The Role of Nicotine in Smoking: A Dual-Reinforcement Model

  • Anthony R. Caggiula
  • Eric C. Donny
  • Matthew I. Palmatier
  • Xiu Liu
  • Nadia Chaudhri
  • Alan F. Sved
Part of the Nebraska Symposium on Motivation book series (NSM, volume 55)


The utility of an animal model is predicated on its ability to incorporate essential features of the human phenomenon it is modeling in a way that permits systematic investigation of those features. For this reason, investigators who study the neurobiological mechanisms of addictive drugs such as opiates and stimulants are making extensive use of self-administration models as a way to more closely mimic the manner in which drugs of abuse are experienced by humans (Bozarth, Murray, & Wise, 1989; Caggiula, Donny, White, Chaudhri, Booth, Gharib, Hoffman, Perkins, & Sved, 2001; Carroll, Krattiger, Gieske, & Sadoff, 1990; Corrigall & Coen, 1989; Donny, Caggiula, Knopf, & Brown, 1995; Johanson, 1981; Roberts, 1992; Shaham & Stewart, 1995). A basic tenet of the self-administration model is that a drug, acting as a primary reinforcer, will increase the future occurrence of a response if its administration is contingent on that response (Meisch, 1993). Nicotine, like other drugs...


Nicotine Replacement Therapy Active Lever Nicotine Withdrawal Conditioned Reinforcer Nicotine Infusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Sheri Booth, Maysa Gharib, Laure Craven, Kara Mays, Gina Matteson, Kasia Bak, Melissa Levin, and Emily Kraus for their assistance in conducting the research and performing analyses. Research conducted in our laboratory followed the NIH Guide for the Care and Use of Laboratory Animals and was approved by the Institutional Animal Care and Use Committee (Assurance #: A3187-01). This research was supported by NIH grants DA-10464, DA-12655, DA-17288, and DA-19278 and by a Howard Hughes Predoctoral Research Fellowship awarded to N. Chaudhri.


  1. Arroyo, M., Markou, A., Robbins, T. W., & Everitt, B. J. (1998). Acquisition, maintenance and reinstatement of intravenous cocaine self-administration under a second-order schedule of reinforcement in rats: effects of conditioned cues and continuous access to cocaine. Psychopharmacology (Berl), 140(3), 331–344.CrossRefGoogle Scholar
  2. Balfour, D. J., Wright, A. E., Benwell, M. E., & Birrell, C. E. (2000). The putative role of extra-synaptic mesolimbic dopamine in the neurobiology of nicotine dependence. Behavioural Brain Research, 113(1–2), 73–83.PubMedCrossRefGoogle Scholar
  3. Bevins, R. A. & Palmatier, M. I. (2004) Extending the role of associative learning processes in nicotine addiction. Behavioral and Cognitive Neuroscience Review, 3, 143–158CrossRefGoogle Scholar
  4. Bozarth, M. A., Murray, A., & Wise, R. A. (1989). Influence of housing conditions on the acquisition of intravenous heroin and cocaine self-administration in rats. Pharmacology, Biochemistry, and Behavior, 33(4), 903–907.PubMedCrossRefGoogle Scholar
  5. Brunzell, D. H., Chang, J. R., Schneider, B., Olausson, P., Taylor, J. R., & Picciotto, M. R. (2006). beta2-Subunit-containing nicotinic acetylcholine receptors are involved in nicotine-induced increases in conditioned reinforcement but not progressive ratio responding for food in C57BL/6 mice. Psychopharmacology (Berl), 184(3–4), 328–338.CrossRefGoogle Scholar
  6. Caggiula, A. R., Donny, E. C., Chaudhri, N., Perkins, K. A., Evans-Martin, F. F., & Sved, A. F. (2002a). Importance of nonpharmacological factors in nicotine self-administration. Physiology Behavior, 77(4–5), 683–687.CrossRefGoogle Scholar
  7. Caggiula, A. R., Donny, E. C., White, A. R., Chaudhri, N., Booth, S., Gharib, M. A., Hoffman, A., Perkins, K. A., & Sved, A. F. (2001). Cue dependency of nicotine self-administration and smoking. Pharmacology, Biochemistry, and Behavior, 70(4), 515–530.PubMedCrossRefGoogle Scholar
  8. Caggiula, A. R., Donny, E. C., White, A. R., Chaudhri, N., Booth, S., Gharib, M. A., Hoffman, A., Perkins, K. A., & Sved, A. F. (2002b). Environmental stimuli promote the acquisition of nicotine self-administration in rats. Psychopharmacology (Berl), 163(2), 230–237.CrossRefGoogle Scholar
  9. Caggiula, A. R., Donny, E. C., White, A. R., Chaudhri, N., Gharib, M., Booth, S., Sved, A. F. (2001). Non-contingent nicotine enhances responding maintained by behaviorally contingent environmental cues. Paper presented at the Society for Neuroscience.Google Scholar
  10. Carroll, M. E., Krattiger, K. L., Gieske, D., & Sadoff, D. A. (1990). Cocaine-base smoking in rhesus monkeys: reinforcing and physiological effects. Psychopharmacology (Berl), 102(4), 443–450.CrossRefGoogle Scholar
  11. Carter, B. L., & Tiffany, S. T. (1999). Meta-analysis of cue-reactivity in addiction research. Addiction, 94(3), 327–340.PubMedCrossRefGoogle Scholar
  12. Chaudhri, N., Caggiula, A. R., Donny, E. C., Booth, S., Gharib, M., Craven, L., et al. (2006a). Operant responding for conditioned and unconditioned reinforcers in rats is differentially enhanced by the primary reinforcing and reinforcement-enhancing effects of nicotine. Psychopharmacology (Berl), 189(1), 27–36.CrossRefGoogle Scholar
  13. Chaudhri, N., Caggiula, A. R., Donny, E. C., Booth, S., Gharib, M., Craven, L., et al. (2007). Self-administered and noncontingent nicotine enhance reinforced operant responding in rats: Impact of nicotine dose and reinforcement schedule. Psychopharmacology (Berl), 190(3), 353–362.CrossRefGoogle Scholar
  14. Chaudhri, N., Caggiula, A. R., Donny, E. C., Palmatier, M. I., Liu, X., & Sved, A. F. (2006b). Complex interactions between nicotine and nonpharmacological stimuli reveal multiple roles for nicotine in reinforcement. Psychopharmacology (Berl), 184(3–4), 353–366.CrossRefGoogle Scholar
  15. Childress, A. R., Ehrman, R., Rohsenow, D. J., Robbins, S. J., O'Brien, C. P. (1992). Classically conditioned factors in drug dependence. In J. H. Lowinson, Ruiz, P., Millman, R. B (Ed.), Substance abuse: A comprehensive textbook (pp. 55–69). Baltimore: Williams and Wilkins.Google Scholar
  16. Cohen, C., Perrault, G., Griebel, G., & Soubrie, P. (2005). Nicotine-associated cues maintain nicotine-seeking behavior in rats several weeks after nicotine withdrawal: Reversal by the cannabinoid (CB1) receptor antagonist, rimonabant (SR141716). Neuropsychopharmacology, 30(1), 145–155.PubMedCrossRefGoogle Scholar
  17. Conklin, C. A., & Tiffany, S. T. (2001). The impact of imagining personalized versus standardized urge scenarios on cigarette craving and autonomic reactivity. Experimental and Clinical Psychopharmacology, 9(4), 399–408.PubMedCrossRefGoogle Scholar
  18. Corrigall, W. A. (1992). A rodent model for nicotine self-administration. In A. Boulton, Baker, G., Wu, P. (Ed.), Neuromethods: Animal models of drug addiction (Vol. 24, pp. 315–344). Totowa: The Humana Press.Google Scholar
  19. Corrigall, W. A., & Coen, K. M. (1989). Nicotine maintains robust self-administration in rats on a limited-access schedule. Psychopharmacology (Berl), 99(4), 473–478.CrossRefGoogle Scholar
  20. Cousins, M. S., Stamat, H. M., & de Wit, H. (2001). Acute doses of d-amphetamine and bupropion increase cigarette smoking. Psychopharmacology (Berl), 157(3), 243–253.CrossRefGoogle Scholar
  21. Dawkins, L., Powell, J. H., West, R., Powell, J., & Pickering, A. (2006). A double-blind placebo controlled experimental study of nicotine: I--effects on incentive motivation. Psychopharmacology (Berl), 189(3), 355–367.CrossRefGoogle Scholar
  22. de Wit, H., & Stewart, J. (1981). Reinstatement of cocaine-reinforced responding in the rat. Psychopharmacology (Berl), 75(2), 134–143.CrossRefGoogle Scholar
  23. Di Chiara, G. (2000). Behavioural pharmacology and neurobiology of nicotine rewrd and dependence. In F. Clementi, Fomasari, D., Gotti, C. (Ed.), Handbook of experimental pharmacology: neuronal nicotinic receptors. Berlin: Springer-Verlag.Google Scholar
  24. Donny, E. C., Caggiula, A. R., Knopf, S., & Brown, C. (1995). Nicotine self-administration in rats. Psychopharmacology (Berl), 122(4), 390–394.CrossRefGoogle Scholar
  25. Donny, E. C., Caggiula, A. R., Mielke, M. M., Booth, S., Gharib, M. A., Hoffman, A., Maldovan, V., Shupenko, C., & McCallum, S. E. (1999). Nicotine self-administration in rats on a progressive ratio schedule of reinforcement. Psychopharmacology (Berl), 147(2), 135–142.CrossRefGoogle Scholar
  26. Donny, E. C., Caggiula, A. R., Mielke, M. M., Jacobs, K. S., Rose, C., & Sved, A. F. (1998). Acquisition of nicotine self-administration in rats: the effects of dose, feeding schedule, and drug contingency. Psychopharmacology (Berl), 136(1), 83–90.CrossRefGoogle Scholar
  27. Donny, E. C., Caggiula, A. R., Rose, C., Jacobs, K. S., Mielke, M. M., & Sved, A. F. (2000). Differential effects of response-contingent and response-independent nicotine in rats. European Journal of Pharmacology, 402(3), 231–240.PubMedCrossRefGoogle Scholar
  28. Donny, E. C., Caggiula, A. R., Rowell, P. P., Gharib, M. A., Maldovan, V., Booth, S., Mielke, M. M., Hoffman, A., & McCallum, S. (2000). Nicotine self-administration in rats: estrous cycle effects, sex differences and nicotinic receptor binding. Psychopharmacology (Berl), 151(4), 392–405.CrossRefGoogle Scholar
  29. Donny, E. C., Chaudhri, N., Caggiula, A. R., Evans-Martin, F. F., Booth, S., Gharib, M. A., et al. (2003). Operant responding for a visual reinforcer in rats is enhanced by noncontingent nicotine: implications for nicotine self-administration and reinforcement. Psychopharmacology (Berl), 169(1), 68–76.CrossRefGoogle Scholar
  30. Donny, E. C., Houtsmuller, E., & Stitzer, M. L. (2007). Smoking in the absence of nicotine: behavioral, subjective and physiological effects over 11 days. Addiction, 102(2), 324–334.PubMedCrossRefGoogle Scholar
  31. Fowler, H. (1971). Implications of sensory reinforcement. In R. Glaser (Ed.), The Nature of Reinforcement. A Symposium of The Learning Research and Development Center (pp. 151–195). New York: Academic Press.Google Scholar
  32. Goldberg, S. R., Spealman, R. D., & Goldberg, D. M. (1981). Persistent behavior at high rates maintained by intravenous self-administration of nicotine. Science, 214(4520), 573–575.PubMedCrossRefGoogle Scholar
  33. Harrington, G. M. (1963). Stimulus intensity, stimulus satiation, and optimum stimulation with light-contingent bar-press. Psychological Reports, 13 (107–111).CrossRefGoogle Scholar
  34. Harrison, A. A., Gasparini, F., & Markou, A. (2002). Nicotine potentiation of brain stimulation reward reversed by DH beta E and SCH 23390, but not by eticlopride, LY 314582 or MPEP in rats. Psychopharmacology (Berl), 160(1), 56–66.CrossRefGoogle Scholar
  35. Henningfield, J. E., & Goldberg, S. R. (1983). Control of behavior by intravenous nicotine injections in human subjects. Pharmacology, Biochemistry, and Behavior, 19(6), 1021–1026.PubMedCrossRefGoogle Scholar
  36. Hughes, J. R., Hatsukami, D. K., Pickens, R. W., Krahn, D., Malin, S., & Luknic, A. (1984). Effect of nicotine on the tobacco withdrawal syndrome. Psychopharmacology (Berl), 83(1), 82–87.CrossRefGoogle Scholar
  37. Johanson, C. E., & Schuster, C. R. (1981). Animal models of drug self-administration. Advances in Substance Abuse, 2(219–97).Google Scholar
  38. Jorenby, D. E., Leischow, S. J., Nides, M. A., Rennard, S. I., Johnston, J. A., Hughes, A. R., et al. (1999). A controlled trial of sustained-release bupropion, a nicotine patch, or both for smoking cessation. The New England Journal of Medicine, 340(9), 685–691.PubMedCrossRefGoogle Scholar
  39. Juliano, L. M., Donny, E. C., Houtsmuller, E. J., & Stitzer, M. L. (2006). Experimental evidence for a causal relationship between smoking lapse and relapse. Journal of Abnormal Psychology, 115(1), 166–173.PubMedCrossRefGoogle Scholar
  40. Li, S. X., Perry, K. W., & Wong, D. T. (2002). Influence of fluoxetine on the ability of bupropion to modulate extracellular dopamine and norepinephrine concentrations in three mesocorticolimbic areas of rats. Neuropharmacology, 42, 181–190.PubMedCrossRefGoogle Scholar
  41. Margolin, A., Avants, S. K. (1992). Cue-reactivity and cocaine addiction. . In T. R. Kosten, Kleber, H. D. (Ed.), Clinicians guide to cocaine addiction (Vol. 109–27). New York: Guilford Press.Google Scholar
  42. Markou, A., Weiss, F., Gold, L. H., Caine, S. B., Schulteis, G., & Koob, G. F. (1993). Animal models of drug craving. Psychopharmacology (Berl), 112(2–3), 163–182.CrossRefGoogle Scholar
  43. Mays, K. L., Levin, M. E., Bak, K. M., Palmatier, M. I., Liu, X., Caggiula, A. R., et al. (2007). Nicotine and bupropion have similar effects on responding for reinforcing non-drug stimuli. Paper presented at the Society for Research on Nicotine and Tobacco, Austin, TX.Google Scholar
  44. Meisch, R. A., Lemaire, G. A. (1993). Drug self-administration. In F. van Haaren (Ed.), Methods in behavioral pharmacology (pp. 257–300). BV: Elsevier Science Publications.Google Scholar
  45. O'Brien, C. P., Childress, A. R., Ehrman, R., & Robbins, S. J. (1998). Conditioning factors in drug abuse: can they explain compulsion? J Psychopharmacol, 12(1), 15–22.PubMedCrossRefGoogle Scholar
  46. Olausson, P., Jentsch, J. D., & Taylor, J. R. (2004a). Nicotine enhances responding with conditioned reinforcement. Psychopharmacology (Berl), 171(2), 173–178.CrossRefGoogle Scholar
  47. Olausson, P., Jentsch, J. D., & Taylor, J. R. (2004b). Repeated nicotine exposure enhances responding with conditioned reinforcement. Psychopharmacology (Berl), 173(1–2), 98–104.CrossRefGoogle Scholar
  48. Palmatier, M. I., Donny, E. C., Liu, X., Matteson, G. L., Caggiula, A. R., & Sved, A. F. (2007a). Conditioned reinforcement established with self-administered nicotine: Motivational effects of stimuli associated with different unit nicotine doses. Paper presented at the Society for Neuroscience, San Diego.Google Scholar
  49. Palmatier, M. I., Evans-Martin, F. F., Hoffman, A., Caggiula, A. R., Chaudhri, N., Donny, E. C., et al. (2006). Dissociating the primary reinforcing and reinforcement-enhancing effects of nicotine using a rat self-administration paradigm with concurrently available drug and environmental reinforcers. Psychopharmacology (Berl), 184(3–4), 391–400.CrossRefGoogle Scholar
  50. Palmatier, M. I., Evans-Martin, F. F., Hoffman, A., Caggiula, A. R., Chaudhri, N., Donny, E. C., et al. (2005). Self-administered nicotine enhances responding for a concurrently available visual reinforcer. Paper presented at the Society for Neuroscience, Washington, D.C.Google Scholar
  51. Palmatier, M. I., Liu, X., Caggiula, A. R., Donny, E. C., Booth, S., Gahrib, M., Craven, L., & Sved, A. F. (2007b). The Role of Nicotinic Acetylcholine Receptors in the Primary Reinforcing and Reinforcement-Enhancing Effects of Nicotine. Neuropsychopharmacology, 32, 1098–1108.Google Scholar
  52. Palmatier, M. I., Matteson, G. L., Black, J. J., Liu, X., Caggiula, A. R., & Sved, A. F. (2007c). The reinforcement enhancing effects of nicotine depend on the incentive value of non-drug reinforcers and increase with repeated drug injections. Drug and Alcohol Dependence, 89(1), 52–9.Google Scholar
  53. Paterson, N. E., Semenova, S., Gasparini, F., & Markou, A. (2003). The mGluR5 antagonist MPEP decreased nicotine self-administration in rats and mice. Psychopharmacology (Berl), 167(3), 257–264.Google Scholar
  54. Phillips, A. G., & Fibiger, H. C. (1990). Role of reward and enhancement of conditioned reward in persistence of responding for cocaine. Behavioural Pharmacology, 1(4), 269–282.PubMedGoogle Scholar
  55. Picciotto, M. R., Zoli, M., Rimondini, R., Lena, C., Marubio, L. M., Pich, E. M., et al. (1998). Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature, 391(6663), 173–177.PubMedCrossRefGoogle Scholar
  56. Rauhut, A. S., Neugebauer, N., Dwoskin, L. P., & Bardo, M. T. (2003). Effect of bupropion on nicotine self-administration in rats. Psychopharmacology (Berl), 169(1), 1–9.CrossRefGoogle Scholar
  57. Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and non-reinforcement. In A. H. Black (Ed.), Classical Conditioning II: Current Research and Theory (pp. 64–99). New York: Appleton Century Crofts.Google Scholar
  58. Roberts, D. C. S., & Richardson, N. R. (1992). Self-administration of psychomotor stimulants using progressive ratio schedules of reinforcement. In A. Boulton, Baker, G., Wu, P. H. (Ed.), Neuromethods: animal models of drug addiction (pp. 233–269). Clifton: Humana Press.Google Scholar
  59. Robinson, T. E., & Berridge, K. C. (1993). The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Research. Brain Research Reviews, 18(3), 247–291.PubMedCrossRefGoogle Scholar
  60. Rose, J. E., Behm, F. M., Westman, E. C., & Johnson, M. (2000). Dissociating nicotine and nonnicotine components of cigarette smoking. Pharmacology, Biochemistry, and Behavior, 67(1), 71–81.PubMedCrossRefGoogle Scholar
  61. Rose, J. E., & Corrigall, W. A. (1997). Nicotine self-administration in animals and humans: similarities and differences. Psychopharmacology (Berl), 130(1), 28–40.CrossRefGoogle Scholar
  62. Rose, J. E., & Levin, E. D. (1991). Inter-relationships between conditioned and primary reinforcement in the maintenance of cigarette smoking. British Journal of Addiction, 86(5), 605–609.PubMedCrossRefGoogle Scholar
  63. Sayette, M. A., Martin, C. S., Wertz, J. M., Shiffman, S., & Perrott, M. A. (2001). A multi-dimensional analysis of cue-elicited craving in heavy smokers and tobacco chippers. Addiction, 96(10), 1419–1432.PubMedCrossRefGoogle Scholar
  64. Schenk, S., & Partridge, B. (2001). Influence of a conditioned light stimulus on cocaine self-administration in rats. Psychopharmacology (Berl), 154(4), 390–396.CrossRefGoogle Scholar
  65. Shaham, Y., & Stewart, J. (1995). Stress reinstates heroin-seeking in drug-free animals: an effect mimicking heroin, not withdrawal. Psychopharmacology (Berl), 119(3), 334–341.CrossRefGoogle Scholar
  66. Shoaib, M., Schindler, C. W., & Goldberg, S. R. (1997). Nicotine self-administration in rats: strain and nicotine pre-exposure effects on acquisition. Psychopharmacology (Berl), 129(1), 35–43.CrossRefGoogle Scholar
  67. Taylor, J. R., & Jentsch, J. D. (2001). Repeated intermittent administration of psychomotor stimulant drugs alters the acquisition of Pavlovian approach behavior in rats: differential effects of cocaine, d-amphetamine and 3,4- methylenedioxymethamphetamine (“Ecstasy”). Biological Psychiatry, 50(2), 137–143.PubMedCrossRefGoogle Scholar
  68. Tessari, M., Pilla, M., Andreoli, M., Hutcheson, D. M., & Heidbreder, C. A. (2004). Antagonism at metabotropic glutamate 5 receptors inhibits nicotine- and cocaine-taking behaviours and prevents nicotine-triggered relapse to nicotine-seeking. European Journal of Pharmacology, 499(1–2), 121–133.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Anthony R. Caggiula
    • 1
  • Eric C. Donny
  • Matthew I. Palmatier
  • Xiu Liu
  • Nadia Chaudhri
  • Alan F. Sved
  1. 1.Department of Psychology3131 Sennott, University of PittsburghPittsburghUSA

Personalised recommendations