environment. In B. Kolb, & R. Tees (Eds.), Cerebral cortex of the rat (pp. 483-506). Cambridge, MA: MIT Press.Google Scholar
  65. Kimura, D. (1963). Speech lateralization in young children as determined by an auditory test. Journal of Comparative and Physiological Psychology, 56, 899-902.PubMedGoogle Scholar
  66. Knox, C., & Kimura, D. (1970). Cerebral processing of nonverbal sounds in boys and girls. Neuropsychologia, 8, 227-237.PubMedGoogle Scholar
  67. Kolb, B. (1995). Brain plasticity and behavior. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  68. Kolb, B., & Fantie, B. (1989). Development of the child's brain and behavior. In C. R. Reynolds, & E. Fletcher-Janzen (Eds.), Handbook of clinical child neuropsychology (pp. 17-39). New York: Plenum Press.Google Scholar
  69. Kolb, B., & Milner, B. (1981). Performance of complex arm and facial movements after focal brain lesions. Neuropsychologia, 19, 491-503.Google Scholar
  70. Kolb, B., & Taylor, L. (1981). Affective behavior in patients with localized cortical excisions: Role of lesion site and side. Science, 214, 89-91.PubMedGoogle Scholar
  71. Kolb, B., & Taylor, L. (1990). Neocortical substrates of emotional behavior. In N. L. Stein, B. Levethal, & T. Trabasso, (Eds.), Psychological and biological approaches to emotion (pp. 115-144). Hillsdale, NJ: Erlbaum.Google Scholar
  72. Kolb, B., & Whishaw, I. Q. (2008). Fundamentals of human neuropsychology (6th ed.). New York: Freeman.Google Scholar
  73. Kolb, B., Wilson, B., & Taylor, L. (1992). Developmental changes in the recognition and comprehension of facial expression: Implications for frontal lobe function. Brain and Cognition, 20, 74-84.PubMedGoogle Scholar
  74. Krashen, S. D. (1973). Lateralization, language learning, and the critical period: Some new evidence. Language Learning, 23, 63-74.Google Scholar
  75. Lecours, A. R. (1975). Myelogenetic correlates of the development of speech and language. In E. H. Lenneberg, & E. Lenneberg (Eds.), Foundations of language development: A multidisciplinary approach (Vol. 1, pp. 121-135). New York: Academic Press.Google Scholar
  76. Lenneberg, E. H. (1967). Biological foundations of language. New York: Wiley.Google Scholar
  77. LeVere, N. D., Gray-Silva, S., & Le Vere, T. E. (1988) Infant brain injury: The benefit of relocation and the cost of crowding. In S. Finger, T. E. LeVEre, C. R. Almili, & D. G. Stein (Eds.), Brain injury and recovery—theoretical and controversial issues (pp. 133-150). New York: Plenum Press.Google Scholar
  78. Levin, H. S., Scheller, J., Rickard, T., Grafman, J., Martinkowski, K., Winslow, M., et al. (1996) Dyscalculia and dyslexia after right hemisphere injury in infancy. Archives of Neurology, 53, 88-96.PubMedGoogle Scholar
  79. Levin, H. S., Song, J., Chapman, S. B., & Howard, H. (2000). In H. S. Levin, & J. Grafman (Eds.), Cerebral reorganization of function after brain damage (pp. 218-231). New York: Oxford.Google Scholar
  80. Lezak, M. D., Howieson, D. B., Loring, D.W., Hannay. H.J., & Fischer, J. S. (2004). Neuropsychological assessment (4th ed.). New York: Oxford University Press.Google Scholar
  81. Marcel, T., & Rajan, P. (1975). Lateral specialization for recognition of words and faces in good and poor readers. Neuropsychologia, 13, 489-497.PubMedGoogle Scholar
  82. Marin-Padilla, M. (1970). Prenatal and early postnatal ontogenesis of the motor cortex: A Golgi study. 1. The sequential development of cortical layers. Brain Research, 23, 167-183.PubMedGoogle Scholar
  83. Marin-Padilla, M. (1988). Early ontogenesis of the human cerebral cortex. In A. Peters, & E. G. Jones (Eds.), Cerebral cortex (Vol. 7, pp. 1-34). New York: Plenum Press.Google Scholar
  84. Michel, G. F. (1981). Right handedness: A consequence of infant supine head-orientation preference? Science, 212, 685-687.PubMedGoogle Scholar
  85. Miller M. W. (1986). Effects of alcohol on the generation and migration of cerebral cortical neurons. Science, 233, 1308-1311.PubMedGoogle Scholar
  86. Milner, B. (1964). Some effects of frontal lobectomy in man. In J. M. Warren, & K. Akert (Eds.), The frontal granular cortex and behavior (pp. 313-334). New York: McGraw-Hill.Google Scholar
  87. Molfese, D. L., & Molfese, V. J. (1980). Cortical responses of preterm infants to phonetic and nonphonetic speech stimuli. Developmental Psychology, 16(6), 574-581.Google Scholar
  88. Molfese, D. L., & Segalowitz, S. J., (1988). Brain lateralization in children: Developmental implications. New York: Guildford.Google Scholar
  89. Nass, R., de Coudres-Peterson, H.D., & Koch, D. (1989) Differential effects of congenital left and right brain injury on intelligence. Brain and Cognition, 9, 253-259.Google Scholar
  90. Nelson, C. A., & Luciana, M. (2008) Handbook of developmental cognitive neuroscience (2 nd ed.). Cambridge, MA: MIT Press.Google Scholar
  91. Owens, R. E., Jr. (1984). Language development: An introduction. Columbus, OH: Charles E. Merrill Publishing.Google Scholar
  92. Parnavelas, J. G., Papadopoulos, G. C., & Cavanagh, M. E. (1988). Changes in neurotransmitters during development. In A. Peters, & E. G. Jones (Eds.), Cerebral cortex (Vol. 7, pp. 177-209). New York: Plenum Press.Google Scholar
  93. Peiper, A. (1963). Cerebral function in infancy and childhood. New York: Consultants Bureau.Google Scholar
  94. Peters, M., & Petrie, B. J. F. (1979). Functional asymmetries in the stepping reflex of human neonates. Canadian Journal of Psychology, 33, 198-200.PubMedGoogle Scholar
  95. Piaget, J. (1952). The origins of intelligence in children. New York: Norton.Google Scholar
  96. Poliakov, G. I. (1949). Structural organization of the human cerebral cortex during ontogenetic development. In S. A. Sarkisov, I. N. Filimonov, & N. S. Preobrazenskaya (Eds.), Cytoarchitectonics of the cerebral cortex in man (pp. 33-92). Moscow: Medgiz (In Russian).Google Scholar
  97. Poliakov, G. I. (1961). Some results of research into the development of the neuronal structure of the cortical ends of the analyzers in man. Journal of Comparative Neurology, 117, 197-212.PubMedGoogle Scholar
  98. Poliakov, G. I. (1965). Development of the cerebral neocortex during first half of intrauterine life. In S. A. Sarkosov (Ed.), Development of the child's brain (pp. 22-52). Leningrad: Medicina. (In Russian)Google Scholar
  99. Purpura, D. P. (1974). Dendritic spine “dysgenesis” and mental retardation. Science, 186, 1126-1127.PubMedGoogle Scholar
  100. Purpura, D. P. (1976). Structure-dysfunction relations in the visual cortex of preterm infants. In M. A. B. Braxier & F. Coceani (Eds.), Brain dysfunction in infantile febrile convulsions (pp. 223-240). New York: Raven Press.Google Scholar
  101. Purpura, D. P. (1982). Normal and abnormal development of cerebral cortex in man. Neurosciences Research Program Bulletin, 20(4), 569-577.PubMedGoogle Scholar
  102. Rakic, P. (1972). Mode of cell migration to the superficial layers of fetal monkey neocortex. Journal of Comparative Neurology, 145, 61-84.PubMedGoogle Scholar
  103. Rakic, P. (1975). Timing of major ontogenetic events in the visual cortex of the rhesus monkey. In N. A. Buchwald & M. Brazier (Eds.), Brain mechanisms in mental retardation (pp. 3-40). New York: Academic Press.Google Scholar
  104. Rakic, P. (1976). Prenatal genesis of connections subserving ocular dominance in the rhesus monkey. Nature, 261, 467-471.PubMedGoogle Scholar
  105. Rakic, P. (1981). Developmental events leading to laminar and areal organization of the neocortex. In F. O. Schmitt, F. G. Worden, G. Adelman, & S. G. Dennis (Eds.), The organization of the cerebral cortex (pp. 7-8). Cambridge, MA: MIT Press.Google Scholar
  106. Rakic, P. (1984). Defective cell-to-cell interactions as causes of brain malformations. In E. S. Gollin (Ed.), Malformations of development—Biological and psychological sources and consequences (pp. 239-285). New York: Academic Press.Google Scholar
  107. Rasmussen, T., & Milner, B. (1977). The role of early left-brain injury in determining lateralization of cerebral speech functions. Annals of the New York Academy of Sciences, 299, 355-369.PubMedGoogle Scholar
  108. Reilly, J. S., Bates, E., & Marchman, V. (1998) Narrative discourse in children with early focal brain injury. Brain and Language, 61, 335-375.PubMedGoogle Scholar
  109. Riva, D., & Cazzaniga, L. (1986) Late effects of unilateral brain lesions sustained before and after age one. Neuropsychologia, 24, 423-428.PubMedGoogle Scholar
  110. Robinson, R. J. (1966). Cerebral function in the newborn child. Developmental Medicine and Child Neurology, 8, 561-567.PubMedGoogle Scholar
  111. Satz, P., Strauss, E., Hunter, M., & Wada, J. (1994) Re-examination of the crowding hypothesis: Effects of age and onset. Neuropsychologia, 8, 255-262.Google Scholar
  112. Segalowitz, S. J., & Rose-Krasnor, L. (1992). The construct of brain maturation in theories of child development, Brain and Cognition, 20, 1-7.PubMedGoogle Scholar
  113. Sidman, R. L., & Rakic, P. (1973). Neuronal migration, with special reference to developing human brain: A review. Brain Research, 62, 1-35.PubMedGoogle Scholar
  114. Spreen, O., Tupper, D., Risser, A., Tuokko, H., & Edgell, D. (1984). Human developmental neuropsychology. London: Oxford University Press.Google Scholar
  115. Stewart, J., & Kolb, B. (1994). Dendritic branching in cortical pyramidal cells in response to ovariectomy in adult female rats: Suppression by neonatal exposure to testosterone. Brain Research, 654, 149-154.PubMedGoogle Scholar
  116. Stiles, J. (2000) Spatial cognitive development following prenatal or perinatal focal brain injury. In H. S. Levin, & J. Grafman (Eds.) Cerebral reorganization of function after brain damage (pp. 201-217). Oxford: New York.Google Scholar
  117. Stiles, J., Trauner, D., Engle, M., & Nass, R. (1997). The development of drawing in children with congenital focal brain injury: Evidence for limited functional recovery. Neuropsychologia, 35, 299-312.PubMedGoogle Scholar
  118. Stiles, J., Reilly, J., Paul, B., & Moses, P. (2005). Cognitive development following early brain injury: evidence for neural adaptation. Trends in Cognitive Science, 9, 136-143.Google Scholar
  119. Stoltenburg-Didinger G., & Markwort S. (1990). Prenatal methylmercury exposure results in dendritic spine dysgenesis in rats. Neurotoxicology and Teratology, 12(6), 573-576.PubMedGoogle Scholar
  120. Strauss, E., Satz, P., & Wada, J. (1990). An examination of the crowding hypothesis in epileptic patients who have undergone the carotid amytal test. Neuropsychologia, 28, 1221-1227.PubMedGoogle Scholar
  121. Stuss, D. T. (1992). Biological and psychological development of executive functions. Brain and Cognition, 20, 8-23.PubMedGoogle Scholar
  122. Sutherland, R. J., Kolb, B., Schoel, M., Whishaw, I. Q., & Davies, D. (1982). Neuropsychological assessment of children and adults with Tourette syndrome: A comparison with learning disabilities and schizophrenia. In A. J. Freidhoff, & T. N. Chase (Eds.), Gilles de la Tourette syndrome (pp. 311-322). New York: Raven Press.Google Scholar
  123. Teuber, H.-L. (1975). Recovery of function after brain injury in man. Ciba Foundation Symposium, 34, 159-186.PubMedGoogle Scholar
  124. Thatcher, R. W. (1992). Cyclic cortical reorganization during early childhood. Brain and Cognition, 20, 24-50.PubMedGoogle Scholar
  125. Turkewitz, G. (1977). The development of lateral differentiation in the human infant. Annals of the New York Academy of Sciences, 299, 213-221.Google Scholar
  126. Twitchell, T. E. (1965). The automatic grasping responses of infants. Neuropsychologia, 3, 247-259.Google Scholar
  127. Vargha-Khadem, F., & Polkey, C. E. (1992). A review of cognitive outcome after hemidecortication in humans. In F. D. Rose, & D. A. Johnson (Eds.), Recovery from brain damage (pp. 137-168). New York: Plenum Press.Google Scholar
  128. Vargha-Khadem, F., Watters, G., & O'Gorman, A. M. (1985). Development of speech and language following bilateral frontal lesions. Brain and Language, 37, 167-183.Google Scholar
  129. Wada, J. A., Clarke, R., & Hamm, A. (1975). Cerebral hemispheric asymmetry in humans: Cortical speech zones in 100 adult and 100 infant brains. Archives of Neurology 32, 239-246.PubMedGoogle Scholar
  130. Werker, J. F., & Tees, R. C. (1992). The organization and reorganization of human speech perception. Annual Review of Neuroscience, 15, 377-402.PubMedGoogle Scholar
  131. Whishaw, I. Q., & Kolb, B. (1984). Neuropsychological assessment of children and adults with developmental dyslexia. In R. N. Malatesha, & H. A. Whitaker (Eds.), Dyslexia: A global issue (pp. 375-404). The Hague: Nijhoff.Google Scholar
  132. Williams, R. S., Ferrante, R. J., & Caviness, V. S., Jr. (1975). Neocortical organization in human cerebral malformation: A Golgi study. Neuroscience Abstracts, 1, 776.Google Scholar
  133. Witelson, S. F. (1977). Early hemisphere specialization and interhemisphere plasticity: An empirical and theoretical review. In S. J. Segalowitz, & F. A. Gruber (Eds.), Language development and neurological theory (pp. 213-287). New York: Academic Press.Google Scholar
  134. Woods, B. T. (1980). The restricted effects of right-hemisphere lesions after age one: Wechsler test data. Neuropsychologia, 18, 65-70.PubMedGoogle Scholar
  135. Woods, B. T., & Teuber, H.-L. (1973). Early onset of complementary specialization of cerebral hemispheres in man. Transactions of the American Neurological Association, 98, 113-117.PubMedGoogle Scholar
  136. Yakovlev, P. E., & Lecours, A.-R. (1967). The myelogenetic cycles of regional maturation of the brain. In A. Minkowski (Ed.), Regional development of the brain in early life. Oxford: Blackwell.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Bryan Kolb
    • 1
  • Bryan D. Fantie
    • 2
  1. 1.Department of PsychologyUniversity of LethbridgeLethbridgeCanada
  2. 2.Department of PsychologyAmerican UniversityWashington

Personalised recommendations