Hormonal Heterogeneity of Endometrial Cancer

  • Carsten Gründker
  • Andreas R. Günthert
  • Günter Emons
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 630)


Endometrial cancer is the most common malignant tumor of the female genital tract in the developed world. Increasing evidence suggests that the majority of cases can be divided into two different types of endometrial cancer based on clinico-pathological and molecular characteristics. Type I is associated with an endocrine milieu of estrogen predominance. These tumors are of endometroid histology and develop from endometrial hyperplasia. They have good prognosis and are sensitive to endocrine treatment. Type II endometrial cancers are not associated with a history of unopposed estrogens and develop from the atrophic endometrium of elderly women. Mainly, they are of serous papillary or clear cell morphology, have a poor prognosis and do not react to endocrine treatment. Both types of endometrial cancer probably differ markedly with regard to the molecular mechanisms of transformation. The transition from normal endometrium to a malignant tumor is thought to involve a stepwise accumulation of alterations in cellular mechanisms leading to dysfunctional cell growth. This chapter reviews the current knowledge of the molecular mechanisms commonly associated with development of type I and type II endometrial cancer.


Epidermal Growth Factor Receptor Endometrial Cancer Endometrial Carcinoma Serous Carcinoma Endometrial Hyperplasia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Parazzini F, La Vecchia C, Bocciolone L et al. The epidemiology of endometrial cancer. Gynecol Oncol 1991; 41(1):1–16.PubMedGoogle Scholar
  2. 2.
    Amant F, Moerman P, Neven P et al. Endometrial cancer. Lancet 6–12 2005; 366(9484):491–505.PubMedGoogle Scholar
  3. 3.
    Bokhman JV. Two pathogenetic types of endometrial carcinoma. Gynecol Oncol 1983; 15(1):10–17.PubMedGoogle Scholar
  4. 4.
    Sherman ME. Theories of endometrial carcinogenesis: a multidisciplinary approach. Mod Pathol 2000; 13(3):295–308.PubMedGoogle Scholar
  5. 5.
    Emons G, Fleckenstein G, Hinney B et al. Hormonal interactions in endometrial cancer. Endocr Relat Cancer 2000; 7(4):227–242.PubMedGoogle Scholar
  6. 6.
    ACOG practice bulletin, clinical management guidelines for obstetrician-gynecologists, number 65, August 2005: management of endometrial cancer. Obstet Gynecol 2005; 106(2):413–425.Google Scholar
  7. 7.
    Beral V, Bull D, Reeves G. Endometrial cancer and hormone-replacement therapy in the Million Women Study. Lancet 2005; 365(9470):1543–1551.PubMedGoogle Scholar
  8. 8.
    Deligdisch L, Cohen CJ. Histologic correlates and virulence implications of endometrial carcinoma associated with adenomatous hyperplasia. Cancer 1985; 56(6):1452–1455.PubMedGoogle Scholar
  9. 9.
    Deligdisch L, Holinka CF. Progesterone receptors in two groups of endometrial carcinoma. Cancer 1986; 57(7):1385–1388.PubMedGoogle Scholar
  10. 10.
    Nyholm HC, Nielsen AL, Norup P. Endometrial cancer in postmenopausal women with and without previous estrogen replacement treatment: comparison of clinical and histopathological characteristics. Gynecol Oncol 1993; 49(2):229–235.PubMedGoogle Scholar
  11. 11.
    Cohen CJ, Rahaman J. Endometrial cancer. Management of high risk and recurrence including the tamoxifen controversy. Cancer 1995; 76(10) Suppl):2044–2052.PubMedGoogle Scholar
  12. 12.
    Nyholm HC, Nielsen AL, Lyndrup J et al. Plasma oestrogens in postmenopausal women with endometrial cancer. Br J Obstet Gynaecol 1993; 100(12):1115–1119.PubMedGoogle Scholar
  13. 13.
    Sivridis E, Fox H, Buckley CH. Endometrial carcinoma: two or three entities? Int J Gynecol Cancer 1998; 8:183–188.Google Scholar
  14. 14.
    Pothuri B, Ramondetta L, Eifel P et al. Radiation-associated endometrial cancers are prognostically unfavorable tumors: a clinicopathologic comparison with 527 sporadic endometrial cancers. Gynecol Oncol 2006; 103(3):948–951.PubMedGoogle Scholar
  15. 15.
    Sherman ME, Bur ME, Kurman RJ. p53 in endometrial cancer and its putative precursors: evidence for diverse pathways of tumorigenesis. Hum Pathol 1995; 26(11):1268–1274.PubMedGoogle Scholar
  16. 16.
    Faquin WC, Fitzgerald JT, Boynton KA et al. Intratumoral genetic heterogeneity and progression of endometrioid type endometrial adenocarcinomas. Gynecol Oncol 2000; 78(2):152–157.PubMedGoogle Scholar
  17. 17.
    Esteller M, Levine R, Baylin SB et al. MLH 1 promoter hypermethylation is associated with the microsatellite instability phenotype in sporadic endometrial carcinomas. Oncogene 1998; 17(18):2413–2417.PubMedGoogle Scholar
  18. 18.
    Mutter GL. Pten, a protean tumor suppressor. Am J Pathol 2001; 158(6):1895–1898.PubMedGoogle Scholar
  19. 19.
    Matias-Guiu X, Catasus L, Bussaglia E et al. Molecular pathology of endometrial hyperplasia and carcinoma. Hum Pathol 2001; 32(6):569–577.PubMedGoogle Scholar
  20. 20.
    Coller HA, Grandori C, Tamayo P et al. Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling and adhesion. Proc Natl Acad Sci USA 2000; 97(7):3260–3265.PubMedGoogle Scholar
  21. 21.
    Gusberg SB. Precursors of corpus carcinoma, estrogens and adenomatous hyperplasia. Am J Obstet Gynecol 1947; 52:3–9.Google Scholar
  22. 22.
    Ehrlich CE, Young PC, Cleary RE. Cytoplasmic progesterone and estradiol receptors in normal, hyperplastic and carcinomatous endometria: therapeutic implications. Am J Obstet Gynecol 1981; 141(5):539–546.PubMedGoogle Scholar
  23. 23.
    Kurman RJ, Kaminski PF, Norris HJ. The behavior of endometrial hyperplasia. A long-term study of “untreated” hyperplasia in 170 patients. Cancer 1985; 56(2):403–412.PubMedGoogle Scholar
  24. 24.
    Mutter GL, Boynton KA, Faquin WC et al. Allelotype mapping of unstable microsatellites establishes direct lineage continuity between endometrial precancers and cancer. Cancer Res 1996; 56(19):4483–4486.PubMedGoogle Scholar
  25. 25.
    Duggan BD, Felix JC, Muderspach LI et al. Microsatellite instability in sporadic endometrial carcinoma. J Natl Cancer Inst 1994; 86(16):1216–1221.PubMedGoogle Scholar
  26. 26.
    Catasus L, Bussaglia E, Rodrguez I et al. Molecular genetic alterations in endometrioid carcinomas of the ovary: similar frequency of beta-catenin abnormalities but lower rate of microsatellite instability and PTEN alterations than in uterine endometrioid carcinomas. Hum Pathol 2004; 35(11):1360–1368.PubMedGoogle Scholar
  27. 27.
    Risinger JI, Berchuck A, Kohler MF et al. Genetic instibility of microsatellites in endometrial carcinoma. Cancer Res 1993; 53(21):5100–5103.PubMedGoogle Scholar
  28. 28.
    Mutter GL, Lin MC, Fitzgerald JT et al. Altered PTEN expression as a diagnostic marker for the earliest endometrial precancers. J Natl Cancer Inst 2000; 92(11):924–930.PubMedGoogle Scholar
  29. 29.
    Gurin CC, Federici MG, Kang L et al. Causes and consequences of microsatellite instability in endometrial carcinoma. Cancer Res 1999; 59(2):462–466.PubMedGoogle Scholar
  30. 30.
    Levine RL, Cargile CB, Blazes MS et al. PTEN mutations and microsatellite instability in complex atypical hyperplasia, a precursor lesion to uterine endometrioid carcinoma. Cancer Res 1998; 58(15):3254–3258.PubMedGoogle Scholar
  31. 31.
    Maxwell GL, Risinger JI, Gumbs C et al. Mutation of the PTEN tumor suppressor gene in endometrial hyperplasias. Cancer Res 1998; 58(12):2500–2503.PubMedGoogle Scholar
  32. 32.
    Risinger JI, Hayes AK, Berchuck A et al. PTEN/MMAC1 mutations in endometrial cancers. Cancer Res 1997; 57(21):4736–4738.PubMedGoogle Scholar
  33. 33.
    Tashiro H, Blazes MS, Wu R et al. Mutations in PTEN are frequent in endometrial carcinoma but rare in other common gynecological malignancies. Cancer Res 1997; 57(18):3935–3940.PubMedGoogle Scholar
  34. 34.
    Mutter GL, Wada H, Faquin WC et al. K-ras mutations appear in the premalignant phase of both microsatellite stable and unstable endometrial carcinogenesis. Mol Pathol 1999; 52(5):257–262.PubMedGoogle Scholar
  35. 35.
    Enomoto T, Inoue M, Perantoni AO et al. K-ras activation in premalignant and malignant epithelial lesions of the human uterus. Cancer Res 1991; 51(19):5308–5314.PubMedGoogle Scholar
  36. 36.
    Fujimoto I, Shimizu Y, Hirai Y et al. Studies on ras oncogene activation in endometrial carcinoma. Gynecol Oncol 1993; 48(2):196–202.PubMedGoogle Scholar
  37. 37.
    Sakamoto T, Murase T, Urushibata H et al. Microsatellite instability and somatic mutations in endometrial carcinomas. Gynecol Oncol 1998; 71(1):53–58.PubMedGoogle Scholar
  38. 38.
    Swisher EM, Peiffer-Schneider S, Mutch DG et al. Differences in patterns of TP53 and KRAS2 mutations in a large series of endometrial carcinomas with or without microsatellite instability. Cancer 1999; 85(1):119–126.PubMedGoogle Scholar
  39. 39.
    Schlosshauer PW, Pirog EC, Levine RL et al. Mutational analysis of the CTNNB1 and APC genes in uterine endometrioid carcinoma. Mod Pathol 2000; 13(10):1066–1071.PubMedGoogle Scholar
  40. 40.
    Mirabelli-Primdahl L, Gryfe R, Kim H et al. Beta-catenin mutations are specific for colorectal carcinomas with microsatellite instability but occur in endometrial carcinomas irrespective of mutator pathway. Cancer Res 1999; 59(14):3346–3351.PubMedGoogle Scholar
  41. 41.
    Fukuchi T, Sakamoto M, Tsuda H et al. Beta-catenin mutation in carcinoma of the uterine endometrium. Cancer Res 1998; 58(16):3526–3528.PubMedGoogle Scholar
  42. 42.
    Carcangiu ML, Chambers JT. Uterine papillary serous carcinoma: a study on 108 cases with emphasis on the prognostic significance of associated endometrioid carcinoma, absence of invasion and concomitant ovarian carcinoma. Gynecol Oncol 1992; 47(3):298–305.PubMedGoogle Scholar
  43. 43.
    Slomovitz BM, Burke TW, Eifel PJ et al. Uterine papillary serous carcinoma (UPSC): a single institution review of 129 cases. Gynecol Oncol 2003; 91(3):463–469.PubMedGoogle Scholar
  44. 44.
    Abeler VM, Kjorstad KE. Clear cell carcinoma of the endometrium: a histopathological and clinical study of 97 cases. Gynecol Oncol 1991; 40(3):207–217.PubMedGoogle Scholar
  45. 45.
    Ambros RA, Sherman ME, Zahn CM et al. Endometrial intraepithelial carcinoma: a distinctive lesion specifically associated with tumors displaying serous differentiation. Hum Pathol 1995; 26(11):1260–1267.PubMedGoogle Scholar
  46. 46.
    Sherman ME, Sturgeon S, Brinton LA et al. Risk factors and hormone levels in patients with serous and endometrioid uterine carcinomas. Mod Pathol 1997; 10(10):963–968.PubMedGoogle Scholar
  47. 47.
    Berchuck A, Boyd J. Molecular basis of endometrial cancer. Cancer 1995; 76(10) Suppl:2034–2040.PubMedGoogle Scholar
  48. 48.
    Tashiro H, Isacson C, Levine R et al. p53 gene mutations are common in uterine serous carcinoma and occur early in their pathogenesis. Am J Pathol 1997; 150(1):177–185.PubMedGoogle Scholar
  49. 49.
    Silverberg SG, Major FJ, Blessing JA et al. Carcinosarcoma (malignant mixed mesodermal tumor) of the uterus. A Gynecologic Oncology Group pathologic study of 203 cases. Int J Gynecol Pathol 1990; 9(1):1–19.PubMedGoogle Scholar
  50. 50.
    McCluggage WG. Malignant biphasic uterine tumours: carcinosarcomas or metaplastic carcinomas? J Clin Pathol 2002; 55(5):321–325.PubMedGoogle Scholar
  51. 51.
    Bitterman P, Chun B, Kurman RJ. The significance of epithelial differentiation in mixed mesodermal tumors of the uterus. A clinicopathologic and immunohistochemical study. Am J Surg Pathol 1990; 14(4):317–328.PubMedGoogle Scholar
  52. 52.
    Emoto M, Iwasaki H, Kikuchi M et al. Characteristics of cloned cells of mixed mullerian tumor of the human uterus. Carcinoma cells showing myogenic differentiation in vitro. Cancer 1993; 71(10):3065–3075.PubMedGoogle Scholar
  53. 53.
    Wada H, Enomoto T, Fujita M et al. Molecular evidence that most but not all carcinosarcomas of the uterus are combination tumors. Cancer Res 1997; 57(23):5379–5385.PubMedGoogle Scholar
  54. 54.
    Kounelis S, Jones MW, Papadaki H et al. Carcinosarcomas (malignant mixed mullerian tumors) of the female genital tract: comparative molecular analysis of epithelial and mesenchymal components. Hum Pathol 1998; 29(1):82–87.PubMedGoogle Scholar
  55. 55.
    Abeln EC, Smit VT, Wessels JW et al. Molecular genetic evidence for the conversion hypothesis of the origin of malignant mixed mullerian tumours. J Pathol 1997; 183(4):424–431.PubMedGoogle Scholar
  56. 56.
    Fujii H, Yoshida M, Gong ZX et al. Frequent genetic heterogeneity in the clonal evolution of gynecological carcinosarcoma and its influence on phenotypic diversity. Cancer Res 2000; 60(1):114–120.PubMedGoogle Scholar
  57. 57.
    Goodfellow PJ, Buttin BM, Herzog TJ et al. Prevalence of defective DNA mismatch repair and MSH6 mutation in an unselected series of endometrial cancers. Proc Natl Acad Sci USA 2003; 100(10):5908–5913.PubMedGoogle Scholar
  58. 58.
    Amant F, Dorfling CM, Dreyer L et al. Microsatellite instability in uterine sarcomas. Int J Gynecol Cancer 2001; 11(3):218–223.PubMedGoogle Scholar
  59. 59.
    Risinger JI, Umar A, Boyer JC et al. Microsatellite instability in gynecological sarcomas and in hMSH2 mutant uterine sarcoma cell lines defective in mismatch repair acivity. Cancer Res 1995; 55(23):5664–5669.PubMedGoogle Scholar
  60. 60.
    Taylor NP, Gibb RK, Powell MA et al. Defective DNA mismatch repair and XRCC2 mutation in uterine carcinosacromas. Gynecol Oncol 2006; 100(1):107–110.PubMedGoogle Scholar
  61. 61.
    Thaper R, Williams JG, Campbell SL. NMR characterization of full-length farnesylated and nonfarnesylated H-Ras and its implications for Raf activation. J Mol Biol 2004; 343(5):1391–1408.Google Scholar
  62. 62.
    Wang Y, Zhang Z, Luber R et al. Tobacco smoke-induced lung tumorigenesis in mutant A/J mice with alteration in K-ras, p53, or Ink4a/Art. Oncogene 2005; 24(18):3042–3049.PubMedGoogle Scholar
  63. 63.
    Murua Escobar H, Gunther K, Richter A et al. Absence of ras-gene hot-spot mutations in canine fibrosarcomas and melanomas. Anticancer Res 2004; 24(5A):3027–3028.PubMedGoogle Scholar
  64. 64.
    Tanoguchi K, Yaegashi N, Jiko K et al. K-ras point mutations in spontaneously occurring endometrial adenocarcinomas in the Donryu rat. Tohoku J Exp Med 1999; 189(2):87–93.PubMedGoogle Scholar
  65. 65.
    Semczuk A, Schneider-Stock R, Berbec H et al. K-ras exon 2 point mutations in human endometrial cancer. Cancer Lett 2001; 164(2):207–212.PubMedGoogle Scholar
  66. 66.
    Semczuk A, Skomra D, Cybulski M et al. Immunohistochemical analysis of MIB-1 proliferative activity in human endometrial cancer. Correlation with clinicopathological parameters, patient outcome, retinoblastoma immunoreactivity and K-ras codon 12 point mutations. Histochem J 2001; 33(4):193–200.PubMedGoogle Scholar
  67. 67.
    Lax SF, Kendall B, Tashiro H et al. The frequency of p53, K-ras mutations and microsatellite instability differs in uterine endometrioid and serous carcinoma: evidence of discinct molecular genetic pathways. Cancer 2000; 88(44):814–824.PubMedGoogle Scholar
  68. 68.
    Sasaki H, Nishii H, Takahashi H et al. Mutation of the Ki-ras protooncogene in human endometrial hyperplasia and carcinoma. Cancer Res 1993; 53(8):1906–1910.PubMedGoogle Scholar
  69. 69.
    Lagarda H, Catasus L, Arguelles R et al. K-ras mutations in endometrial carcinomas with microsatellite instability. J Pathol 2001; 193(2):193–199.PubMedGoogle Scholar
  70. 70.
    Tu Z, Gui L, Wang J et al. Tumorigenesis of K-ras mutation in human endometrial carcinoma via upregulation of estrogen receptor. Gynecol Oncol 2006; 101(2):274–279.PubMedGoogle Scholar
  71. 71.
    Niederacher D, An HX, Cho YJ et al. Mutations and amplification of oncogenes in endometrial cancer. Oncology 1999; 56(1):59–65.PubMedGoogle Scholar
  72. 72.
    Tashiro H, Lax SF, Gaudin PB et al. Microsatellite instability is uncommon in uternine serous carcinoma. Am J Patho 1997; 150(1):75–79.Google Scholar
  73. 73.
    Duggan BD, Felix JC, Muderspach LI et al. Early mutational activationof the c-Ki-ras oncogene in endometrial carcinoma. Cancer Res 1994; 54(6):1604–1607.PubMedGoogle Scholar
  74. 74.
    Caduff RF, Johnston CM, Frank TS. Mutations of the Ki-ras oncogene in carcinoma of the endometrium. Am J Pathol 1995; 146(1):182–188.PubMedGoogle Scholar
  75. 75.
    Shiozawa T, Miyamoto T, Kashima H et al. Estrogen-induced proliferation of normal endometrial glandular cells is initiated by transcriptional activation of cyclin D1 via binding of c-Jun to an AP-1 sequence. Oncogene 2004; 23(53):8603–8610.PubMedGoogle Scholar
  76. 76.
    Yamashita S, Takayanagi A, Shimizu N. Temporal and cell-type specific expression of c-fos and c-jun protooncogenes in the mouse uterus after estrogen stimulation. Endocrinology 1996; 137(12):5468–5475.PubMedGoogle Scholar
  77. 77.
    Webb DK, Moulton BC, Khan SA. Estrogen induced expression of the C-jun proto-oncogene in the immature and mature rat uterus. Biochem Biophys Res Commun 1990; 168(2):721–726.PubMedGoogle Scholar
  78. 78.
    Morishita S, Niwa K, Ichigo S et al. Overexpressions of c-fos/jun mRNA and their oncoproteins (Fos/Jun) in the mouse uterus treated with three natural estrogens. Cancer Lett 1995; 97(2):225–231.PubMedGoogle Scholar
  79. 79.
    Fujimoto J, Hori M, Ichigo S et al. Clinical implication of fos and jun expression and protein kinase activity in endometrial cancers. Eur J Gynaecol Oncol 1995; 16(2):138–146.PubMedGoogle Scholar
  80. 80.
    Bai MK, Costopoulos JS, Christoforidou BP et al. Immunohistochemical detection of the c-myc oncogene product in normal, hyperplastic and carcinomatous endometrium. Oncology 1994; 51(4):314–319.PubMedGoogle Scholar
  81. 81.
    Bircan S, Ensari A, Ozturk S et al. Immunohistochemical analysis of c-myc, c-jun and estrogen receptor in normal, hyperplastic and neoplastic endometrium. Pathol Oncol Res 2005; 11(1):32–39.PubMedGoogle Scholar
  82. 82.
    Geisler JP, Geisler HE, Manahan KJ et al. Nuclear and cytoplasmic c-myc staining in endometrial carcinoma and their relationship to survival. Int J Gynecol Cancer 2004; 14(1):133–137.PubMedGoogle Scholar
  83. 83.
    Williams JA Jr, Wang ZR, Parrish RS et al. Fluorescence in situ hybridization analysis of HER-2/neu, c-myc and p53 in endometrial cancer. Exp Mol Pathol 1999; 67(3):135–143.PubMedGoogle Scholar
  84. 84.
    Holt SE, Shay JW. Role of telomerase in cellular proliferation and cancer. J Cell Physiol 1999; 180(1):10–18.PubMedGoogle Scholar
  85. 85.
    Granger MP, Wright WE, Shay JW. Telomerase in cancer and aging. Crit Rev Oncol Hematol 2002; 41(1):29–40.PubMedGoogle Scholar
  86. 86.
    Cong YS, Wright WE, Shay JW. Human telomerase and its regulation. Microbiol Mol Biol Rev 2002; 66(3):407–425, table of contents.PubMedGoogle Scholar
  87. 87.
    Stewart SA, Weinberg RA. Telomerase and human tumorigenesis. Semin Cancer Biol 2000; 10(6):399–406.PubMedGoogle Scholar
  88. 88.
    Mutter GL, Lin MC, Fitzgerald JT et al. Changes in endometrial PTEN expression throughout the human menstrual cycle. J Clin Endocrinol Metab 2000; 85(6):2334–2338.PubMedGoogle Scholar
  89. 89.
    Horikawa I, Barrett JC. Transcriptional regulation of the telomerase hTERT gene as a target for cellular and viral oncogenic mechanisms. Carcinogenesis 2003; 24(7):1167–1176.PubMedGoogle Scholar
  90. 90.
    Kyo S, Takakura M, Kanaya T et al. Estrogen activates telomerase. Cancer Res 1999; 5923):5917–5921.PubMedGoogle Scholar
  91. 91.
    Wang Z, Kyo S, Takakura M et al. Progesterone regulates human telomerase reverse transcriptase gene expression via activation of mitogen-activated protein kinase signaling pathway. Cancer Res 2000; 60(19):5376–5381.PubMedGoogle Scholar
  92. 92.
    Soda H, Raymond E, Sharma S et al. Effects of androgens on telomerase activity in normal and malignant prostate cells in vitro. Prostate 2000: 43(3):161–168.PubMedGoogle Scholar
  93. 93.
    Wang Z, Kyo S, Maida Y et al. Tamoxifen regulates human telomerase reverse transcriptase (hTERT) gene expression differently in breast and endometrial cancer cells. Oncogene 2002; 21(22):3517–3524.PubMedGoogle Scholar
  94. 94.
    Chen XJ, Zheng W, Chen LL et al. Telomerase antisense inhibition for the proliferation of endometrial cancer in vitro and in vitro. Int J Gynecol Cancer 2006; 16(6):1987–1993.PubMedGoogle Scholar
  95. 95.
    Zhou C, Boggess JF, Bae-Jump V et al. Induction of apoptosis and inhibition of telomerase activity by arsenic trioxide (As(2)O(3)) in endometrial carcinoma cells. Gynecol Oncol 2007; 105(1):218–222.PubMedGoogle Scholar
  96. 96.
    Potter E, Bergwitz C, Brabant G. The cadherin-catenin system: implications for growth and differentiation of endocrine tissues. Endocr Rev 1999; 20(2):207–239.PubMedGoogle Scholar
  97. 97.
    Gumbiner GM. Cell adhension: the molecular basis of tissue architecture and morphogenesis. Cell 1996; 84(3):345–357.PubMedGoogle Scholar
  98. 98.
    Giles RH, van Es JH, Clevers H. Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta 2003; 1653(1):1–24.PubMedGoogle Scholar
  99. 99.
    Bullions LC, Levine AJ. The role of beta-catenin in cell adhesion, signal transduction and cancer. Curr Opin Oncol 1998; 10(1):81–87.PubMedGoogle Scholar
  100. 100.
    Palacios J, Gamallo C. Mutations in the beta-catenin gene (CTNNB1) in endometrioid ovarian carcinomas. Cancer Res 1998; 58(7):1344–1347.PubMedGoogle Scholar
  101. 101.
    Wu R, Zhai Y, Fearon ER et al. Diverse mechanisms of beta-catenin degregulation in ovarian endometrioid adenocarcinomas. Cancer Res 2001; 61(22):8247–8255.PubMedGoogle Scholar
  102. 102.
    Morin PJ, Sparks AB, Korinek V et al. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 1997; 275(5307):1787–1790.PubMedGoogle Scholar
  103. 103.
    Arce L, Yokoyama NN, Waterman ML. Diversity of LEF/TCF action in development and disease. Oncogene 2006; 25(57):7492–7504.PubMedGoogle Scholar
  104. 104.
    Machin P, Catasus L, Pons C et al. CTNNB1 mutations and beta-catenin expression in endometrial carcinomas. Hum Pathol 2002; 33(2):206–212.PubMedGoogle Scholar
  105. 105.
    Saegusa M, Hashimura M, Yoshida T et al. beta-Catenin mutations and aberrant nuclear expression during endometrial tumorigenesis. Br J Cancer 2001; 84(2):209–217.PubMedGoogle Scholar
  106. 106.
    Risinger JI, Maxwell GL, Chandramouli GV et al. Gene expression profilign of microsatellite unstable and microsatellite stable endometrial cancers indicates distinct pathways of aberrant signaling. Cancer Res 2005; 65(12):5031–5037.PubMedGoogle Scholar
  107. 107.
    Steck PA, Pershouse MA, Jasser SA et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 1997; 15(4):356–362.PubMedGoogle Scholar
  108. 108.
    Li J, Yen C, Liaw D et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast and prostate cancer. Science 1997; 275(5308):1943–1947.PubMedGoogle Scholar
  109. 109.
    Cantley LC, Neel BG. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA 1999; 96(8):4240–4245.PubMedGoogle Scholar
  110. 110.
    Yuan XJ, Whang YE. PTEN sensitizes prostate cancer cells to death receptor-mediated and drug-induced apoptosis through a FADD-dependent pathway. Oncogene 2002; 21(2):319–327.PubMedGoogle Scholar
  111. 111.
    Wu X, Senechal K, Neshat MS et al. The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/Akt pathway. Proc Natl Acad Sci USA 1998; 95(26):15587–15591.PubMedGoogle Scholar
  112. 112.
    Latta E, Chapman WB. PTEN mutations and evolving concepts in endometrial neoplasia. Curr Opin Obstet Gynecol 2002; 14(1):59–65.PubMedGoogle Scholar
  113. 113.
    Oda K, Stokoe D, Taketani Y et al. High frequency of coexistent mutations of PIK3CA and PTEN genes in endometrial carcinoma. Cancer Res 2005; 65(23):10669–10673.PubMedGoogle Scholar
  114. 114.
    Velasco A, Bussaglia E, Pallares J et al. PIK3CA gene mutations in endometrial carcinoma: correlation with PTEN and K-RAS alterations. Hum Pathol 2006; 37(11):1465–1472.PubMedGoogle Scholar
  115. 115.
    Zhou C, Bae-Jump VL, Whang YE et al. The PTEN tumor suppressor inhibits telomerase activity in endometrial cancer cells by decreasing hTERT mRNA levels. Gynecol Oncol 2006; 101(2):305–310.PubMedGoogle Scholar
  116. 116.
    Veloso M, Wrba F, Kaserer K et al. p53 gene status and expression of p,53 mdm, 2 and p21 Waf1/Cip 1 proteins in colorectal cancer. Virchows Arch 2000; 437(3):241–247.PubMedGoogle Scholar
  117. 117.
    Vousden KH, Prives C. P53 and prognosis: new insights and further complexity. Cell 2005; 120(1):7–10.PubMedGoogle Scholar
  118. 118.
    Soussi T, Kato S, Levy PP et al. Reassessment of the TP53 mutation database in human disease by data mining with a library of TP53 missense mutations. Hum Matat 2005; 25(1):6–17.Google Scholar
  119. 119.
    Reich NC, Oren M, Levine AJ. Two distinct mechanisms regulate the levels of a cellular tumor antigen, p53. Mol Cell Biol 1983; 3(12):2143–2150.PubMedGoogle Scholar
  120. 120.
    Stewart RL, Royds JA, Burton JL et al. Direct sequencing of the p53 gene shows absence of mutations in endometrioid endometrial adenocarcinomas expressing p53 protein. Histopathology 1998; 33(5):440–445.PubMedGoogle Scholar
  121. 121.
    Alkushi A, Lim P, Coldman A et al. Interpretation of p53 immunoreactivity in endometrial carcinoma: establishing a clinically relevant cut-off level. Int J Gyencol Pathol 2004; 34(2):129–137.Google Scholar
  122. 122.
    Pijnenborg JM, van de Broek L, Dam de Veen GC et al. TP53 overexpression in recurrent endometrial carcinoma. Gynecol Oncol 2006; 100(2):397–404.PubMedGoogle Scholar
  123. 123.
    Kounelis S, Kapranos N, Kouri E et al. Immunohsitochemical profile of endometrial adenocarcinoma: a study of 61 cases and review of the literature. Mod Pathol 2000; 13(4):379–388.PubMedGoogle Scholar
  124. 124.
    Moll UM, Chalas E, Auguste M et al. Uterine papillary serous carcinoma evolves via a p53-driven pathway. Hum Pathol 1996; 27(12):1295–1300.PubMedGoogle Scholar
  125. 125.
    Zheng W, Cao P, Zheng M et al. p53 overexpression and bcl-2 persistence in endometrial carcinoma: comparison of papillary serous and endometrioid subtypes. Gynecol Oncol 1996; 61(2):167–174.PubMedGoogle Scholar
  126. 126.
    Scully R, Livingston DM. In search of the tumour-suppressor functions of BRCA1 and BRCA2. Nature 2000; 408(6811):429–432.PubMedGoogle Scholar
  127. 127.
    Welcsh PL, King MC. BRCA1 and BRCA2 and the genetics of breast and ovarian cancer. Hum Mol Genet 2001; 10(7):705–713.PubMedGoogle Scholar
  128. 128.
    Thompson D, Easton DF. Cancer Incidence in BRCA1 mutation carriers. J Natl Cancer Inst 2002; 94(18):1358–1365.PubMedGoogle Scholar
  129. 129.
    Lavie O, Ben-Arie A, Pilip A et al. BRCA2 germline mutation in a woman with uterine serous papillary carcinoma—case report. Gynecol Oncol 2005; 99(2):486–488.PubMedGoogle Scholar
  130. 130.
    Lavie O, Hornreich G, Ben-Arie A et al. BRCA germline mutations in Jewish women with uterine serous papillary carcinoma. Gynecol Oncol 2004; 92(2):521–524.PubMedGoogle Scholar
  131. 131.
    Levine DA, Lin O, Barakat RR et al. Risk of endometrial carcinoma associated with BRCA mutation. Gynecol Oncol 2001; 80(3):395–398.PubMedGoogle Scholar
  132. 132.
    Goshen R, Chu W, Elit L et al. Is uterine papillary serous adenocarcinoma a manifestation of the hereditary breast-ovarian cancer syndrome? Gyencol Oncol 2000; 79(3):477–481.Google Scholar
  133. 133.
    Beiner ME, Finch A, Rosen B et al. The risk of endometrial cancer in women with BRCA1 and BRCA2 mutations. A prospective study. Gynecol Oncol 2007; 104(1):7–10.PubMedGoogle Scholar
  134. 134.
    Hornreich G, Beller U, Lavie O et al. Is uterine serous papillary carcinoma a BRCA1-related disease? Case report and review of the literature. Gynecol Oncol 1999; 75(2):300–304.PubMedGoogle Scholar
  135. 135.
    Salvesen HB, MacDonald N, Ryan A et al. Methylation of hMLH1 in a population-based series of endometrial carcinoams. Clin Cancer Res 2000; 6(9):3607–3613.PubMedGoogle Scholar
  136. 136.
    Risinger JI, Maxwell GL, Berchuck A et al. Promoter hypermethylation as an epigenetic component in Type I and Type II endometrial cancers. Ann NY Acad Sci 2003; 983:208–212.PubMedGoogle Scholar
  137. 137.
    Harris RC, Chung E, Coffey RJ. EGF receptor ligands. Exp Cell Res 2003; 284(1):2–13.PubMedGoogle Scholar
  138. 138.
    van der Geer P, Hunter T, Lindberg RA. Receptor protein-tyrosine kinases and their signal transduction pathways. Annu Rev Cell Biol 1994; 10:251–337.PubMedGoogle Scholar
  139. 139.
    Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2000; 103(2):211–225.PubMedGoogle Scholar
  140. 140.
    Niikura H, Sasano H, Kaga K et al. Expression of epidermal growth factor family proteins and epidermal growth factor receptor in human endometrium. Hum Pathol 1996; 27(3):282–289.PubMedGoogle Scholar
  141. 141.
    Yokoyama Y, Takahashi Y, Hashimoto M et al. Immunohistochemical study of estradiol, epidermal growth factor, transforming growth factor alpha and epidermal growth factor receptor in endometrial neoplasia. Jpn J Clin Oncol 1996; 26(6):411–416.PubMedGoogle Scholar
  142. 142.
    Pfeiffer D, Spranger J, Al-Deiri M et al. mRNA expression of ligands of the epidermal-growth-factor-receptor in the uterus. Int J Cancer 7 1997; 72(4):581–586.Google Scholar
  143. 143.
    Jasonni VM, Amadori A, Santini D et al. Epidermal growth factor receptor (EGF-R) and transforming growth factor alpha (TGFA) expression in different endometrial cancers. Anticancer Res 1995; 15(4):1327–1332.PubMedGoogle Scholar
  144. 144.
    Jasonni VM, Santini D, Amadori A et al. Epidermal growth factor receptor expression and endometrial cancer histotypes. Ann NY Acad Sci 1994; 734:298–305.PubMedGoogle Scholar
  145. 145.
    Khalifa MA, Mannel RS, Haraway SD et al. Expression of EGFR, HER-2/neu, P53 and PCNA in endometrioid, serous papillary and clear cell endometrial adenocarcinomas. Gynecol Oncol 1994; 53(1):84–92.PubMedGoogle Scholar
  146. 146.
    Khalifa MA, Abdoh AA, Mannel RS et al. Prognostic utility of epidermal growth factor receptor overexpression in endometrial adenocarcinoma. Cancer 1994; 73(2):370–376.PubMedGoogle Scholar
  147. 147.
    Ejskjaer K, Sorensen BS, Poulsen SS et al. Expression of the epidermal growth factor system in endometrioid endometrial cancer. Gynecol Oncol 2007; 104(1):158–167.PubMedGoogle Scholar
  148. 148.
    Livasy CA, Reading FC, Moore DT et al. EGFR expression and HER2/neu overexpression/amplification in endometrial carcinosarcoma. Gynecol Oncol 2006; 100(1):101–106.PubMedGoogle Scholar
  149. 149.
    Smith HO, Leslie KK, Singh M et al. GPR30: a novel indicator of poor survival for endometrial carcinoma. Am J Obstet Gynecol 2007; 196(4):386 e381–389; discussion 386 e389–311.PubMedGoogle Scholar
  150. 150.
    Filardo EJ, Quinn JA, Bland KI et al. Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30 and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. Mol Endocrinol 2000; 14(10):1649–1660.PubMedGoogle Scholar
  151. 151.
    Albitar L, Laidler LL, Abdallah R et al. Regulation of signaling phosphoproteins by epidermal growth factor and Iressa (ZD1839) in human endometrial cancer cells that model type I and II tumors. Mol Cancer Ther 2005; 4(12):1891–1899.PubMedGoogle Scholar
  152. 152.
    Tang LL, Yokoyama Y, Wan X et al. PTEN sensitizes epidermal growth factor-mediated proliferation in endometrial carcinoma cells. Oncol Rep 2006; 15(4):855–859.PubMedGoogle Scholar
  153. 153.
    Dougall WC, Qian X, Peterson NC et al. The neu-oncogene: signal transduction pathways, transformation mechanisms and evolving therapies. Oncogene 1994; 9(8):2109–2123.PubMedGoogle Scholar
  154. 154.
    Ioffe OB, Papadimitriou JC, Drachenberg CB. Correlation of proliferation indices, apoptosis and related oncogene expression (bcl-2 and c-erbB-2) and p53 in proliferative, hyperplastic and malignant endometrium. Hum Pathol 1998; 29(10):1150–1159.PubMedGoogle Scholar
  155. 155.
    Halperin R, Zehavi S, Habler L et al. Comparative immunohistochemical study of endometrioid and serous papillary carcinoma of endometrium. Eur J Gynaecol Oncol 2001; 22(2):122–126.PubMedGoogle Scholar
  156. 156.
    Riben MW, Malfetano JH, Nazeer T et al. Identification of HER-2/neu oncogene amplification by fluorescence in situ hybridization in stage I endometrial carcinoma. Mod Pathol 1997; 10(8):823–831.PubMedGoogle Scholar
  157. 157.
    Rolitsky CD, Theil KS, McGaughy VR et al. HER-2/neu amplification and overexpression in endometrial carcinoma. Int J Gynecol Pathol 1999; 18(2):138–143.PubMedGoogle Scholar
  158. 158.
    Slomovitz BM, Broaddus RR, Burke TW et al. Her-2/neu overexpression and amplification in uterine papillary serous carcinoma. J Clin Oncol 2004; 22(15):3126–3132.PubMedGoogle Scholar
  159. 159.
    Morrison C, Zanagnolo V, Ramirez N et al. HER-2 is an independent prognostic factor in endometrial cancer: association with outcome in a large cohort of surgically staged patients. J Clin Oncol 2006; 24(15):2376–2385.PubMedGoogle Scholar
  160. 160.
    Wang D, Konishi I, Koshiyama M et al. Expression of c-erbB-2 protein and epidermal growth receptor in endometrial carcinomas. Correlation with clinicopathologic and sex steroid receptor status. Cancer 1993; 72(9):2628–2637.PubMedGoogle Scholar
  161. 161.
    Hetzel DJ, Wilson TO, Keeney GL et al. HER-2/neu expression: a major prognostic factor in endometrial cancer. Gynecol Oncol 1992; 47(2):179–185.PubMedGoogle Scholar
  162. 162.
    Saffari B, Jones LA, el-Naggar A et al. Amplification and overexpression of HER-2/neu (c-erbB2) in endometrial cancers: correlation with overall survival. Cancer Res 1995; 55(23):5693–5698.PubMedGoogle Scholar
  163. 163.
    Mariani A, Sebo TJ, Katzmann JA et al. HER-2/neu overexpression and hormone dependency in endometrial cancer: analysis of cohort and review of literature. Anticancer Res 2005; 25(4):2921–2927.PubMedGoogle Scholar
  164. 164.
    Bigsby RM, Li AX, Bomalaski J et al. Immunohistochemical study of HER-2/neu, epidermal growth factor receptor and steroid receptor expression in normal and malignant endometrium. Obstet Gynecol 1992; 79(1):95–100.PubMedGoogle Scholar
  165. 165.
    Santin AD, Bellone S, Gokden M et al. Overexpression of HER-2/neu in uterine serous papillary cancer. Clin Cancer Res 2002; 8(5):1271–1279.PubMedGoogle Scholar
  166. 166.
    Osipo C, Meeke K, Liu H et al. Trastuzumab therapy for tamoxifen-stimulated endometrial cancer. Cancer Res 2005; 65(18):8504–8513.PubMedGoogle Scholar
  167. 167.
    Treeck O, Diedrich K, Ortmann O. The activation of an extracellular signal-regulated kinase by oestradiol interferes with the effects of trastuzumab on HER2 signalling in endometrial adenocarcinoma cell lines. Eur J Cancer 2003; 39(9):1302–1309.PubMedGoogle Scholar
  168. 168.
    Villella JA, Cohen S, Smith DH et al. HER-2/neu overexpression in uterine papillary serous cancers and its possible therapeutic implications. Int J Gynecol Cancer 2006; 16(5):1897–1902.PubMedGoogle Scholar
  169. 169.
    Jewell E, Secord AA, Brotherton T et al. Use of trastuzumab in the treatment of metastatic endometrial cancer. Int J Gynecol Cancer 2006; 16(3):1370–1373.PubMedGoogle Scholar
  170. 170.
    Sepp-Lorenzino L. Structure and function of the insulin-like growth factor I receptor. Breast Cancer Res Treat 1998; 47(3):235–253.PubMedGoogle Scholar
  171. 171.
    Rutanen EM. Insulin-like growth factors in endometrial function. Gynecol Endocrinol 1998; 12(6):399–406.PubMedGoogle Scholar
  172. 172.
    LeRoith D, Roberts CT, Jr. The insulin-like growth factor system and cancer. Cancer Lett 2003; 195(2):127–137.PubMedGoogle Scholar
  173. 173.
    Rutanen EM. Insulin-like growth factors and insulin-like growth factor binding proteins in the endometrium. Effect of intrauterine levonorgestrel delivery. Hum Reprod 2000; 15 Suppl 3:173–181.PubMedGoogle Scholar
  174. 174.
    Zhou J, Dsupin BA, Giudice LC et al. Insulin-like growth factor system gene expression in human endometrium during the menstrual cycle. J Clin Endocrinol Metab 1994; 79(6):1723–1734.PubMedGoogle Scholar
  175. 175.
    Surmacz E, Bartucci M. Role of estrogen receptor alpha in modulating IGF-I receptor signaling and function in breast cancer. J Exp Clin Cancer Res 2004; 23(3):385–394.PubMedGoogle Scholar
  176. 176.
    McCampbell AS, Broaddus RR, Loose DS et al. Overexpression of the insulin-like growth factor I receptor and activation of the AKT pathway in hyperplastic endometrium. Clin Cancer Res 2006; 12(21):6373–6378.PubMedGoogle Scholar
  177. 177.
    Talavera F, Reynolds RK, Roberts JA et al. Insulin-like growth factor I receptors in normal and neoplastic human endometrium. Cancer Res 1990; 50(10):3019–3024.PubMedGoogle Scholar
  178. 178.
    Peiro G, Lohse P, Mayr D et al. Insulin-like growth factor-I receptor and PTEN protein expression in endometrial carcinoma. Correlation with bax and bcl-2 expression, microsatellite instability status and outcome. Am J Clin Pathol 2003; 120(1):78–85.PubMedGoogle Scholar
  179. 179.
    Nagamani M, Stuart CA, Dunhardt PA et al. Specific binding sites for insulin and insulin-like growth factor I in human endometrial cancer. Am J Obstet Gynecol 1991; 165(6 Pt 1):1865–1871.PubMedGoogle Scholar
  180. 180.
    Reynolds RK, Hu C, Baker VV. Transforming growth factor-alpha and insulin-like growth factor-I, but not epidermal growth factor, elicit autocrine stimulation of mitogenesis in endometrial cancer cell lines. Gynecol Oncol 1998; 70(2):202–209.PubMedGoogle Scholar
  181. 181.
    Kleinman D, Karas M, Roberts CT Jr et al. Modulation of insulin-like growth factor I (IGF-I) receptors and membrane-associated IGF-binding proteins in endometrial cancer cells by estradiol. Endocrinology 1995; 136(6):2531–2537.PubMedGoogle Scholar
  182. 182.
    Kleinman D, Karas M, Danilenko M et al. Stimulation of endometrial cancer cell growth by tamoxifen is associated with increased insulin-like growth factor (IGF)-I induced tyrosine phosphorylation and reduction in IGF binding proteins. Endocrinology 1996; 137(3):1089–1095.PubMedGoogle Scholar
  183. 183.
    Ayabe T, Tsutsumi O, Sakai H et al. Increased circulating levels of insulin-like growth factor-I and decreased circulating levels of insulin-like growth factor binding protein-1 in postmenopausal women with endometrial cancer. Endocr J 1997; 44(3):419–424.PubMedGoogle Scholar
  184. 184.
    Oh JC, Wu W, Tortolero-Luna G et al. Increased plasma levels of insulin-like growth factor 2 and insulin-like growth factor binding protein 3 are associated with endometrial cancer risk. Cancer Epidemiol Biomarkers Prev 2004; 13(5):748–752.PubMedGoogle Scholar
  185. 185.
    Weiderpass E, Brismar K, Bellocco R et al. Serum levels of insulin-like growth factor-I, IGF-binding protein 1 and 3 and insulin and endometrial cancer risk. Br J Cancer 2003; 89(9):1697–1704.PubMedGoogle Scholar
  186. 186.
    Lacey JV Jr, Potischman N, Madigan MP et al. Insulin-like growth factors, insulin-like growth factor-binding proteins and endometrial cancer in postmenopausal women: results from a U.S. case-control study. Cancer Epidemiol Biomarkers Prev 2004; 13(4):607–612.PubMedGoogle Scholar
  187. 187.
    Augustin LS, Dal Maso L, Franceschi S et al. Association between components of the insulin-like growth factor system and endometrial cancer risk. Oncology 2004; 67(1):54–59.PubMedGoogle Scholar
  188. 188.
    Nagamani M, Stuart CA. Specific binding and growth-promoting activity of insulin in endometrial cancer cells in culture. Am J Obstet Gynecol 1998; 179(1):6–12.PubMedGoogle Scholar
  189. 189.
    Cust AE, Allen NE, Rinaldi S et al. Serum levels of C-peptide, IGFBP-1 and IGFBP-2 and endometrial cancer risk; Results from the European prospective investigation into cancer and nutrition. Int J Cancer 2007; 120(12):2656–2664.PubMedGoogle Scholar
  190. 190.
    Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996; 86(3):353–364.PubMedGoogle Scholar
  191. 191.
    Kirschner CV, Alanis-Amezcua JM, Martin VG et al. Angiogenesis factor in endometrial carcinoma: a new prognostic indicator? Am J Obstet Gynecol 1996; 174(6):1879–1882; discussion 1882–1874.PubMedGoogle Scholar
  192. 192.
    Abulafia O, Triest WE, Sherer DM et al. Angiogenesis in endometrial hyperplasia and stage I endometrial carcinoma. Obstet Gynecol 1995; 86(4 Pt 1):479–485.PubMedGoogle Scholar
  193. 193.
    Ferrara N. Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney Int 1999; 56(3):794–814.PubMedGoogle Scholar
  194. 194.
    Sivridis E, Giatromanolaki A, Anastasiadis P et al. Angiogenic co-operation of VEGF and stromal cell TP in endometrial carcinomas. J Pathol 2002; 196(4):416–422.PubMedGoogle Scholar
  195. 195.
    Sivridis E. Angiogenesis and endometrial cancer. Anticancer Res 2001; 21(6B):4383–4388.PubMedGoogle Scholar
  196. 196.
    Mazurek A, Kuc P, Terlikowski S et al. Evaluation of tumor angiogenesis and thymidine phosphorylase tissue expression in patients with endometrial cancer. Neoplasma 2006; 53(3):242–246.PubMedGoogle Scholar
  197. 197.
    Stefansson IM, Salvesen HB, Akslen LA. Vascular proliferation is important for clinical progress of endometrial cancer. Cancer Res 2006; 66(6):3303–3309.PubMedGoogle Scholar
  198. 198.
    Kumar V, Green S, Stack G et al. Functional domains of the human estrogen receptor. Cell 1987; 51(6):941–951.PubMedGoogle Scholar
  199. 199.
    Barkhem T, Carlsson B, Nilsson Y et al. Differential response of estrogen receptor alpha and estrogen receptor beta to partial estrogen agonists/antagonists. Mol Pharmacol 1998; 54(1):105–112.PubMedGoogle Scholar
  200. 200.
    Geisinger KR, Homesley HD, Morgan TM et al. Endometrial adenocarcinoma. A multiparameter clinicopathologic analysis including the DNA profile and the sex steroid hormone receptors. Cancer 1986; 58(7):1518–1525.PubMedGoogle Scholar
  201. 201.
    Taylor AH, Al-Azzawi F. Immunolocalisation of oestrogen receptor beta in human tissues. J Mol Endocrinol 2000; 24(1):145–155.PubMedGoogle Scholar
  202. 202.
    Pace P, Taylor J, Suntharalingam S et al. Human estrogen receptor beta binds DNA in a manner similar to and dimerizes with estrogen receptor alpha. J Biol Chem 1997; 272(41):25832–25838.PubMedGoogle Scholar
  203. 203.
    Hall JM, McDonnell DP. The estrogen receptor beta-isoform (ERbeta) of the human estrogen receptor modulates ERalpha transcriptional activity and is a key regulator of the cellular response to estrogens and antiestrogens. Endocrinology 1999; 140(12):5566–5578.PubMedGoogle Scholar
  204. 204.
    Rice LW, Jazaeri AA, Shupnik MA. Estrogen receptor mRNA splice variants in pre-and postmenopausal human endometrium and endometrial carcinoma. Gynecol Oncol 1997; 65(1):149–157.PubMedGoogle Scholar
  205. 205.
    Ogawa S, Inoue S, Watanabe T et al. Molecular cloning and characterization of human estrogen receptor betacx: a potential inhibitor ofestrogen action in human. Nucleic Acids Res 1998; 26(15):3505–3512.PubMedGoogle Scholar
  206. 206.
    Zhang QX, Hilsenbeck SG, Fuqua SA et al. Multiple splicing variants of the estrogen receptor are present in individual human breast tumors. J Steroid Biochem Mol Biol 1996; 59(3–4):251–260.PubMedGoogle Scholar
  207. 207.
    Paech K, Webb P, Kuiper GG et al. Differential ligand activation of estrogen receptors ERalpha and ERbeta at AP1 sites. Science 1997; 277(5331):1508–1510.PubMedGoogle Scholar
  208. 208.
    Bunone G, Briand PA, Miksicek RJ et al. Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. EMBO J 1996; 15(9):2174–2183.PubMedGoogle Scholar
  209. 209.
    Migliaccio A, Castoria G, Di Domenico M et al. Sex steroid hormones act as growth factors. J Steroid Biochem Mol Biol 2002; 83(1–5):31–35.PubMedGoogle Scholar
  210. 210.
    Wu W, Slomovitz BM, Celestino J et al. Coordinate expression of Cdc25B and ER-alpha is frequent in low-grade endometrioid endometrial carcinoma but uncommon in high-grade endometrioid and nonendometrioid carcinomas. Cancer Res 2003; 63(19):6195–6199.PubMedGoogle Scholar
  211. 211.
    Jazaeri AA, Nunes KJ, Dalton MS et al. Well-differentiated endometrial adenocarcinomas and poorly differentiated mixed mullerian tumors have altered ER and PR isoform expression. Oncogene 2001; 20(47):6965–6969.PubMedGoogle Scholar
  212. 212.
    Saegusa M, Okayasu I. Changes in expression of estrogen receptors alpha and beta in relation to progesterone receptor and pS2 status in normal and malignant endometrium. Jpn J Cancer Res 2000; 91(5):510–518.PubMedGoogle Scholar
  213. 213.
    Mylonas I, Jeschke U, Shabani N et al. Normal and malignant human endometrium express immunohistochemically estrogen receptor alpha (ER-alpha), estrogen receptor beta (ER-beta) and progesterone receptor (PR). Anticancer Res 2005; 25(3A):1679–1686.PubMedGoogle Scholar
  214. 214.
    Horvath G, Leser G, Hahlin M et al. Exon deletions and variants of human estrogen receptor mRNA in endometrial hyperplasia and adenocarcinoma. Int J Gynecol Cancer 2000; 10(2):128–136.PubMedGoogle Scholar
  215. 215.
    Critchley HO, Henderson TA, Kelly RW et al. Wild-type estrogen receptor (ERbeta1) and the splice variant (ERbetacx/beta2) are both expressed within the human endometrium throughout the normal menstrual cycle. J Clin Endocrinol Metab 2002; 87(11):5265–5273.PubMedGoogle Scholar
  216. 216.
    Skrzypczak M, Bieche I, Szymczak S et al. Evaluation of mRNA expression of estrogen receptor beta and its isoforms in human normal and neoplastic endometrium. Int J Cancer 2004; 110(6):783–787.PubMedGoogle Scholar
  217. 217.
    Bryant W, Snowhite AE, Rice LW et al. The estrogen receptor (ER)alpha variant Delta5 exhibits dominant positive activity on ER-regulated promoters in endometrial carcinoma cells. Endocrinology 2005; 146(2):751–759.PubMedGoogle Scholar
  218. 218.
    Chakravarty D, Srinivasan R, Ghosh S et al. Estrogen receptor betal and the beta2/betacx isoforms in nonneoplastic endometrium and in endometrioid carcinoma. Int J Gynecol Cancer. 2007.Google Scholar
  219. 219.
    Balmer NN, Richer JK, Spoelstra NS et al. Steroid receptor coactivator AIB1 in endometrial carcinoma, hyperplasia and normal endometrium: Correlation with clinicopathologic parameters and biomarkers. Mod Pathol 2006; 19(12):1593–1605.PubMedGoogle Scholar
  220. 220.
    Kershah SM, Desouki MM, Koterba KL et al. Expression of estrogen receptor coregulators in normal and malignant human endometrium. Gynecol Oncol 2004; 92(1):304–313.PubMedGoogle Scholar
  221. 221.
    Uchikawa J, Shiozawa T, Shih HC et al. Expression of steroid receptor coactivators and corepressors in human endometrial hyperplasia and carcinoma with relevance to steroid receptors and Ki-67 expression. Cancer 2003; 98(10):2207–2213.PubMedGoogle Scholar
  222. 222.
    Vilgelm A, Lian Z, Wang H et al. Akt-mediated phosphorylation and activation of estrogen receptor alpha is required for endometrial neoplastic transformation in Pten+/− mice. Cancer Res 2006; 66(7):3375–3380.PubMedGoogle Scholar
  223. 223.
    Vivacqua A, Bonofiglio D, Recchia AG et al. The G protein-coupled receptor GPR30 mediates the proliferative effects induced by 17beta-estradiol and hydroxytamoxifen in endometrial cancer cells. Mol Endocrinol 2006; 20(3):631–646.PubMedGoogle Scholar
  224. 224.
    Kastner P, Krust A, Turcotte B et al. Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B. EMBO J 1990; 9(5):1603–1614.PubMedGoogle Scholar
  225. 225.
    Sartorius CA, Melville MY, Hovland AR et al. A third transactivation function (AF3) of human progesterone receptors located in the unique N-terminal segment of the B-isoform. Mol Endocrinol 1994; 8(10):1347–1360.PubMedGoogle Scholar
  226. 226.
    Huse B, Verca SB, Matthey P et al. Definition of a negative modulation domain in the human progesterone receptor. Mol Endocrinol 1998; 12(9):1334–1342.PubMedGoogle Scholar
  227. 227.
    Graham JD, Clarke CL. Expression and transcriptional activity of progesterone receptor A and progesterone receptor B in mammalian cells. Breast Cancer Res 2002; 4(5):187–190.PubMedGoogle Scholar
  228. 228.
    Arnett-Mansfield RL, deFazio A, Wain GV et al. Relative expression of progesterone receptors A and B in endometrioid cancers of the endometrium. Cancer Res 2001; 61(11):4576–4582.PubMedGoogle Scholar
  229. 229.
    De Vivo I, Huggins GS, Hankinson SE et al. A functional polymorphism in the promoter of the progesterone receptor gene associated with endometrial cancer risk. Proc Natl Acad Sci USA 2002; 99(19):12263–12268.PubMedGoogle Scholar
  230. 230.
    Saito S, Ito K, Nagase S et al. Progesterone receptor isoforms as a prognostic marker in human endometrial carcinoma. Cancer Sci 2006; 97(12):1308–1314.PubMedGoogle Scholar
  231. 231.
    Hanekamp EE, Kuhne LM, Grootegoed JA et al. Progesterone receptor A and B expression and progestagen treatment in growth and spread of endometrial cancer cells in nude mice. Endocr Relat Cancer 2004; 11(4):831–841.PubMedGoogle Scholar
  232. 232.
    Junqueira MG, da Silva ID, Nogueira-de-Souza NC et al. Progesterone receptor (PROGINS) polymorphism and the risk of endometrial cancer development. Int J Gynecol Cancer 2007; 17(1):229–232.PubMedGoogle Scholar
  233. 233.
    Pijnenborg JM, Romano A, Dam-de Veen GC et al. Aberrations in the progesterone receptor gene and the risk of recurrent endometrial carcinoma. J Pathol 2005; 205(5):597–605.PubMedGoogle Scholar
  234. 234.
    Sakaguchi H, Fujimoto J, Hong BL et al. Drastic decrease of progesterone receptor form B but not A mRNA reflects poor patient prognosis in endometrial cancers. Gynecol Oncol 2004; 93(2):394–399.PubMedGoogle Scholar
  235. 235.
    Miyamoto T, Watanabe J, Hata H et al. Significance of progesterone receptor-A and −B expressions in endometrial adenocarcinoma. J Steroid Biochem Mol Biol 2004; 92(3):111–118.PubMedGoogle Scholar
  236. 236.
    Leslie KK, Stein MP, Kumar NS et al. Progesterone receptor isoform identification and subcellular localization in endometrial cancer. Gynecol Oncol 2005; 96(1):32–41.PubMedGoogle Scholar
  237. 237.
    Saito T, Mizumoto H, Tanaka R et al. Overexpressed progesterone receptor form. B inhibit invasive activity suppressing matrix metalloproteinases in endometrial carcinoma cells. Cancer Lett 2004; 209(2):237–243.PubMedGoogle Scholar
  238. 238.
    Dai D, Wolf DM, Litman ES et al. Progesterone inhibits human endometrial cancer cell growth and invasiveness: down-regulation of cellular adhesion molecules through progesterone B receptors. Cancer Res 2002; 62(3):881–886.PubMedGoogle Scholar
  239. 239.
    Dahmoun M, Boman K, Cajander S et al. Intratumoral effects of medroxy-progesterone on proliferation, apoptosis and sex steroid receptors in endometrioid endometrial adenocarcinoma. Gynecol Oncol 2004; 92(1):116–126.PubMedGoogle Scholar
  240. 240.
    Dai D, Litman ES, Schonteich E et al. Progesterone regulation of activating protein-1 transcriptional activity: a possible mechanism of progesterone inhibition of endometrial cancer cell growth. J Steroid Biochem Mol Biol 2003; 87(2–3):123–131.PubMedGoogle Scholar
  241. 241.
    Davies S, Dai D, Feldman I et al. Identification of a novel mechanism of NF-kappaB inactivation by progesterone through progesterone receptors in Hec50co poorly differentiated endometrial cancer cells: induction of A20 and ABIN-2. Gynecol Oncol 2004; 94(2):463–470.PubMedGoogle Scholar
  242. 242.
    Naitoh K, Honjo H, Yamamoto T et al. Estrone sulfate and sulfatase activity in human breast cancer and endometrial cancer. J Steroid Biochem 1989; 33(6):1049–1054.PubMedGoogle Scholar
  243. 243.
    Vermeulen-Meiners C, Jaszmann LJ, Haspels AA et al. The endogenous concentration of estradiol and estrone in normal human postmenopausal endometrium. J Steroid Biochem 1984; 21(5):607–612.PubMedGoogle Scholar
  244. 244.
    Vermeulen-Meiners C, Poortman J, Haspels AA et al. The endogenous concentration of estradiol and estrone in pathological human postmenopausal endometrium. J Steroid Biochem 1986; 24(5):1073–1078.PubMedGoogle Scholar
  245. 245.
    Potischman N, Hoover RN, Brinton LA et al. Case-control study of endogenous steroid hormones and endometrial cancer. J Natl Cancer Inst 1996; 88(16):1127–1135.PubMedGoogle Scholar
  246. 246.
    Berstein LM, Tchernobrovkina AE, Gamajunova VB et al. Tumor estrogen content and clinicomorphological and endocrine features of endometrial cancer. J Cancer Res Clin Oncol 2003; 129(4):245–249.PubMedGoogle Scholar
  247. 247.
    Berstein LM, Imyanitov EN, Suspitsin EN et al. CYP19 gene polymorphism in endometrial cancer patients. J Cancer Res Clin Oncol 2001; 127(2):135–138.PubMedGoogle Scholar
  248. 248.
    Berstein LM, Imyanitov EN, Kovalevskij AJ et al. CYP17 and CYP19 genetic polymorphisms in endometrial cancer: association with intratumoral aromatase activity. Cancer Lett 2004; 207(2):191–196.PubMedGoogle Scholar
  249. 249.
    Berstein L, Zimarina T, Imyanitov E et al. Hormonal imbalance in two types of endometrial cancer and genetic polymorphism of steroidogenic enzymes. Maturitas 2006; 54(4):352–355.PubMedGoogle Scholar
  250. 250.
    Pathirage N, Di Nezza LA, Salmonsen LA et al. Expression of aromatase, estrogen receptors and their coactivators in patients with endometrial cancer. Fertil Steril 2006; 86(2):469–472.PubMedGoogle Scholar
  251. 251.
    Bulun SE, Economos K, Miller D et al. CYP19 (aromatase cytochrome P450) gene expression in human malignant endometrial tumors. J Clin Endocrinol Metab 1994; 79(6):1831–1834.PubMedGoogle Scholar
  252. 252.
    Fowler JM, Ramirez N, Cohn DE et al. Correlation of cyclooxygenase-2 (COX-2) and aromatase expression in human endometrial cancer: tissue microarray analysis. Am J Obstet Gynecol 2005; 192(4):1262–1271; discussion 1271–1263.PubMedGoogle Scholar
  253. 253.
    Segawa T, Shozu M, Murakami K et al. Aromatase expression in stromal cells of endometrioid endometrial cancer correlates with poor survival. Clin Cancer Res 2005; 11(6):2188–2194.PubMedGoogle Scholar
  254. 254.
    Reich O, Regauer S. Aromatase expression in low-grade endometrial stromal sarcomas: an immunohistochemical study. Mod Pathol 2004; 17(1):104–108.PubMedGoogle Scholar
  255. 255.
    Jongen VH, Thijssen JH, Hollema H et al. Is aromatase cytochrome P450 involved in the pathogenesis of endometrioid endometrial cancer. Int J Gynecol Cancer 2005; 15(3):529–536.PubMedGoogle Scholar
  256. 256.
    Berstein L, Zimarina T, Kovalevskij A et al. CYP19 gene expression and aromatase activity in endometrial cancer tissue: importance of the type of the disease. Neoplasma 2005; 52(2):115–118.PubMedGoogle Scholar
  257. 257.
    Berstein L, Kovalevskij A, Zimarina T et al. Aromatase and comparative response to its inhibitors in two types of endometrial cancer. J Steroid Biochem Mol Biol 2005; 95(1–5):71–74.PubMedGoogle Scholar
  258. 258.
    Sasano H, Sato S, Ito K et al. Effects of aromatase inhibitors on the pathobiology of the human breast, endometrial and ovarian carcinoma. Endocr Relat Cancer 1999; 6(2):197–204.PubMedGoogle Scholar
  259. 259.
    Yamamoto T, Kitawaki J, Urabe M et al. Estrogen productivity of endometrium and endometrial cancer tissue: influence of aromatase on proliferation of endometrial cancer cells. J Steroid Biochem Mol Biol 1993; 44(4–6):463–468.PubMedGoogle Scholar
  260. 260.
    Duffy S, Jackson TL, Landsdown M et al. The ATAC adjuvant breast cancer trial in postmenopausal women: baseline endometrial subprotocol data. BJOG 2003; 110(12):1099–1106.PubMedGoogle Scholar
  261. 261.
    Rose PG, Brunetto VL, VanLe L et al. A phase II trial of anastrozole in advanced recurrent or persistent endometrial carcinoma: a Gynecologic Oncology Group study. Gynecol Oncol 2000; 78(2):212–216.PubMedGoogle Scholar
  262. 262.
    Ma BB, Oza A, Eisenhauer E et al. The activity of letrozole in patients with advanced or recurrent endometrial cancer and correlation with biological markers—a study of the National Cancer Institute of Canada Clinical Trials Group. Int J Gynecol Cancer 2004; 14(4):650–658.PubMedGoogle Scholar
  263. 263.
    Burnett AF, Bahador A, Amezcua C. Anastrozole, an aromatase inhibitor and medroxyprogesterone acetate therapy in premenopausal obese women with endometrial cancer: a report of two cases successfully treated without hysterectomy. Gynecol Oncol 2004; 94(3):832–834.PubMedGoogle Scholar
  264. 264.
    Gründker C, Günthert AR, Westphalen S et al. Biology of the gonadotropin-releasing hormone system in gynecological cancers. Eur J Endocrinol 2002; 146(1):1–14.PubMedGoogle Scholar
  265. 265.
    Cheng CK, Leung PC. Molecular biology of gonadotropin-releasing hormone (GnRH)-I, GnRH-II and their receptors in humans. Endocr Rev 2005; 26(2):283–306.PubMedGoogle Scholar
  266. 266.
    White RB, Eisen JA, Kasten TL et al. Second gene for gonadotropin-releasing hormone in humans. Proc Natl Acad Sci USA 1998; 95(1):305–309.PubMedGoogle Scholar
  267. 267.
    Eicke N, Günthert AR, Emons G et al. GnRH-II agonist [D-Lys6]GnRH-II inhibits the EGF-induced mitogenic signal transduction in human endometrial and ovarian cancer cells. Int J Oncol 2006; 29(5):1223–1229.PubMedGoogle Scholar
  268. 268.
    Eicke N, Günthert AR, Viereck V et al. GnRH-II receptor-like antigenicity in human placenta and in cancers of the human reproductive organs. Eur J Endocrinol 2005; 153(4):605–612.PubMedGoogle Scholar
  269. 269.
    Gründker C, Günthert AR, Millar RP et al. Expression of gonadotropin-releasing hormone II (GnRH-II) receptor in human endometrial and ovarian cancer cells and effects of GnRH-II on tumor cell proliferation. J Clin Endocrinol Metab 2002; 87(3):1427–1430.PubMedGoogle Scholar
  270. 270.
    Gründker C, Schlotawa L, Viereck V et al. Antiproliferative effects of the GnRH antagonist cetrorelix and of GnRH-II on human endometrial and ovarian cancer cells are not mediated through the GnRH type I receptor. Eur J Endocrinol 2004; 151(1):141–149.PubMedGoogle Scholar
  271. 271.
    Fister S, Günthert AR, Emons G et al. Gonadotropin-releasing hormone type II antagonists induce apoptotic cell death in human endometrial and ovarian cancer cells in vitro and in vivo. Cancer Res 2007; 67(4):1750–1756.PubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  • Carsten Gründker
    • 1
  • Andreas R. Günthert
    • 1
  • Günter Emons
    • 1
  1. 1.Department of Gynecology and ObstetricsGeorg-August-UniversityGöttingenGermany

Personalised recommendations