Advertisement

Multiple Motivational Forces Contribute to Nicotine Dependence

  • Athina Markou
  • Neil E. Paterson
Chapter
Part of the Nebraska Symposium on Motivation book series (NSM, volume 55)

Introduction

Approximately 40% of current smokers attempt to quit each year (Centers for Disease Control and Prevention, 2005), but only 10–15% succeed (Fiore, Smith, Jorenby, & Baker, 1994), with relapse to smoking often occurring during the first few days or weeks of abstinence (al'Absi, Hatsukami, Davis, & Wittmers, 2004; Piasecki, Jorenby, Smith, Fiore, & Baker, 2003). The low success rate of quit attempts suggests that there are powerful motivational forces that maintain the tobacco smoking habit. One of the main psychoactive ingredients in tobacco smoke that is responsible for its highly addictive properties is nicotine (Bardo, Green, Crooks, & Dwoskin, 1999; Crooks & Dwoskin, 1997; Dwoskin, Teng, Buxton, & Crooks, 1999; Stolerman & Jarvis, 1995). Thus, much psychological and neurobiological research is focused on understanding the factors that contribute to nicotine dependence in order to shed light onto the factors that underlie addiction to tobacco smoking.

In this chapter, we...

Keywords

Conditioned Stimulus Nicotine Dependence Nicotine Withdrawal Nicotine Administration Brain Reward 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

AM was supported by Research Grant 15RT-0022 from the Tobacco-Related Disease Research Program of the State of California, and NIH grants U01 MH69062, R01 DA11946 and R01 DA023209. NEP was supported by postdoctoral fellowship 14FT-0056 from the Tobacco-Related Disease Research Program of the State of California and the Peter F. McManus Charitable Trust. The authors would like to thank Mr. Michael Arends for editorial assistance, and Ms. Janet Hightower for graphics. Finally, the authors would like to thank Drs. John Cryan, Adrie Bruijnzeel, Mark Epping-Jordan, Amanda Harrison, Paul Kenny, Svetlana Semenova, Cecile Spielewoy, Serge Ahmed and Shelly Watkins for their great experimental and intellectual contribution to this research program.

References

  1. Ahmed, S. H., Kenny, P. J., Koob, G. F., & Markou, A. (2002). Neurobiological evidence for hedonic allostasis associated with escalating cocaine use. Nature Neuroscience, 5(7), 625–626.PubMedGoogle Scholar
  2. al'Absi, M., Hatsukami, D., Davis, G. L., & Wittmers, L. E. (2004). Prospective examination of effects of smoking abstinence on cortisol and withdrawal symptoms as predictors of early smoking relapse. Drug and Alcohol Dependence, 73(3), 267–278.PubMedCrossRefGoogle Scholar
  3. American Psychiatric Association. (1994). Diagnostic and Statistical Manual of Mental Disorders (4th ed.). Washington, DC: American Psychiatric Press.Google Scholar
  4. Arnold, J. M., & Roberts, D. C. S. (1997). A critique of fixed and progressive ratio schedules used to examine the neural substrates of drug reinforcement. Pharmacology Biochemistry and Behavior, 57(3), 441–447.CrossRefGoogle Scholar
  5. Baldwin, H. A., & Koob, G. F. (1993). Rapid induction of conditioned opiate withdrawal in the rat. Neuropsychopharmacology, 8(1), 15–21.PubMedGoogle Scholar
  6. Balfour, D. J., Wright, A. E., Benwell, M. E., & Birrell, C. E. (2000). The putative role of extra-synaptic mesolimbic dopamine in the neurobiology of nicotine dependence. Behavioural Brain Research, 113(1–2), 73–83.PubMedCrossRefGoogle Scholar
  7. Bardo, M. T., Green, T. A., Crooks, P. A., & Dwoskin, L. P. (1999). Nornicotine is self-administered intravenously by rats. Psychopharmacology (Berl), 146(3), 290–296.CrossRefGoogle Scholar
  8. Benowitz, N. L., & Jacob, P., 3rd. (1984). Daily intake of nicotine during cigarette smoking. Clinical Pharmacology and Therapeutics, 35(4), 499–504.PubMedCrossRefGoogle Scholar
  9. Bozarth, M. A., Pudiak, C. M., & KuoLee, R. (1998). Effect of chronic nicotine on brain stimulation reward. II. An escalating dose regimen. Behavioural Brain Research, 96(1–2), 189–194.PubMedCrossRefGoogle Scholar
  10. Bruijnzeel, A. W., Zislis, G., Wilson, C., & Gold, M. S. (2007). Antagonism of CRF receptors prevents the deficit in brain reward function associated with precipitated nicotine withdrawal in rats. Neuropsychopharmacology, 32(4), 955–963.PubMedCrossRefGoogle Scholar
  11. Caggiula, A. R., Donny, E. C., White, A. R., Chaudhri, N., Booth, S., Gharib, M. A., et al. (2002). Environmental stimuli promote the acquisition of nicotine self-administration in rats. Psychopharmacology (Berl), 163(2), 230–237.CrossRefGoogle Scholar
  12. Caine, S. B., & Koob, G. F. (1995). Pretreatment with the dopamine agonist 7-OH-DPAT shifts the cocaine self-administration dose-effect function to the left under different schedules in the rat. Behavioural Pharmacology, 6(4), 333–347.PubMedCrossRefGoogle Scholar
  13. Carboni, E., Bortone, L., Giua, C., & Di Chiara, G. (2000). Dissociation of physical abstinence signs from changes in extracellular dopamine in the nucleus accumbens and in the prefrontal cortex of nicotine dependent rats. Drug and Alcohol Dependence, 58(1–2), 93–102.PubMedCrossRefGoogle Scholar
  14. Centers for Disease Control and Prevention (2005). Cigarette smoking among adults--United States, 2004. Morbidity and Mortality Weekly Report, 54(44), 1121–1124.Google Scholar
  15. Chaudhri, N., Caggiula, A. R., Donny, E. C., Palmatier, M. I., Liu, X., & Sved, A. F. (2006). Complex interactions between nicotine and nonpharmacological stimuli reveal multiple roles for nicotine in reinforcement. Psychopharmacology (Berl), 184(3–4), 353–366.CrossRefGoogle Scholar
  16. Chiamulera, C., Borgo, C., Falchetto, S., Valerio, E., & Tessari, M. (1996). Nicotine reinstatement of nicotine self-administration after long-term extinction. Psychopharmacology (Berl), 127(2), 102–107.CrossRefGoogle Scholar
  17. Corrigall, W. A. (1999). Nicotine self-administration in animals as a dependence model. Nicotine and Tobacco Research, 1(1), 11–20.CrossRefGoogle Scholar
  18. Corrigall, W. A., & Coen, K. M. (1989). Nicotine maintains robust self-administration in rats on a limited-access schedule. Psychopharmacology (Berl), 99(4), 473–478.CrossRefGoogle Scholar
  19. Crooks, P. A., & Dwoskin, L. P. (1997). Contribution of CNS nicotine metabolites to the neuropharmacological effects of nicotine and tobacco smoking. Biochemical Pharmacology, 54(7), 743–753.PubMedCrossRefGoogle Scholar
  20. Cryan, J. F., Bruijnzeel, A. W., Skjei, K. L., & Markou, A. (2003). Bupropion enhances brain reward function and reverses the affective and somatic aspects of nicotine withdrawal in the rat. Psychopharmacology (Berl), 168(3), 347–358.CrossRefGoogle Scholar
  21. Damaj, M. I., Kao, W., & Martin, B. R. (2003). Characterization of spontaneous and precipitated nicotine withdrawal in the mouse. Journal of Pharmacology and Experimental Therapeutics, 307(2), 526–534.PubMedCrossRefGoogle Scholar
  22. DeNoble, V. J., & Mele, P. C. (2006). Intravenous nicotine self-administration in rats: Effects of mecamylamine, hexamethonium and naloxone. Psychopharmacology (Berl), 184(3–4), 266–272.CrossRefGoogle Scholar
  23. Depoortere, R. Y., Li, D. H., Lane, J. D., & Emmett-Oglesby, M. W. (1993). Parameters of self-administration of cocaine in rats under a progressive-ratio schedule. Pharmacology Biochemistry and Behavior, 45(3), 539–548.CrossRefGoogle Scholar
  24. Di Chiara, G. (2002). Nucleus accumbens shell and core dopamine: Differential role in behavior and addiction. Behavioural Brain Research, 137(1–2), 75–114.PubMedCrossRefGoogle Scholar
  25. Donny, E. C., Caggiula, A. R., Knopf, S., & Brown, C. (1995). Nicotine self-administration in rats. Psychopharmacology (Berl), 122(4), 390–394.CrossRefGoogle Scholar
  26. Donny, E. C., Caggiula, A. R., Mielke, M. M., Booth, S., Gharib, M. A., Hoffman, A., et al. (1999). Nicotine self-administration in rats on a progressive ratio schedule of reinforcement. Psychopharmacology (Berl), 147(2), 135–142.CrossRefGoogle Scholar
  27. Dwoskin, L. P., Teng, L., Buxton, S. T., & Crooks, P. A. (1999). (S)-(-)-Cotinine, the major brain metabolite of nicotine, stimulates nicotinic receptors to evoke [3H]dopamine release from rat striatal slices in a calcium-dependent manner. Journal of Pharmacology and Experimental Therapeutics, 288(3), 905–911.PubMedGoogle Scholar
  28. Engberg, G., & Hajos, M. (1994). Nicotine-induced activation of locus coeruleus neurons: an analysis of peripheral versus central induction. Naunyn Schmiedeberg's Archives of Pharmacology, 349(5), 443–446.PubMedCrossRefGoogle Scholar
  29. Epping-Jordan, M. P., Watkins, S. S., Koob, G. F., & Markou, A. (1998). Dramatic decreases in brain reward function during nicotine withdrawal. Nature, 393(6680), 76–79.PubMedCrossRefGoogle Scholar
  30. Fiore, M. C., Smith, S. S., Jorenby, D. E., & Baker, T. B. (1994). The effectiveness of the nicotine patch for smoking cessation. A meta-analysis. Journal of the American Medical Association, 271(24), 1940–1947.PubMedCrossRefGoogle Scholar
  31. Geyer, M. A., & Markou, A. (1995). Animal models of psychiatric disorders. In: Psychopharmacology: The Fourth Generation of Progress.: Raven Press New York, NY. pp 787–798.Google Scholar
  32. Glassman, A. H., Helzer, J. E., Covey, L. S., Cottler, L. B., Stetner, F., Tipp, J. E., et al. (1990). Smoking, smoking cessation, and major depression. Journal of the American Medical Association, 264(12), 1546–1549.PubMedCrossRefGoogle Scholar
  33. Goldberg, S. R., & Schuster, C. R. (1967). Conditioned suppression by a stimulus associated with nalorphine in morphine-dependent monkeys. Journal of the Experimental Analysis of Behavior, 10(3), 235–242.PubMedCrossRefGoogle Scholar
  34. Goldberg, S. R., Spealman, R. D., & Goldberg, D. M. (1981). Persistent behavior at high rates maintained by intravenous self-administration of nicotine. Science, 214(4520), 573–575.PubMedCrossRefGoogle Scholar
  35. Gosling, J. A., & Lu, T. C. (1969). Uptake and distribution of some quaternary ammonium compounds in the central nervous system of the rat. Journal of Pharmacology and Experimental Therapeutics, 167(1), 56–62.PubMedGoogle Scholar
  36. Grottick, A. J., & Higgins, G. A. (2000). Effect of subtype selective nicotinic compounds on attention as assessed by the five-choice serial reaction time task. Behavioural Brain Research, 117(1–2), 197–208.PubMedCrossRefGoogle Scholar
  37. Harrison, A. A., Gasparini, F., & Markou, A. (2002). Nicotine potentiation of brain stimulation reward reversed by DHβE and SCH 23390, but not by eticlopride, LY 314582 or MPEP in rats. Psychopharmacology (Berl), 160(1), 56–66.CrossRefGoogle Scholar
  38. Harrison, A. A., Liem, Y. T., & Markou, A. (2001). Fluoxetine combined with a serotonin-1A receptor antagonist reversed reward deficits observed during nicotine and amphetamine withdrawal in rats. Neuropsychopharmacology, 25(1), 55–71.PubMedCrossRefGoogle Scholar
  39. Hellemans, K. G., Dickinson, A., & Everitt, B. J. (2006). Motivational control of heroin seeking by conditioned stimuli associated with withdrawal and heroin taking by rats. Behavioral Neuroscience, 120(1), 103–114.PubMedCrossRefGoogle Scholar
  40. Hildebrand, B. E., Nomikos, G. G., Bondjers, C., Nisell, M., & Svensson, T. H. (1997). Behavioral manifestations of the nicotine abstinence syndrome in the rat: Peripheral versus central mechanisms. Psychopharmacology (Berl), 129(4), 348–356.CrossRefGoogle Scholar
  41. Hildebrand, B. E., Nomikos, G. G., Hertel, P., Schilstrom, B., & Svensson, T. H. (1998). Reduced dopamine output in the nucleus accumbens but not in the medial prefrontal cortex in rats displaying a mecamylamine-precipitated nicotine withdrawal syndrome. Brain Research, 779(1–2), 214–225.PubMedCrossRefGoogle Scholar
  42. Hughes, J. R., & Hatsukami, D. (1986). Signs and symptoms of tobacco withdrawal. Archives of General Psychiatry, 43(3), 289–294.PubMedCrossRefGoogle Scholar
  43. Hutcheson, D. M., Everitt, B. J., Robbins, T. W., & Dickinson, A. (2001). The role of withdrawal in heroin addiction: enhances reward or promotes avoidance? Nature Neuroscience, 4(9), 943–947.PubMedCrossRefGoogle Scholar
  44. Irvine, E. E., Cheeta, S., & File, S. E. (2001). Tolerance to nicotine's effects in the elevated plus-maze and increased anxiety during withdrawal. Pharmacology Biochemistry and Behavior, 68(2), 319–325.CrossRefGoogle Scholar
  45. Jones, G. M., Sahakian, B. J., Levy, R., Warburton, D. M., & Gray, J. A. (1992). Effects of acute subcutaneous nicotine on attention, information processing and short-term memory in Alzheimer's disease. Psychopharmacology (Berl), 108(4), 485–494.CrossRefGoogle Scholar
  46. Kenny, P. J., Chen, S. A., Kitamura, O., Markou, A., & Koob, G. F. (2006). Conditioned withdrawal drives heroin consumption and decreases reward sensitivity. Journal of Neuroscience, 26(22), 5894–5900.PubMedCrossRefGoogle Scholar
  47. Kenny, P. J., Gasparini, F., & Markou, A. (2003). Group II metabotropic and α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)/kainate glutamate receptors regulate the deficit in brain reward function associated with nicotine withdrawal in rats. Journal of Pharmacology and Experimental Therapeutics, 306(3), 1068–1076.PubMedCrossRefGoogle Scholar
  48. Kenny, P. J., Koob, G. F., & Markou, A. (2003). Conditioned facilitation of brain reward function after repeated cocaine administration. Behavioral Neuroscience, 117(5), 1103–1107.PubMedCrossRefGoogle Scholar
  49. Kenny, P. J., & Markou, A. (2001). Neurobiology of the nicotine withdrawal syndrome. Pharmacology Biochemistry and Behavior, 70(4), 531–549.CrossRefGoogle Scholar
  50. Kenny, P. J., & Markou, A. (2005). Conditioned nicotine withdrawal profoundly decreases the activity of brain reward systems. Journal of Neuroscience, 25(26), 6208–6212.PubMedCrossRefGoogle Scholar
  51. Kenny, P. J., & Markou, A. (2006). Nicotine self-administration acutely activates brain reward systems and induces a long-lasting increase in reward sensitivity. Neuropsychopharmacology, 31(6), 1203–1211.PubMedGoogle Scholar
  52. Koob, G. F., & Le Moal, M. (2005). Neurobiology of Addiction. London: Academic Press.Google Scholar
  53. LeSage, M. G., Burroughs, D., Dufek, M., Keyler, D. E., & Pentel, P. R. (2004). Reinstatement of nicotine self-administration in rats by presentation of nicotine-paired stimuli, but not nicotine priming. Pharmacology Biochemistry and Behavior, 79(3), 507–513.CrossRefGoogle Scholar
  54. LeSage, M. G., Keyler, D. E., Shoeman, D., Raphael, D., Collins, G., & Pentel, P. R. (2002). Continuous nicotine infusion reduces nicotine self-administration in rats with 23-h/day access to nicotine. Pharmacology Biochemistry and Behavior, 72(1–2), 279–289.CrossRefGoogle Scholar
  55. Levin, E. D., Conners, C. K., Silva, D., Hinton, S. C., Meck, W. H., March, J., et al. (1998). Transdermal nicotine effects on attention. Psychopharmacology (Berl), 140(2), 135–141.CrossRefGoogle Scholar
  56. Levin, E. D., & Rezvani, A. H. (2002). Nicotinic treatment for cognitive dysfunction. Current Drug Targets. CNS and Neurological Disorders, 1(4), 423–431.PubMedCrossRefGoogle Scholar
  57. Levin, E. D., & Simon, B. B. (1998). Nicotinic acetylcholine involvement in cognitive function in animals. Psychopharmacology (Berl), 138(3–4), 217–230.CrossRefGoogle Scholar
  58. Lindblom, N., de Villiers, S. H., Semenova, S., Kalayanov, G., Gordon, S., Schilstrom, B., et al. (2005). Active immunisation against nicotine blocks the reward facilitating effects of nicotine and partially prevents nicotine withdrawal in the rat as measured by dopamine output in the nucleus accumbens, brain reward thresholds and somatic signs. Naunyn-Schmiedeberg's Archives of Pharmacology, 372(3), 182–194.PubMedCrossRefGoogle Scholar
  59. Liu, X., Caggiula, A. R., Yee, S. K., Nobuta, H., Poland, R. E., & Pechnick, R. N. (2006). Reinstatement of nicotine-seeking behavior by drug-associated stimuli after extinction in rats. Psychopharmacology (Berl), 184(3–4), 417–425.CrossRefGoogle Scholar
  60. Malin, D. H., Lake, J. R., Carter, V. A., Cunningham, J. S., Hebert, K. M., Conrad, D. L., et al. (1994). The nicotinic antagonist mecamylamine precipitates nicotine abstinence syndrome in the rat. Psychopharmacology (Berl), 115(1–2), 180–184.CrossRefGoogle Scholar
  61. Malin, D. H., Lake, J. R., Newlin-Maultsby, P., Roberts, L. K., Lanier, J. G., Carter, V. A., et al. (1992). Rodent model of nicotine abstinence syndrome. Pharmacology Biochemistry and Behavior, 43(3), 779–784.CrossRefGoogle Scholar
  62. Malin, D. H., Lake, J. R., Payne, M. C., Short, P. E., Carter, V. A., Cunningham, J. S., et al. (1996). Nicotine alleviation of nicotine abstinence syndrome is naloxone-reversible. Pharmacology Biochemistry and Behavior, 53(1), 81–85.CrossRefGoogle Scholar
  63. Malin, D. H., Lake, J. R., Schopen, C. K., Kirk, J. W., Sailer, E. E., Lawless, B. A., et al. (1997). Nicotine abstinence syndrome precipitated by central but not peripheral hexamethonium. Pharmacology Biochemistry and Behavior, 58(3), 695–699.CrossRefGoogle Scholar
  64. Markou, A., & Kenny, P. J. (2002). Neuroadaptations to chronic exposure to drugs of abuse: relevance to depressive symptomatology seen across psychiatric diagnostic categories. Neurotoxicology Research, 4(4), 297–313.CrossRefGoogle Scholar
  65. Markou, A., & Koob, G. F. (1991). Postcocaine anhedonia: An animal model of cocaine withdrawal. Neuropsychopharmacology, 4(1), 17–26.PubMedGoogle Scholar
  66. Markou, A., & Koob, G. F. (1992). Construct validity of a self-stimulation threshold paradigm: effects of reward and performance manipulations. Physiology and Behavior, 51(1), 111–119.PubMedCrossRefGoogle Scholar
  67. Markou, A., Kosten, T. R., & Koob, G. F. (1998). Neurobiological similarities in depression and drug dependence: a self-medication hypothesis. Neuropsychopharmacology, 18(3), 135–174.PubMedCrossRefGoogle Scholar
  68. Markou, A., & Paterson, N. E. (2001). The nicotinic antagonist methyllycaconitine has differential effects on nicotine self-administration and nicotine withdrawal in the rat. Nicotine and Tobacco Research, 3(4), 361–373.PubMedCrossRefGoogle Scholar
  69. Markou, A., Weiss, F., Gold, L. H., Caine, S. B., Schulteis, G., & Koob, G. F. (1993). Animal models of drug craving. Psychopharmacology (Berl), 112(2–3), 163–182.CrossRefGoogle Scholar
  70. McGregor, A., & Roberts, D. C. S. (1995). Effect of medial prefrontal cortex injections of SCH 23390 on intravenous cocaine self-administration under both a fixed and progressive ratio schedule of reinforcement. Behavioural Brain Research, 67(1), 75–80.PubMedCrossRefGoogle Scholar
  71. Mirza, N. R., & Stolerman, I. P. (1998). Nicotine enhances sustained attention in the rat under specific task conditions. Psychopharmacology (Berl), 138(3–4), 266–274.CrossRefGoogle Scholar
  72. Murrin, L. C., Ferrer, J. R., Zeng, W. Y., & Haley, N. J. (1987). Nicotine administration to rats: Methodological considerations. Life Sciences, 40(17), 1699–1708.PubMedCrossRefGoogle Scholar
  73. O'Brien, C. P., Testa, T., O'Brien, T. J., Brady, J. P., & Wells, B. (1977). Conditioned narcotic withdrawal in humans. Science, 195(4282), 1000–1002.PubMedCrossRefGoogle Scholar
  74. Olds, J., & Milner, P. (1954). Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. Journal of Comparative and Physiological Psychology, 47(6), 419–427.PubMedCrossRefGoogle Scholar
  75. Parrott, A. C. (1993). Cigarette smoking: effects upon self-rated stress and arousal over the day. Addictive Behaviors, 18(4), 389–395.PubMedCrossRefGoogle Scholar
  76. Paterson, N. E., Balfour, D. J., & Markou, A. (2007). Chronic bupropion attenuated the anhedonic component of nicotine withdrawal in rats via inhibition of dopamine reuptake in the nucleus accumbens shell. European Journal of Neuroscience, 25(10), 3099–3108.PubMedCrossRefGoogle Scholar
  77. Paterson, N. E., Bruijnzeel, A. W., Kenny, P. J., Wright, C. D., Froestl, W., & Markou, A. (2005). Prolonged nicotine exposure does not alter GABAB receptor-mediated regulation of brain reward function. Neuropharmacology, 49(7), 953–962.PubMedCrossRefGoogle Scholar
  78. Paterson, N. E., Froestl, W., & Markou, A. (2004). The GABAB receptor agonists baclofen and CGP44532 decreased nicotine self-administration in the rat. Psychopharmacology (Berl), 172(2), 179–186.CrossRefGoogle Scholar
  79. Paterson, N. E., Froestl, W., & Markou, A. (2005). Repeated administration of the GABAB receptor agonist CGP44532 decreased nicotine self-administration, and acute administration decreased cue-induced reinstatement of nicotine-seeking in rats. Neuropsychopharmacology, 30(1), 119–128.PubMedCrossRefGoogle Scholar
  80. Paterson, N. E., & Markou, A. (2003). Increased motivation for self-administered cocaine after escalated cocaine intake. Neuroreport, 14(17), 2229–2232.PubMedCrossRefGoogle Scholar
  81. Paterson, N. E., & Markou, A. (2004). Prolonged nicotine dependence associated with extended access to nicotine self-administration in rats. Psychopharmacology (Berl), 173(1–2), 64–72.CrossRefGoogle Scholar
  82. Paterson, N. E., Myers, C., & Markou, A. (2000). Effects of repeated withdrawal from continuous amphetamine administration on brain reward function in rats. Psychopharmacology (Berl), 152(4), 440–446.CrossRefGoogle Scholar
  83. Piasecki, T. M., Jorenby, D. E., Smith, S. S., Fiore, M. C., & Baker, T. B. (2003). Smoking withdrawal dynamics: II. Improved tests of withdrawal-relapse relations. Journal of Abnormal Psychology, 112(1), 14–27.PubMedCrossRefGoogle Scholar
  84. Picciotto, M. R., Zoli, M., Rimondini, R., Lena, C., Marubio, L. M., Pich, E. M., et al. (1998). Acetylcholine receptors containing the β2 subunit are involved in the reinforcing properties of nicotine. Nature, 391(6663), 173–177.PubMedCrossRefGoogle Scholar
  85. Pickens, R., & Thompson, T. (1968). Cocaine-reinforced behavior in rats: Effects of reinforcement magnitude and fixed-ratio size. Journal of Pharmacology and Experimental Therapeutics, 161(1), 122–129.PubMedGoogle Scholar
  86. Risner, M. E., & Goldberg, S. R. (1983). A comparison of nicotine and cocaine self-administration in the dog: fixed-ratio and progressive-ratio schedules of intravenous drug infusion. Journal of Pharmacology and Experimental Therapeutics, 224(2), 319–326.PubMedGoogle Scholar
  87. Rose, J. E. (2006). Nicotine and nonnicotine factors in cigarette addiction. Psychopharmacology (Berl), 184(3–4), 274–285.CrossRefGoogle Scholar
  88. Rowlett, J. K. (2000). A labor-supply analysis of cocaine self-administration under progressive-ratio schedules: antecedents, methodologies, and perspectives. Psychopharmacology (Berl), 153(1), 1–16.CrossRefGoogle Scholar
  89. Sacco, K. A., Termine, A., Seyal, A., Dudas, M. M., Vessicchio, J. C., Krishnan-Sarin, S., et al. (2005). Effects of cigarette smoking on spatial working memory and attentional deficits in schizophrenia: involvement of nicotinic receptor mechanisms. Archives of General Psychiatry, 62(6), 649–659.PubMedCrossRefGoogle Scholar
  90. Sannerud, C. A., Prada, J., Goldberg, D. M., & Goldberg, S. R. (1994). The effects of sertraline on nicotine self-administration and food-maintained responding in squirrel monkeys. European Journal of Pharmacology, 271(2–3), 461–469.PubMedCrossRefGoogle Scholar
  91. Schulteis, G., Markou, A., Cole, M., & Koob, G. F. (1995). Decreased brain reward produced by ethanol withdrawal. Proceedings of the National Academy of Sciences of the United States of America, 92(13), 5880–5884.PubMedCrossRefGoogle Scholar
  92. Schulteis, G., Markou, A., Gold, L. H., Stinus, L., & Koob, G. F. (1994). Relative sensitivity to naloxone of multiple indices of opiate withdrawal: A quantitative dose-response analysis. Journal of Pharmacology and Experimental Therapeutics, 271(3), 1391–1398.PubMedGoogle Scholar
  93. See, R. E., Grimm, J. W., Kruzich, P. J., & Rustay, N. (1999). The importance of a compound stimulus in conditioned drug-seeking behavior following one week of extinction from self-administered cocaine in rats. Drug and Alcohol Dependence, 57(1), 41–49.PubMedCrossRefGoogle Scholar
  94. Semenova, S., & Markou, A. (2003). Clozapine treatment attenuated somatic and affective signs of nicotine and amphetamine withdrawal in subsets of rats exhibiting hyposensitivity to the initial effects of clozapine. Biological Psychiatry, 54(11), 1249–1264.PubMedCrossRefGoogle Scholar
  95. Semenova, S., Stolerman, I. P., & Markou, A. (2007). Chronic nicotine administration improves attention while nicotine withdrawal induces performance deficits in the 5-choice serial reaction time task in rats. Pharmacology Biochemistry and Behavior, 87(3), 360–368.Google Scholar
  96. Shaham, Y., Adamson, L. K., Grocki, S., & Corrigall, W. A. (1997). Reinstatement and spontaneous recovery of nicotine seeking in rats. Psychopharmacology (Berl), 130(4), 396–403.CrossRefGoogle Scholar
  97. Shaham, Y., Shalev, U., Lu, L., De Wit, H., & Stewart, J. (2003). The reinstatement model of drug relapse: History, methodology and major findings. Psychopharmacology (Berl), 168(1–2), 3–20.CrossRefGoogle Scholar
  98. Shoaib, M., & Bizarro, L. (2005). Deficits in a sustained attention task following nicotine withdrawal in rats. Psychopharmacology (Berl), 178(2–3), 211–222.CrossRefGoogle Scholar
  99. Shoaib, M., & Stolerman, I. P. (1999). Plasma nicotine and cotinine levels following intravenous nicotine self-administration in rats. Psychopharmacology (Berl), 143(3), 318–321.CrossRefGoogle Scholar
  100. Skjei, K. L., & Markou, A. (2003). Effects of repeated withdrawal episodes, nicotine dose, and duration of nicotine exposure on the severity and duration of nicotine withdrawal in rats. Psychopharmacology (Berl), 168(3), 280–292.CrossRefGoogle Scholar
  101. Smolka, M. N., Budde, H., Karow, A. C., & Schmidt, L. G. (2004). Neuroendocrinological and neuropsychological correlates of dopaminergic function in nicotine dependence. Psychopharmacology (Berl), 175(3), 374–381.CrossRefGoogle Scholar
  102. Snyder, F. R., & Henningfield, J. E. (1989). Effects of nicotine administration following 12 h of tobacco deprivation: assessment on computerized performance tasks. Psychopharmacology (Berl), 97(1), 17–22.CrossRefGoogle Scholar
  103. Spielewoy, C., & Markou, A. (2003). Withdrawal from chronic phencyclidine treatment induces long-lasting depression in brain reward function. Neuropsychopharmacology, 28(6), 1106–1116.PubMedGoogle Scholar
  104. Stolerman, I. P., & Jarvis, M. J. (1995). The scientific case that nicotine is addictive. Psychopharmacology (Berl), 117(1), 2–10; discussion 14–20.CrossRefGoogle Scholar
  105. Suzuki, T., Ise, Y., Tsuda, M., Maeda, J., & Misawa, M. (1996). Mecamylamine-precipitated nicotine-withdrawal aversion in rats. European Journal of Pharmacology, 314(3), 281–284.PubMedCrossRefGoogle Scholar
  106. Taylor, J. R., & Robbins, T. W. (1984). Enhanced behavioural control by conditioned reinforcers following microinjections of d-amphetamine into the nucleus accumbens. Psychopharmacology (Berl), 84(3), 405–412.CrossRefGoogle Scholar
  107. Valentine, J. D., Hokanson, J. S., Matta, S. G., & Sharp, B. M. (1997). Self-administration in rats allowed unlimited access to nicotine. Psychopharmacology (Berl), 133(3), 300–304.CrossRefGoogle Scholar
  108. Watkins, S. S., Epping-Jordan, M. P., Koob, G. F., & Markou, A. (1999). Blockade of nicotine self-administration with nicotinic antagonists in rats. Pharmacology Biochemistry and Behavior, 62(4), 743–751.CrossRefGoogle Scholar
  109. Watkins, S. S., Stinus, L., Koob, G. F., & Markou, A. (2000). Reward and somatic changes during precipitated nicotine withdrawal in rats: Centrally and peripherally mediated effects. Journal of Pharmacology and Experimental Therapeutics, 292(3), 1053–1064.PubMedGoogle Scholar
  110. West, R. J., Jarvis, M. J., Russell, M. A., Carruthers, M. E., & Feyerabend, C. (1984). Effect of nicotine replacement on the cigarette withdrawal syndrome. British Journal of Addiction, 79(2), 215–219.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of PsychiatrySchool of Medicine, University of CaliforniaLa Jolla, San DiegoUSA

Personalised recommendations