Altering the Motivational Function of Nicotine through Conditioning Processes

Part of the Nebraska Symposium on Motivation book series (NSM, volume 55)


Unconditioned Stimulus Pavlovian Conditioning Inactive Lever Occasion Setter Nicotine Infusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I want to thank all the individuals that have worked so hard over the years on the research discussed in this Chapter. The research and the uncountable discussions prompted by this work have shaped my thinking in important ways. The research and the preparation of this chapter were partially supported by DA018114.


  1. Alessi, S. M., Roll, J. M., Reilly, M. P., & Johanson, C.-E. (2002). Establishment of a diazepam preference in human volunteers following differential-conditioning history of placebo versus diazepam choice. Experimental and Clinical Psychopharmacology, 10, 77–83.PubMedCrossRefGoogle Scholar
  2. Besheer, J., Palmatier, M. I., Metschke, D. M., & Bevins, R. A. (2004). Nicotine as a signal for the presence or absence of sucrose reward: A Pavlovian drug appetitive conditioning preparation in rats. Psychopharmacology, 172, 108–117.PubMedCrossRefGoogle Scholar
  3. Bevins, R. A., Delzer, T. A., & Bardo, M. T. (1996). Second-order conditioning detects unexpressed morphine-induced salt aversion. Animal Learning & Behavior, 24, 221–229.CrossRefGoogle Scholar
  4. Bevins, R. A. (2001). Should we essentially ignore the role of stimuli in a general account of operant selection Behavioral & Brain Sciences, 24, 528–529.Google Scholar
  5. Bevins, R. A., Besheer, J., & Pickett, K. S. (2001). Nicotine-conditioned locomotor activity in rats: Dopaminergic and GABAergic influences on conditioned expression. Pharmacology, Biochemistry and Behavior, 68, 135–145.CrossRefGoogle Scholar
  6. Bevins, R. A., & Bardo, M. T. (2004). Introduction: Motivation, drug abuse, and 50 years of theoretical and empirical inquiry. In R. A. Bevins & M. T. Bardo (Eds.), Motivational Factors in the Etiology of Drug Abuse, Volume 50 of the Nebraska Symposium on Motivation (pp. ix–xv). Lincoln NE: University of Nebraska Press.Google Scholar
  7. Bevins, R. A., & Palmatier, M. I. (2003). Nicotine-conditioned locomotor sensitization in rats: Assessment of the US-preexposure effect. Behavioural Brain Research, 143, 65–74.PubMedCrossRefGoogle Scholar
  8. Bevins, R. A., & Palmatier, M. I. (2004). Extending the role of associative learning processes in nicotine addiction. Behavioral and Cognitive Neuroscience Reviews, 3, 143–158.PubMedCrossRefGoogle Scholar
  9. Bevins, R. A., Eurek, S., & Besheer, J. (2005). Timing of conditioned response in a nicotine locomotor conditioning preparation: Manipulations of the temporal arrangement between context cues and drug administration. Behavioural Brain Research, 159, 135–143.PubMedCrossRefGoogle Scholar
  10. Bevins, R. A., Wilkinson, J. L., Palmatier, M. I., Siebert, H. L., & Wiltgen, S. M. (2006). Characterization of nicotine’s ability to serve as a negative feature in a Pavlovian appetitive conditioning task in rats. Psychopharmacology, 184, 470–481.PubMedCrossRefGoogle Scholar
  11. Bevins, R. A., Penrod, R. D., & Reichel, C. M. (2007). Nicotine does not produce state-dependent effects on learning in a Pavlovian appetitive goal-tracking task with rats. Behavioural Brain Research, 177, 134–141.PubMedCrossRefGoogle Scholar
  12. Boakes, R. A. (1977). Performance on learning to associate a stimulus with positive reinforcement. In H. Davis & H. M. B. Hurwitz (Eds.) Operant-Pavlovian interactions (pp. 67–97). Hillsdale NJ: Erlbaum.Google Scholar
  13. Bonardi, C., & Hall, G. (1994). Occasion-setting training renders stimuli more similar: Acquired equivalence between the targets of feature-positive discriminations. Quarterly Journal of Experimental Psychology, 47B, 63–81.Google Scholar
  14. Bormann, N. M., & Overton, D. A. (1993). Morphine as a conditioned stimulus in a conditioned emotional response paradigm. Psychopharmacology, 112, 277–284.PubMedCrossRefGoogle Scholar
  15. Bouton, M. E. (2002). Context, ambiguity, and unlearning: Sources of relapse after behavioral extinction. Biological Psychiatry, 52, 976–986.PubMedCrossRefGoogle Scholar
  16. Bouton, M. E., & Sunsay, C. (2003). Importance of trial versus accumulating time across trials in partially reinforced appetitive conditioning. Journal of Experimental Psychology: Animal Behavior Processes, 29, 62–77.PubMedCrossRefGoogle Scholar
  17. Brooks, D. C., Hale, B., Nelson, J. B., & Bouton, M. E. (1995). Reinstatement after counterconditioning. Animal Learning & Behavior, 23, 383–390.CrossRefGoogle Scholar
  18. Bykov, K. M. (1957). The cerebral cortex and the internal organs. New York: Chemical Publishing Company.Google Scholar
  19. Clements, K., Glautier, S., Stolerman, I. P., White, J-A. W., & Taylor, C. (1996). Classical conditioning in humans: Nicotine as CS and alcohol as US. Human Psychopharmacology, 11, 85–95.CrossRefGoogle Scholar
  20. Conklin, C. A., & Tiffany, S. T. (2002). Applying extinction research and theory to cue-exposure addiction treatments. Addiction, 97, 155–167.PubMedCrossRefGoogle Scholar
  21. Cook, L., Davidson, A., Davis, D. J., Kelleher, R. T. (1960). Epinephrine, norepinephrine, and acetylcholine as conditioned stimuli for avoidance behavior. Science, 131, 990–991.PubMedCrossRefGoogle Scholar
  22. Corrigall, W. A., & Coen, K. M. (1989). Nicotine maintains robust self-administration in rats on a limited-access schedule. Psychopharmacology, 99, 473–478.PubMedCrossRefGoogle Scholar
  23. Dethier, V. G. (1966). Insects and the concept of motivation. In D. Levine (Ed.), Nebraska Symposium on Motivation, 1966 (pp. 105–136). Lincoln NE: University of Nebraska Press.Google Scholar
  24. Damaj, M. I., Creasy, K. R., Grove, A. D., Rosecrans, J. A., & Martin, B. R. (1994). Pharmacological effects of epibatidine optical enantiomers. Brain Research, 664, 34–40.PubMedCrossRefGoogle Scholar
  25. Damaj, M. I., Creasy, K. R., Welch, S. P., Rosecrans, J. A., Aceto, M. D., & Martin, B. R. (1995). Comparative pharmacology of nicotine and ABT-418, a new nicotinic agonist. Psychopharmacology, 120, 483–490.PubMedCrossRefGoogle Scholar
  26. Delamater, A. R. (1995). Outcome-selective effects of intertrial reinforcement in a Pavlovian appetitive conditioning paradigm with rats. Animal Learning & Behavior, 23, 31–39.CrossRefGoogle Scholar
  27. Domjan, M. (2005). Pavlovian conditioning: A functional perspective. Annual Review of Psychology, 56, 179–206.PubMedCrossRefGoogle Scholar
  28. Donny, E. C., Caggiula, A. R., Mielke, M. M., Jacobs, K. S., Rose, C., & Sved, A. F. (1998). Acquisition of nicotine self-administration in rats: the effects of dose, feeding schedule, and drug contingency. Psychopharmacology, 136, 83–90.PubMedCrossRefGoogle Scholar
  29. Doty, R. W. (1961). Conditioned reflexes formed and evoked by brain stimulation. In D. E. Sheer (Ed.), Electrical stimulation of the brain: An interdisciplinary survey of neurobehavioral integrative systems (pp. 397–412). Austin TX: University of Texas Press.Google Scholar
  30. Farwell, B. J., & Ayres, J. J. B. (1979). Stimulus-reinforcer and response-reinforcer relations in the control of conditioned appetitive headpoking (“goal tracking”) in rats. Learning and Motivation, 10, 295–312.CrossRefGoogle Scholar
  31. Geier, A., Mucha, R. F., & Pauli, P. (2000). Appetitive nature of drug cues confirmed with physiological measures in a model using pictures of smoking. Psychopharmacology, 150, 283–291.PubMedCrossRefGoogle Scholar
  32. Grabus, S. D., Martin, B. R., Brown, S. E., & Damaj, M. I. (2006). Nicotine place preference in the mouse: influences of prior handling, dose and strain and attenuation by nicotinic receptor antagonists. Psychopharmacology, 184, 456–463.PubMedCrossRefGoogle Scholar
  33. Greeley, J., Lê, D. A., Poulos, C. X., & Cappell, H. (1984). Alcohol is an effective cue in the conditioned control of tolerance to alcohol. Psychopharmacology, 83, 159–162.PubMedCrossRefGoogle Scholar
  34. Henningfield, J. E., Schuh, L. M., & Jarvik, M. E. (1995). Pathophysiology of tobacco dependence. In F. E. Bloom & D. J. Kupfer (Eds.), Psychopharmacology: The fourth generation of progress (pp. 1715–1729). New York: Raven Press.Google Scholar
  35. Holland, P. C., & Rescorla, R. A. (1975). Second-order conditioning with food unconditioned stimulus. Journal of Comparative and Physiological Psychology, 88, 459–467.PubMedCrossRefGoogle Scholar
  36. Holland, P. C., & Straub, J. J. (1979). Differential effects of two ways of devaluing the unconditioned stimulus after Pavlovian appetitive conditioning. Journal of Experimental Psychology: Animal Behavior Processes, 5, 65–78PubMedCrossRefGoogle Scholar
  37. Kim, J. A., Siegel, S., & Patenall, V. R. A. (1999). Drug-onset cues as signals: Intraadministration associations and tolerance. Journal of Experimental Psychology: Animal Behavior Processes, 25, 491–504.PubMedCrossRefGoogle Scholar
  38. Kintsch, W. & Witte, R. S. (1962). Concurrent conditioning of bar press and salivation response. Journal of Comparative and Physiological Psychology, 55, 963–968.PubMedCrossRefGoogle Scholar
  39. Konorski, J. (1948). Conditioned reflexes and neuron organization. Cambridge: Cambridge University Press.Google Scholar
  40. Laidler, K. J. (1998). To light such a candle: Chapters in the history of science and technology. Oxford: Oxford University Press.Google Scholar
  41. Lazev, A. B., Herzog, T. A., & Brandon, T. H. (1999). Classical conditioning of environmental cues to cigarette smoking. Experimental and Clinical Psychopharmacology, 7, 56–63.PubMedCrossRefGoogle Scholar
  42. Le Foll, B., & Goldberg, S. R. (2005). Nicotine induces conditioned place preferences over a large range of doses in rats. Psychopharmacology, 178, 481–492.PubMedCrossRefGoogle Scholar
  43. Loucks, R. B. (1938). Studies of neural structures essential for learning. II: The conditioning of salivary and striped muscle responses to faradization of cortical sensory elements, and the action of sleep upon such mechanisms. Journal of Comparative Psychology, 25, 315–332.CrossRefGoogle Scholar
  44. Lovibond, P. F., & Dickinson, A. (1982). Counterconditioning of appetitive and defensive CRs in rabbits. The Quarterly Journal of Experimental Psychology B: Comparative and Physiological Psychology, 34B, 115–126.Google Scholar
  45. Miller, R., & Escobar, M. (2002). Learning: Laws and models of basic conditioning. In H. Pashler & R. Gallistel (Eds.), Steven's handbook of experimental psychology (3rd ed.), Vol.3: Learning, motivation, and emotion (pp. 47–102). Hoboken NJ: John Wiley & Sons, Inc.Google Scholar
  46. Molina, J. C., Bannoura, M. D., Chotro, M. G., McKinzie, D. L., Arnold, H. M., & Spear, N. E. (1996). Alcohol-mediated tactile conditioned aversions in infant rats: Devaluation of conditioning through alcohol-sucrose associations. Neurobiology of Learning and Memory, 66, 121–132.PubMedCrossRefGoogle Scholar
  47. Murray, J. E., & Bevins, R. A. (2007a). Behavioral and neuropharmacological characterization of a nicotine conditioned stimulus. European Journal of Pharmacology, 561, 91–104.CrossRefGoogle Scholar
  48. Murray, J. E., & Bevins, R. A. (2007b). The conditional stimulus effects of nicotine vary as a function of training dose. Behavioural Pharmacology, 18, 707–716.Google Scholar
  49. Palmatier, M. I., & Bevins, R. A. (2002). Examination of GABAergic and dopaminergic compounds in the acquisition of nicotine-conditioned hyperactivity in rats. Neuropsychobiology, 45, 87–94.PubMedCrossRefGoogle Scholar
  50. Palmatier, M. I. (2004). Drug modulators in appetitive Pavlovian conditioning. Unpublished Dissertation, Department of Psychology, University of Nebraska-Lincoln.Google Scholar
  51. Palmatier, M. I., Peterson, J. L., Wilkinson, J. L., & Bevins, R. A. (2004). Nicotine serves as a feature-positive modulator of Pavlovian appetitive conditioning in rats. Behavioural Pharmacology, 15, 183–194.PubMedGoogle Scholar
  52. Palmatier, M. I., Wilkinson, J. L., & Bevins, R. A. (2005). Stimulus properties of nicotine, amphetamine, and chlordiazepoxide as positive features in a Pavlovian appetitive discrimination task in rats. Neuropsychopharmacology, 30, 731–741.PubMedGoogle Scholar
  53. Palmatier, M. I., & Bevins, R. A. (2007). Facilitation by drug states does not depend on acquired excitatory strength. Behavioural Brain Research, 176, 292–301.PubMedCrossRefGoogle Scholar
  54. Pavlov, I. P. (1927). Conditioned reflexes. London: Oxford University Press.Google Scholar
  55. Pearce, J. M., & Dickinson, A. (1975). Pavlovian counterconditioning: Changing the suppressive properties of shock by association with food. Journal of Experimental Psychology: Animal Behavior Processes, 2, 170–177.CrossRefGoogle Scholar
  56. Pearce, J. M. (1987). A model of stimulus generalisation for Pavlovian conditioning. Psychological Review, 84, 61–73.CrossRefGoogle Scholar
  57. Perkins, K. A., DiMarco, A., Grobe, J. E., Scierka, A., & Stiller, R. L. (1994). Nicotine discrimination in male and female smokers. Psychopharmacology, 116, 407–413.PubMedCrossRefGoogle Scholar
  58. Peterson G. B., Ackil, J. E., Frommer, G. P., & Hearst, E. S. (1972). Conditioned approach and contact behavior toward signals for food or brain-stimulation reinforcement. Science, 177, 1009–1011.PubMedCrossRefGoogle Scholar
  59. Pritchard, W. S., Robinson, J. H., Guy, T. D., Davis, R. A., & Stiles, M. F. (1996). Assessing the sensory role of nicotine in cigarette smoking. Psychopharmacology, 127, 55–62.PubMedCrossRefGoogle Scholar
  60. Reichel, C. M., Linkugel, J. D., & Bevins, R. A. (2007). Nicotine as a conditioned stimulus: Impact of ADHD medications. Experimental and Clinical Psychopharmacology, 15, 501–509.Google Scholar
  61. Rescorla, R. A. (1986). Extinction of facilitation. Journal of Experimental Psychology: Animal Behavior Processes, 12, 16–24.CrossRefGoogle Scholar
  62. Rescorla, R. A. (1988). Behavioral studies of Pavlovian conditioning. Annual Review of Neuroscience, 11, 329–352.PubMedCrossRefGoogle Scholar
  63. Rescorla, R. A. (2006). Deepened extinction from compound stimuli presentation. Journal of Experimental Psychology: Animal Behavior Processes, 32, 135–144.PubMedCrossRefGoogle Scholar
  64. Revusky, S., Davey, V., & Zagorski, M. (1989). Heart rate conditioning with pentobarbital as a conditioned stimulus and amphetamine as an unconditioned stimulus. Behavioral Neuroscience, 103, 296–307.PubMedCrossRefGoogle Scholar
  65. Rose, J. E., & Levin, E. D. (1991). Inter-relationships between conditioned and primary reinforcement in the maintenance of cigarette smoking. British Journal of Addiction, 86, 605–609.PubMedCrossRefGoogle Scholar
  66. Schmajuk, N. A., & Holland, P. C. (1998). Occasion setting: Associative learning and cognition in animals. Washington DC: American Psychological Association.CrossRefGoogle Scholar
  67. Shoaib, M., Stolerman, I. P., & Kumar, R. C. (1994). Nicotine-induced place preferences following prior nicotine exposure in rats. Psychopharmacology, 113, 445–452.PubMedCrossRefGoogle Scholar
  68. Skinner, B. F. (1938). The behavior of organisms. New York: Appleton Century Crofts.Google Scholar
  69. Sokolowska, M., Siegel, S., & Kim, J. A. (2002). Intraadministration associations: Conditional hyperalgesia elicited by morphine onset cues. Journal of Experimental Psychology: Animal Behavior Processes, 28, 309–320.PubMedCrossRefGoogle Scholar
  70. Stolerman, I. P. (1989). Discriminative stimulus effects of nicotine in rats trained under different schedules of reinforcement. Psychopharmacology, 97, 131–138.PubMedCrossRefGoogle Scholar
  71. Swartzentruber, D. E. (1995). Modulatory mechanisms in Pavlovian conditioning. Animal Learning & Behavior, 23, 123–143.CrossRefGoogle Scholar
  72. Timberlake, W. (1994). Behavior systems, associationism, and Pavlovian conditioning. Psychonomic Bulletin & Review, 1, 405–420.CrossRefGoogle Scholar
  73. Troisi, J. R. II (2006). Pavlovian-instrumental transfer of the discriminative stimulus effects of nicotine and ethanol in rats. The Psychological Record, 56, 499–512.Google Scholar
  74. Turner, E. G., & Altshuler, H. L. (1976). Conditioned suppression of an operant response using d-amphetamine as the conditioned stimulus. Psychopharmacology, 50, 139–143.PubMedCrossRefGoogle Scholar
  75. Wagner, A. R., & Brandon, S. E. (2001). A componential model of Pavlovian conditioning. In R. R. Mower & S. B. Klein (Eds.), Handbook of contemporary learning theories (pp. 23–64). Mahwah, NJ: LEA.Google Scholar
  76. Walter, S., & Kuschinsky, K. (1989). Conditioning of nicotine effects on motility and behaviour in rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 339, 208–213.PubMedCrossRefGoogle Scholar
  77. Wasserman, E. A., & Miller, R. R. (1997). What’s elementary about associative learning Annual Review of Psychology, 48, 573–607.PubMedCrossRefGoogle Scholar
  78. Wilkinson, J. L., Murray, J. E., Li, C., Wiltgen, S. M., Penrod, R. D., Berg, S. A., & Bevins, R. A. (2006). Interoceptive Pavlovian conditioning with nicotine as the conditional stimulus varies as a function of number of conditioning trials and unpaired sucrose deliveries. Behavioural Pharmacology, 17, 161–172.PubMedCrossRefGoogle Scholar
  79. Yin, H. H., & Knowlton, B. J. (2002). Reinforcer devaluation abolishes conditioned cue preference: Evidence for stimulus-stimulus associations. Behavioral Neuroscience, 116, 174–177.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of Nebraska-LincolnUSA

Personalised recommendations